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1. Introduction

In prtilly ordered set it is possible to define vrious kinds of convergence
in terms of the prtil order. A general discussion of convergence defined in
terms of prtil order my be found in [1], [3], or [6]. In general, con-
vergence defined in this wy cnnot be topologized, i.e., cannot be defined
s convergence with respect to some topology. For example, convergence
lmost everywhere is of this type (see Section 2, Example 2). Since con-
vergence defined in terms of prtil order cnnot always be topologized, it
is natural to ask whether convergence with respect to topology cn be
obtained as convergence defined in terms of partial order. This is possible,
for example, if we consider ny compact Husdorff space. One simply embeds
this spce in the product of unit intervals (where, as usual, the product is
partially ordered componentwise) nd then uses order convergence (i.e.,
componentwise convergence) in the product. The product is generally much
lrger thn the original compact Husdorff spce nd, therefore, the question
of whether the spce itself cn be suitably prtilly ordered remains open.
Nevertheless, the bove example suggests that partially ordered spces re
reasonable generalizations of topological spces.

In this paper we will show that ny locally convex linear topological spce
(1.c.l.t.s.) over the rels cn be suitably embedded in prtilly ordered
linear spce (p.o.l.s.). This result is closely related to Grothendieck’s result
which states that every 1.c.l.t.s. is isomorphic to subspce of the product of
normed linear spces [2]. However, the generality of our result is that it
llows one to consider locally convex linear topological spces as subspaces of
certain kinds of prtilly ordered linear spaces. This in turn llows one to
consider the topological convergence s special kind of convergence defined
in terms of prtil order. It is hoped that this will provide for unified
treatment of topological nd non-topological convergence in linear spces, t
least in the case of the more important types of convergence which re useful
in nlysis.

Finally, we shll prove two theorems showing that there is connection
between continuous linear operators and functionls and positive linear oper-
ators nd tunctionls in certain cses.

2. Basic definitions

In this pper 11 linear spces re ssumed to be over the rels nd topologies
re ssumed to be Husdorff. A p.o.1, spce X is prtilly ordered set in
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which the partial order (denoted by <= is consistent with the linear structure
in the following sense" (a) ifx, y, zeXandx _-< y, thenx W z =< y z;
(b) if x e X and 0 =< x and a is a non-negative real number, then 0 =< ax.
We will use Greek letters to denote real numbers and will, as usual, use the
same symbol -< to denote inequality between real numbers. We now give
the necessary definitions of convergence in a p.o.l.s, which will be used in
this paper.

DEFINITION 1. A non-empty subset M of a p.o.l.s. X is said to be directed
to 0 if for every x, y e M there exists z e M such that z _< x and z =< y, and if
inf M 0. When we write inf M 0, this means that 0 =< x for all x M and
ifu =< x for all x M, thenu-<_ 0.

DEFINITION 2. A net {xn, n e D} of elements from X is said to order con-
verge (o-converge) to 0 if there exists non-empty M X which is directed to
0 such that for each y e M there exists k e D such that -y <- x -< y for all
n > k. More generally, the net {x, n e D} is said to o-converge to x e X if
the net Xn X, n e D} o-converges to 0. (See [4, Chap. 2] for. a general dis-
cussion of nets.

DEFINITION 3. A net {xn, n e D} of non-negative elements from X un-
boundedly order converges (uo-converges) to 0 if every bounded net
[yn, n e D}, where 0 __< y __< x, o-converges to 0. A net {yn, n e D} is said
to be bounded if there exists u e X such that -u -< y =< u for all n e D.

DEFINITION 4. An arbitrary net Xn n . D} uo-converges to 0 if there exists
a net {z, n D}, where--Zn <= X,, <-- Zn (hence, 0 __< z), which uo-converges
to 0. Note that o-convergence implies uo-convergence.

The use of uo-convergence is quite natural as the following two examples
show.

Example I. If X is the linear space of all real-valued functions defined on
an abstract set and the partial order is defined pointwise, then uo-conver-
gence is simply pointwise convergence. Note that in this case uo-convergence
can be topologized. In this example o-convergence and uo-convergence
coincide if and only if is a finite set; we emphasize that this refers to con-
vergence of arbitrary nets, because for sequences these types of convergence
coincide even if 2 is infinite.

Example 2. Let X be the p.o.l.s, of real-valued integrable functions de-
fined on [0, 1]. Here uo-convergence is simply convergence almost every-
where. In this example uo-convergence cannot be topologized [3, pp. 52-54].
In this case o-convergence and uo-convergence do not coincide even for se-

quences.
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3. The main theorems
In the proof of the first theorem we shall use the following lemma.

LEMMA. Let E be a linear space and let p be a semi-norm defined on E.
Now let E(p) be the collection of all ordered pairs (x, ), where x e E and k is a
real number. In E(p) we define equality as follows:

(x, k) (y, ) iff p(x y) k O,

and the partial order is defined as follows:
(x,k) <__ (y,t) iff p(x-y) <= t--k.

Then E(p) is a p.o.l.s, in which o-convergence and uo-convergence coincide.
Furthermore, if {Xn n e D} is a net of elements from E, then lim p(x,) 0 iff
the net x, 0), n e D} o-converges to (0, 0).

Proof. The properties of the semi-norm p (i.e., p(x)
and p(x -J- y) _-< p (x) d- p(y)) can be applied directly to show that equality
and the partial order as defined in E(p) have the necessary properties and,
hence, E(p) is a p.o.l.s.
From the definitions of convergence given above it is clear that if every net

(xn, n), n e D} of non-negative elements from E(p) which uo-converges to
(0, 0) is eventually bounded, then uo-convergence implies o-convergence and,
hence, they are equivalent. Thus, let (x, hn), n e D} be a net of non-nega-
tive elements fromE(p)whichuo-converges to (0, 0). Since (0, 0) _<_ (Xn,),),
we have p(x) _-< n 2hn ), which means (x, kn) -< (0, 2)). Now if
we put y,, x,/( 1 d- n) and n /( 1 -J- h), then

(0, 0) -< (y, g) -< (x.,),) and (y, g) __< (0, 2) for all neD.

Therefore, the net (yn, ), n e D must o-converge to (0, 0).
Before proceeding, let us show that if M c E(p) is non-empty and directed

to (0, 0), then v0 inf {7 (z, 7) e M} 0. Assume the contrary, i.e., that
70 2 > 0. Hence, there exists (zl, w) M such that vl -< 3/. Now if
(z, 7) eMand (z, 7) -< (zl, w),thenp(z z) <- q v <- <- q ,
which means that (zl,/) =< (z, 7). Since M is directed to (0, 0), we see that
(z, ) -< (z, v) for all (z, v) e M and since inf M (0, 0), we must have
(z, fl) _-< (0, 0), which is a contradiction because > 0. Hence, by con-
tradiction we have 70 0.

Since the net (y, gn), n e D} o-converges to (0, 0), there exists non-empty
M c E(p) which is directed to (0, 0) such that for any (z, 7) e M there exists
]ce D such that (z, v) <-_ (Yn, #n) - (Z, q) for all n > /c. In particular, we
may select (z, v) e M so that v -<_ 1/2;hence, there exists ]c e D so that

(i.e.,)n _-< 1) foralln > k. Therefore, wehave (0,0) =< (x,,X,) _-< (0, 2 for all
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n > k, which means that net {(x, )kn), n e D} is eventually bounded. Hence,
o-convergence and uo-convergence coincide in E(p).
We now wish to prove the last assertion of the lemma. Assume first that

lira p(x,) O. Let us define n rain lp(x,), 1} and then define

),= sup Item m > neD}.

Then set M l(0, )n) n D}. It is easily verified that M is directed to
(0, 0). Now if we select any (0,)i) e M, then there exists/c e D such that
lc > iand) < 1. Therefore, (0, )i) <_- (x,0) <= (0,)i)forlln > /.

Hence, the net (Xn, 0), n D} o-converges to (0, 0). To prove the con-
verse, let us assume that the net {(Xn, 0), n e D} o-converges to (0, 0).
Hence, there exists non-empty M c E(p) which is directed to (0, 0) and is
such that for ny (z, 7) e M there exists lc e D such that

-(z, ,) <= (x, 0) _<_ (z, ,)

for all n > /. Using the latter inequalities, we have

2p(Xn) -- p(x, + Z) + p(x, Z) __<-- (0 -+- 7) + (7 0) 27;

hence, p(xn) -< for alln > k. Since inf {: (z, )eM} 0, we have
lira p(x) 0, Q.E.D.

Note. If (0, O) <= (z, 7) e E(p), then (z, 7) =< (0, 27). Hence, in discussing
o-convergence of nets in E(p) it is sufficient to consider only one subset M
which is directed to (0, 0), namely, M {(0, 7) > 0} c E(p).

THEOREM 1. Let E be a 1.c.l.t.s. (the topology is Hausdorff). Then there exists
a p.o.l.s. X and a one-to-one linear mapping i E X (into) such that a net
{x n e D} of elements from E converges to 0 with respect to the topology for E
if and only if the net {i(x,), n e D} of dements from X uo-converges to O.

Proof. Let P be the family of semi-norms which define the topology for E.
For ech p e P let E(p) be the p.o.l.s, constructed as in the above lemma.
We now define X as the direct product of all E(p), where p e P. If X is
prtially ordered coordinatewise, then X becomes p.o.l.s. The mapping
i E -- X is defined s follows" if x e E, then i(x) is the element in the direct
product X in which each component hs the form (x, 0). The mapping i is
linear and one-to-one since E is a Hausdorff space. Hence, if x e E and
x 0, then there exists p e P such that p(x) 0 so that (x, 0) E(p) and
{x, 0) (o, 0).
Now let x, n e D} be a net of elements from E which converges to 0.

This means, of course, that lira p(x,) 0 for all p P. For ech n e D and
p e P define h,(p) p(xn) and then define z X as follows" the component
of z in E(p) is (0,).(p)). It is clear that -z <= i(x) <= z for all n e D.
We will now use the fact that lira )(p) 0 for all p e P to show that the net
{z, neD} uo-converges to 0eX. To do this we must show that if
{yn, n D} is any bounded net such that 0 <= y <= Zn, then it o-converges to
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0 X. If we write (yn(p), ttn(p)) aS the component of yn in E(p), then we
can set (p) sup tm(p) m > n e D}, where n(p) < because the net
{y, n e D} is bounded and, hence, so is the net of components in each E(p).
Since 0 _-< tn(p) _-< (p) and lim h(p) 0, we must have lim f.(p) 0
for all p e P. Now if we define u e X as that element having component
(0, 2/n(p)) in E(p) and define M u n D}, then it is readily seen that
M is directed to 0 e X. Using the fact that n(p) =< n(p), we see that

(0, O) <__ (y,(p), ttn(p)) (0, 2/n(p))

for all n e D and p e P; hence, 0 _<_ y _<_ u for all n e D. Therefore, the net
{yn, n e D} o-converges to 0. This in turn proves that the net {Zn, n D}
uo-converges to 0; hence, the net {i(x), n e D} uo-converges to 0.
Now let {x, neD} be a net of elements from E such that the net

li(Xn), neD} uo-converges to 0eX. This in turn means that for each
pep the net l(x, 0), neD} of elements from E(p) uo-converges to
(0, 0) e E(p). By the above lemma, this means that lim p(x) 0 for all
p P; hence, the net {x, n e D} converges to 0 e E with respect to the topology
for E, Q.E.D.
We now wish to show that continuous linear operators on a 1.c.l.t.s. E can

be represented by positive linear operators on X (where E and X are related
as in Theorem 1).

THEOREM 2. Let E and F be 1.c.l.t. spaces and let P and Q be the families of
all semi-norms which determine the topologies for E and F, respectively. Let
X and Y be the p.o.1, spaces which are constructed as in the proof q Theorem 1.
Accordingly we obtain linear one-to-one mappings i E X and j F -- Y.
Then if H E F is a continuous linear operator, there exists a positive linear
operator T X ----> Y such that for each x e E, T((x) j(H(x) ).

Proof. For each q e Q let us select p e P so that q(H(x)) <= p(x) for all
x e E. This is possible since H is continuous. We will regard this selection
as determining a correspondence c Q - P.
Now if z e X, we will define T(z) e Y as follows:since Y is the direct product

of all F q ), q e Q, we will define the component of T(z) in F q to be (H(x), ),
where (x, k) is the component of z in E(c(q)).

It follows immediately that T is linear. Referring to the proof of Theorem 1
to see how the partial ordering is defined in X and Y and using the definition
of c(q), it is easily seen that T is positive. From the definition of the mappings
i and j it follows that T(i(x)) j(H(x)), Q.E.D.

If in Theorem 2 we take F as the real line and define Y F with j as the
identity mapping, then the proof of Theorem 2 can be modified so that it
applies to linear functionals; i.e., if H is a continuous linear functional on E,
then there exists a positive linear functional T on X such that T(i(x) H(x).
The following question is open" using the notation of Theorem 2, under what

conditions is it possible to find a continuous linear operator H E - F such
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that T(i(x)) j(H(x) for all x e E, where T is a given positive linear
operator mapping X into Y? The following theorem gives a partial answer
to this question in the case where linear functionals are considered.

THEOREM 3. Let E be a 1.c.l.t.s. such that the topology for E is determined
by a countable family P {pl p2, of seminorms. Let X be the p.o.l.s.
constructed from E and P as in the proof of Theorem 1. Then iff is any positive
linear functional defined on X, f(i(. is a continuous linear functional defined
on E.

Proof. Referring to the construction of X as given in Theorem 1, we see
that X is the space of sequences of elements (x, a) E(pn). If we consider
the subspace X0 of sequences with components of the form (0, an) e E(p),
then f must be a positive linear functional on X0. This is possible only if

where z (0, a), (0, a2), e X0 and ’, ,/ are non-negative real
numbers determined by f.
Now if xeE, , p(x), and z {(0, hi), (0, },2), ""}eX0, then

f(z) + f(i(x) >= 0 and f(z) f(i(x) >= O, where the inequalities follow
from the fact that -+-i(x) <= z. Therefore,

f(i(x)) <= p(x) - - p(x) for all x E;

hence, f(i(. is continuous, Q.E.D.
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