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1. Introduction

Let the real line act ergodically on the finite measure space S, so as to
preserve the measure. Form the Hilbert space 22(S, ) and for each real x
let U be the unitary transformation which takes f e (S, ) into its translate
f ;f(s) f(sx). Then x -* U is a unitary representation of the real line
whose decomposition into irreducible representations may be studied and
correlated with the properties of the given action of the real line on S (Koop-
man’s program [3]). One says that the action has a pure point spectrum if
there exists an orthonormal basis 1, ’2, for 22(S, ) such that U(.)
eixx The numbers k. then constitute the spectrum of the action. This
case has been thoroughly studied by yon Neumann in [7] and the following
results have been obtained (modulo appropriate regularity assumptions about
S, and the action)" (a) The k. which occur form a subgroup 1 of the addi-
tive group of the real line and each k. occurs with multiplicity one. (b) Given
any countable subgroup F of the additive group of the real line there exists
an action of this group on a finite measure space S, whose spectrum is F.
(c) The action having F as its spectrum is uniquely determined (up to the
obvious equivalence) and may be constructed from F as follows. Give F the
discrete topology and let be its (compact) character group. For each real
x let (x) be the character k -- eixx. Take S to be , take to be Haar
measure and define an action of the real line n S by setting x (x).

It is obvious how to formulate these results so that they make sense for
any separable locally compact commutative group G. One simply replaces
F by a countable subgroup of the dual of G, the equation U() ex by
U()) (x). and the character k ex by the character L. (x).
Although no one seems to have bothered to work out the details many mathe-
maticians have realized that it would probably be easy to prove the indicated
generalization of yon Neumann’s result. The special case in which G is the
infinite cyclic group has been treated in detail in [2].

In this note we shall go a step further and show that a similarly complete
analysis is possible when the real line is replaced by any separable locally
compact group G provided that having a pure point spectrum is interpreted
to mean that U is a discrete direct sum of finite-dimensional irreducible repre-
sentations of G. Our method is not a direct generalization of that of yon

Neumann and yields a different proof when applied to his case. Moreover,
as we shall show, it can be used to analyze the still more general situation

Received June 25, 1963.

593



594 GEORGE W. MACKEY

which we obtain when we replace U by any discrete direct sum of finite-
dimensional representations of G for which there exists an ergodic system of
imprimitivity [5, page 278].

2. Preliminaries and formulation of Theorem
We shall use the measure theoretic notions developed in our papers [4]

and [6] and begin by recalling some of these. (See also Blackwell [1] and
footnote (1) in [6].) Let G be any separable locally compact group and let
S be a standard Borel space. If sx is defined and in S for all s in S and all
x in G we shall say that S is a Borel G-space if the following conditions are
satisfied"

s, x ---. sx is a Borel function.
(ii) (sx)x =- s(x x.).
(iii) se s.

Let be a a-finite measure defined on all Borel subsets of S which is invariant
in the sense that t(Ex) (E) for all x in G and all Borel subsets E of S.
One says that the system S, G, t is ergodic if whenever E is a Borel set in S
with (E) 0 and (S E) 0 then for some x e G we have

t( (E- Ex)u (Ex- E) > O.

It is known [6, Theorem 3] that the system S, G, fails to be ergodic if and
only if there exists a Borel set E in S with (E) 0, (S E) 0, and
Ex E for all x in G.

If S is a standard Borel G-space and t is an invariant measure in S we
define a unitary representation U of G whose space is 2(S, ) by setting
U(f) (s) f(sx). We shall call U the representation associated with the
system S, G, . When U is a discrete direct sum of finite-dimensional irre-
ducible representations we shall say that the system has a pure point spectrum.
Let G be any separable locally compact group, let e be a continuous homo-
morphism of G onto a dense subgroup of a compact group K and let H be
any closed subgroup of K. Using the pair e, H we may construct an ergodic
system S$, G, H as follows. Let S$ K/H, the space of all right H cosets
in K, and let H denote the unique invariant measure in K/H such that
t,(K/H) 1. Setting x s(xi where is the coset to which s belongs,
we make S into a standard G-space. It is easy to see that the system
S$, G, n is ergodic. Indeed if it were not there would exist a nonconstant
member of 2(S, ,) which is invariant under the G action and hence (by
continuity) under the K action. Since K acts transitively this is impossible.
Now the unitary representation U associated with the system S, G, n is
the representation x -- V() where V is the unitary representation associated
with the system S$, K, . But V is a subrepresentation of the regular repre-
sentation of K and hence is a discrete direct sum of finite-dimensional irre-
ducible representations. Thus S, G, tH hasa pure pointspectrum. Theorem
1 is a converse of this result.
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THEOREM 1. Let S, G, be an ergodic system with a pure point spectrum
where G is a separable locally compact group, S is a standard Borel G-space and

is an invariant Borel measure in S. Then there exist a continuous homo-
morphism of G onto a dense subgroup of a compact group K and a closed
subgroup H of K such that S, G, is equivalent to the system S$, G, H in the
following sense" There exist invariant Borel subsets N1 and N2 of S and S
respectively and a Borel isomorphism of S N1 on S$ N2 such that

O(sx) (s)x, (N1) ,(N) O.

3. Proof of Theorem
We begin with two lemmas.

LEMMA 1. Let x --> Ux be a (continuous unitary) representation of the
separable locally compact group G. Let B be any complete Boolean algebra of

U BU B for all x in a denseprojections in the space SO(U) of U such that -1

subgroup G’ of G. Then UiBU B for all x in G.

Proof. Let x be any element in G and let P be any element in B. Our
task is to show that U U e B. Let and b be elements of (U) and let
y be any element of Gt. Then

U-21PUx, uipuy)(q).) U-21PUz(,).b) UIPUy)().)
(PU(q). U()) (PU,(,). U()).

Moreover by taking y sufficiently close to x we may make U(e) and U(b)
as close respectively to U(e) and U(b) as we please. Hence UIPU is a
weak limit of projections of the form U-IPU and hence of members of B.
Since B is weakly closed the lemma is proved.

LEMMA 2. If the system S, G, is ergodic and G is compact then there exists
a point s in S such that (S sG) O.

Proof. By Lemma 2 of [6] we may suppose that S may be metrized as a
separable metric space in such a manner that s, x sx is continuous and so
that the Borel sets defined by the topology are the same as the given ones.
It follows that the orbits in S are all compact and hence that the space of all
orbits is metrizable. Since a continuous image of a separable metric space is
again such, the orbit space is countably separated. We may now apply the
argument used in proving Theorem 6.3 of [5] to show that there must be an
orbit of positive measure. Because of ergodicity the complement of the
orbit must be of measure zero.

Proof of Theorem 1. Let U L @ L @ where theL’are finite-
dimensional irreducible representations of G. Let K. be the image of G in
3C(L’) and let N be the set of all x for which L I. (Here and elsewhere in
the paper 3C(W) denotes thespacein which therepresentation W acts.) Then
the closure/ of K. is compact, N 1=1Ny is a closed normal subgroup of
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G and x - L1., L (x) is a continuous homomorphism of G into the
compactgroup / =/-1X/. X LetKbetheclosureof(G) in/. Then
K is compact and is a continuous homomorphism of G onto a dense subgroup
of K. The kernel of is N so defines a continuous (but not in general
bicontinuous) isomorphism of GIN into K. It is now easy to define a con-
tinuous unitary representation V of K in 3C(U) such that V.() U for all
xinG. For eachyinKoftheform(x) let V U. If(x)

-1then x x2 N so LI L for all j so UI U2 Thus Vv is well defined
for all y e (G). Moreover for each j and each pair
the mapping y --+ (Vv(e).O’) is continuous in the / topology. Hence
y -- (V(bl).b2) is continuous for all bl and b2 in 3C(U) 3C(V). Hence V
has a unique continuous extension to all of K.

For each Borel subset E of S let P be the projection on the space of all
functions which vanish outside of E. Then UP U PE1-I for all x
and E. Hence if B denotes the complete Boolean algebra of all P then
U BU- B for all x in G. Hence Vv BV. B for all y in (G). Hence
by Lemma 1, Vv BV- B for all y in K. Applying Theorem 4 of [6] we
deduce the existence of a standard Borel K-space S’ and a projection-valued
measure E - P defined on the Borel subsets of S’ such that VP V
Ptv-1 for all E and y andsuchthat B is the set of all P. We define a Borel
measure ’ in S’ by setting ’(E) #(F) whenever P P. It is clear
that t’ is an ergodic invariant measure in
has an orbit whose complement has measure zero. It follows at once that
we may suppose S chosen so as to be a transitive K-space and hence (Cf. [5,
Theorem 6.1] that we may choose S’ so as to be a coset space K/H where H
is a closed subgroup of K. We make S’ K/H into a G-space by setting
sx s(x). Comparing with S we see that the correspondence defined by
the equation P P is an equiv1ence between the associated Boolean
G-spaces ([6] page 328). By Theorem 2 of [6] S and S’ must be equivalent
as indicated and the proof of our theorem is complete.

COROLLARY. The measure t is necessarily finite and the representation U
has the following properties.

(a) Each irreducible constituent occurs with a finite multiplicity which is
less than or equal to its dimension.

(b) For each irreducible constituent L of U, is also an irreducible constit-
uent of U.

(c) If M and M are irreducible constituents of U then the tensor product
M (R) M has an irreducible constituent which appears as an irreducible con-
stituent of U.

Remark 1. Consider the special case in which G is commutative. Then
K must be commutative and K/H is a group. If there exists x e G with
(x) e H then sx s for almost all s. Hence if we normalize, as we may, by

factoring out the subgroup of all x with sx s for almost all s we reach the
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conclusion that (G) n H 0. For each xeG let0(x) h((x)) where h
is the canonical mapping of K on K/H. Then 0 is a Borel homomorphism of
G into K/H and hence is continuous. Thus we may conclude that H e
and that is one-to-one; in other words the given action of G on S is equivalent
to the action obtained by restricting the right multiplication on a compact
commutative group to a dense subgroup isomorphic to G. The generaliza-
tion of yon Neumann’s result to arbitrary separable locally compact com-
mutative groups is immediate.
Remark 2. In the commutative case the action of G on S is determined to

within equivalence by the irreducible constituents of the representation U.
Whether or not this uniqueness holds in the noncommutative case is clearly
equivalent to the following question. Let H1 and H be closed subgroups of
the compact group K. Let U and U denote the unitary representations of
K associated with the natural actions of K on K/HI and K/H respectively.
Does unitary equivalence of U and U imply the existence of an x in K such
that xH x-1 H. ? That this need not be so even if the group is finite has
been shown by Todd [8].

4. A further generalization
Let S, G, t satisfy the hypothesis of Theorem 1. Let a be a complex-valued

Borel function defined on S X G with a 1. For each x e G let

U f)(s) a(s, x)f(sx).

Then x -- U will define a unitary representation of G if and only if a(s, e) 1
for almost all s and for each pair x, x: e G,

a(s, x x) a(s, x)a(sxi, X2) for almost all s.

Suppose that we have such an a and that U is a discrete direct sum of
finite-dimensional irreducible representations. Can we draw a conclusion
about the structure of S, G, t analogous to and generalizing that in Theorem
1? Theorem 2 provides a positive answer to this and related questions.
Before stating this theorem it will be convenient to make a few definitions.
Let H be a closed subgroup of the separable compact group K and let L be a
unitary representation of H. Let 3CL denote the set of all Borel functions

ffromK to (L (the space of L such thatf(x) Lf(x) for all , x H X K
and such that f (f(x).f(x)) dx < . We make 3CL into a Hilbert space by
introducing the obvious norm and define a unitary representation U of K
whose space is 3C by setting U" f(y) f(yx). For each Borel subset E
of the coset space K/H let P be the projection which maps f into , f
where , is the characteristic function of the set E’ of all x lying in some
coset of E. Let B denote the set of all projections of the form P. Then
B is a complete Boolean algebra of projections and U BLUx-IL B for
all x in K. Now let q) be a continuous homomorphism of the separable locally
compact group G onto a dense subgroup of K. Let Ux UL

(x). Then U
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is a unitary representation of G which is a discrete direct sum of finite-dimen-
sional irreducible representations and BL is a complete Boolean algebra of
projections which is invariant in the sense that U L -1 BB U for all x in
G and ergodic in the sense thatUPU- P for all x in G implies
P 0 P 1. Theorem 2 is a converse of this result.

THEOREM 2. Let U be a unitary representation of the separable locally com-
pact group G and let B be a complete Boolean algebra of projections in 3C(U)
which is invariant and ergodic with respect to U. Suppose that U is a discrete
direct sum of finite-dimensional irreducible representations. Then there exist
a continuous homomorphism of G onto a dense subgroup of a compact group K,
a closed subgroup H of K, a unitary representation L of H and a unitary map W
of 3C(U) on 3C U) such that

(i) WBW-1 B.
(ii) WU W- U( for all x in G.

Proof. We construct K, and a unitary representation V of K such that
V(x) U exactly as in the proof of Theorem 1. Applying Lemma 1 we
conclude that B is invariant under V. Since B is ergodic with respect to U
it is afortiori ergodic with respect to V. Next we apply Theorem 4 of [6]
and conclude that there exist a standard Borel K-space and a projection-
valued measure P defined on S such that:

()
(b)

The set of all Ps is iust B and
U PU-; Pt- for ll x in K.

Choose n element in SO(U) such that (P().) 0 if nd only if P 0.
Then E -- (Ps(b).) is a measure on S whose null sets are invariant--a
quasi invariant measure. The definition of ergodicity and the proof of
Lemma 2 are still valid for measures which are only quasi invariant. Thus
we may conclude, as in the proof of Theorem 1, that we may choose S as the
right coset space K/H for some closed subgroup H of K. Hence we may apply
Theorem 6.6 of [5] and deduce the unitary equivalence of the pair U, B with the
pair U’, B " for some unitary representation L of H. The truth of the theorem
follows at once.

5. An application of Theorem 2

Let G be a separable locally compact group and let S be a standard Borel
G-space. Let be a z-finite Borel measure in S whose null sets are invariant
under G. Let the action of G on S be ergodic with respect to . Let p be a
positive real-valued Borel function on S G such that f(s) p(s, x)f(sx)
is a unitary operator U in 22(S, t) for each x in G. Let H0 be a separable
Hilbert space. Then f(s) p(s, x)f(sx) is also a unitary operator U in
22(S, H0, ), that is in the Hilbert space of all square summable functions
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from S to H0. Let A be any Borel function from S X G to the group t0 of
all unitary operators in H0 which satisfies the following.

(a) A (s, e) I for almost all s.
(b) For each pair Xl, x. in G,

A(s, x x) A(s, x)A(sx x) for almost all s.

Then for each x in G, f(s) -- A (s, x) p(s, x)f(sx) is a unitary operator U in
(S, H0, ) and x -- U is a unitary representation of G.

THEOREM 3. If the representation U is a discrete direct sum of finite-
dimensional irreducible representations then there exists a finite inariant meas-
ure having the same null sets as and the conclusion of Theorem 1 holds.

Proof. For each Borel set E in S let P be multiplication by the charac-
teristic function of E and let B be the set of all P. Then B is ergodic and
invariant under the U and we may apply Theorem 2. The unitary mapping
W of Theorem 2 sets up an isomorphism between B and the B of Theorem 2
to which we may apply Theorem 2 of [6]. The truth of Theorem 3 follows at
once.

Remart. Application of Theorem 2 to the representation U actually
yields more information than the structure of S. We can also conclude that
the representation L of H is uniquely determined up to equivalence and that
A and A yield equivalent L’s if and only if there exists a Bore1 function
s -- V(s) from S to the unitary operators from the space of A to the space of
A such that for all x,

A(s, x) V(s)-A( x)V(sx) for almost all s.

(Cf [5, 5]). We leave details to the reader. It is important to notice that
this analysis applies only to those A’s which yield a U which is a discrete
direct sum of finite-dimensional irreducible representations. Even if S is an
S$ as defined in 2 there may exist A’s for which U does not decompose in this
manner.
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