# FINITE MÖBIUS-PLANES ADMITTING A ZASSENHAUS GROUP AS GROUP OF AUTOMORPHISMS ${ }^{1}$ 

BY<br>Heinz Lüneburg

We call an incidence structure $\mathfrak{T}$ consisting of points and circles and an incidence relation between points and circles a Möbius-plane ( $=$ inversive plane), if the following axioms are satisfied (see e.g. Benz [1]):
(1) If $P, Q, R$ are three different points of $\mathfrak{N}$, then there exists one and only one circle $k$ in $\mathfrak{T}$ such that $P, Q, R \in k$.
(2) If $k$ is a circle and $P$ a point on $k$ and if $Q$ is a point not on $k$, then there exists one and only one circle $l$ with $P, Q \in l$ and $k \cap l=\{P\}$.
(3) There are four points which do not all lie on the same circle, and every circle carries at least one point.
$\sigma$ is called an automorphism of $\mathfrak{T}$, if $\sigma$ is a permutation of the points of $\mathfrak{M}$ which maps concyclic points on concyclic points. The full automorphism group of $\mathfrak{T l}$ is called the Möbius-group of $\mathfrak{T l}$.

If $P$ is a point of $\mathfrak{T C}$, then we derive an incidence structure $Q(\mathfrak{F}, P)$ from $\mathfrak{N}$ and $P$ in the following way:
(a) The points of $\mathbb{Q}(\mathfrak{T}, P)$ are the points of $\mathfrak{T l}$ which are different from $P$.
(b) The lines of $Q(\mathfrak{H}, P)$ are the circles through $P$.
(c) A point $Q$ and a line $l$ of $Q(\mathfrak{M}, P)$ are incident if and only if the corresponding point $Q$ and the corresponding circle $l$ are incident in $\mathfrak{M}$.

It is a well known fact that $\mathbb{Q}(\mathfrak{M}, P)$ is an affine plane (Benz [1, Satz 1]).
If $\mathscr{T}$ is a finite Möbius-plane, then it follows from the fact that $a(\mathscr{T}, P)$ is an affine plane that the number of points of $\mathfrak{N}$ is $q^{2}+1$ and the number of points which lie on a circle is $q+1$. It is easily seen that the number of circles is $q\left(q^{2}+1\right)$. We call $q$ the order of 9 .

Let $\mathbb{B}$ be a set of circles and $P$ a point. We call $\mathbb{B}$ a tangent bundle through $P$, if the following hold:
(i) $ß \neq \emptyset$.
(ii) $k, l \in ®$ and $k \neq l$ imply $k \cap l=\{P\}$.
(iii) $k \in \mathbb{B}$ and $k \cap l=\{P\}$ imply $l \in \mathbb{B}$.

Let $\Sigma$ be a permutation group on the set $\mathcal{P}$; then we call $\Sigma$ Zassenhaus transitive on $\mathcal{P}$, if $\Sigma$ is doubly transitive on $\mathcal{P}$ and if only the identity fixes three different elements of $\mathcal{P}$.

[^0]Now the only two known classes of finite Möbius-planes are the following ones:

1. The finite miquelian Möbius-planes: The Möbius-group of these planes contains a subgroup isomorphic to the $P S L_{2}\left(q^{2}\right)$, where $q$ is the order of the plane. We shall show (Theorem 2) that this fact characterizes these planes. (For the definition and the properties of these planes see e.g. Benz [2, §2 and §4.6].)
2. The finite Möbius-planes of order $q=2^{2 r+1}>2$ which are constructed with the Suzuki-group $S\left(2^{2 r+1}\right)$ (see Theorem 1): We shall show that a Möbius-plane of order $q=2^{2 r+1}$ on which the Suzuki-group $S(q)$ acts as an automorphism group is uniquely determined up to isomorphisms. We shall call these Möbius-planes Suzuki-planes.

The subgroup $P S L_{2}\left(q^{2}\right)$ of the Möbius-group of a miquelian Möbius-plane and the subgroup $S(q)$ of the Möbius-group of a Suzuki-plane act Zassenhaustransitively on the points of these planes. We shall see that a Möbius-plane which admits an automorphism group being Zassenhaus transitive on the points is either miquelian or a Suzuki-plane.

Finally we shall prove the somewhat surprising theorem that the only finite Möbius-planes which admit an automorphism group which is transitive on the incident point-circle pairs and such that only the identity fixes three different points are the miquelian ones.

Theorem 1. If $q=2^{2 r+1}>2$, then there is one, and up to isomorphism only one, Möbius-plane $\mathfrak{T l}$ of order $q$ which admits an automorphism group $\Sigma$ isomorphic to the Suzuki-group $S(q)$.

Proof. The existence part of this theorem was proved by Hughes in [8], so we have only to prove the uniqueness.

Let $\mathfrak{T}$ be a Möbius-plane with $q^{2}+1$ points $\left(q=2^{2 r+1}>2\right)$ and $\Sigma$ an automorphism group of $\mathfrak{T H}$ isomorphic to $S(q)$. If M is a 2 -Sylow subgroup of $\Sigma$, then the normalizer $\mathfrak{T M}$ of M in $\Sigma$ is a subgroup of maximal order in $\Sigma$ (Suzuki [11, Theorem 9]). Let $\mathfrak{J}$ be a system of transitivity of points. We can assume that $J$ contains at least two points. Now we have

$$
\left(q^{2}+1\right) q^{2}(q-1)=o(\Sigma)=|J| o\left(\Sigma_{P}\right)
$$

where $P$ is a point of $J$ and $\Sigma_{P}$ the stabilizer of $P$. This implies

$$
o(\Sigma)>o\left(\Sigma_{P}\right) \geqq q^{2}(q-1)=o(\mathfrak{T M})
$$

Hence $\Sigma_{P}=9 \mathbb{I M}$ for a suitable 2-Sylow subgroup M of $\Sigma$. It follows that $|\mathfrak{J}|=q^{2}+1$, i.e. $\Sigma$ is transitive on the points of $\mathfrak{T}$. The group of inner automorphisms of $\Sigma$ is Zassenhaus transitive on the 2-Sylow subgroups of $\Sigma$. This and the fact that $\Sigma_{P}=\mathfrak{N M}$ imply that $\Sigma$ is Zassenhaus transitive on the points of $\mathfrak{T}$. We put $\mathrm{H}=\Sigma_{P}$. Then H is a Frobenius group and therefore $\mathrm{H}=\mathrm{MT}$ where M is a 2-Sylow subgroup of $\Sigma$ and $\mathrm{M} \cap \mathrm{T}=1, \mathrm{M} \triangleleft \mathrm{H}$ and $o(\mathrm{M})=q^{2}, o(\mathrm{~T})=q-1$. Finally M is transitive on the points different
from $P$. The number of tangent bundles through $P$ is $q+1$. Therefore there exists a tangent bundle $\mathbb{B}$ through $P$ with $\mathbb{B}^{\mathrm{M}}=\AA$. If $k \in \mathbb{B}$, then $o\left(\mathrm{M}_{k}\right)=q$, since M is transitive and regular on the points different from $P$ and since every point of $\mathfrak{N}$ is on a circle of $\mathbb{B}$. This implies that $o\left(\mathrm{H}_{k}\right)=q t$ where $t$ is a divisor of $q-1$. Now we assume that $\Sigma_{k}$ is different from $\mathrm{H}_{k}$. Then there is a $\sigma \in \Sigma_{k}$ with $P^{\sigma} \neq P$. This implies that $\Sigma_{k}$ is transitive on the points of $k$. Therefore $q+1$ is a divisor of $o(\Sigma)=\left(q^{2}+1\right) q^{2}(q-1)$, a contradiction proving $\Sigma_{k}=\mathrm{H}_{k}$. Let $\mathcal{K}=\left\{k^{\sigma}: \sigma \epsilon \Sigma\right\}$. Then we have

$$
\left(q^{2}+1\right) q^{2}(q-1)=o(\Sigma)=|\mathfrak{K}| o\left(\Sigma_{k}\right)=|\Re| q t .
$$

This implies, since $t$ is a divisor of $q-1$, that

$$
q\left(q^{2}+1\right) \geqq|K|=q\left(q^{2}+1\right) q^{2}(q-1) t^{-1} \geqq q\left(q^{2}+1\right)
$$

Hence $|\Re|=q\left(q^{2}+1\right)$ and $t=q-1$ so that $H_{k}$ is sharply doubly transitive on $k-\{P\}$ and therefore $\mathrm{M}_{k}$ is an elementary abelian 2-group. This implies that $\mathrm{M}_{k}=\mathrm{ZM}$, the center of M (Suzuki [11, Theorem 6 and Lemma 1]). Let $\mathrm{H}_{k}=\Lambda$ and $\mathrm{ZM}=\mathrm{Z}$. Let $P=P_{1}, P_{2}, \cdots, P_{q+1}$ be all the points which are on $k$ and $\mathrm{H}_{i}$ the stabilizer of $P_{i}$. Denote by $\mathfrak{H C}$ the set consisting of all the $\mathrm{H}_{2}$. Finally we define $\Delta=\left\{\sigma \in \Sigma: \sigma^{-1} \mathrm{H} \sigma \in \mathfrak{H}\right\}$. Now we can describe $\mathfrak{M}$ in $\Sigma$ in the following way: We define the mappings

$$
\begin{array}{rll}
Q \rightarrow \mathrm{H} \sigma & \text { if and only if } & P^{\sigma}=Q \\
l \rightarrow \Lambda \tau & \text { if and only if } & k^{\tau}=l
\end{array}
$$

These mappings are one-to-one and onto. We define incidence by $\mathrm{H} \sigma \mathrm{I} \Lambda \tau$ if and only if $P^{\sigma} \epsilon k^{\tau}$. It is easily seen that $\mathrm{H} \sigma \mathrm{I} \Lambda \tau$ if and only if $\sigma \tau^{-1} \epsilon \Delta$. If $\mathscr{M}^{*}$ is a second Möbius-plane which satisfies the conditions of Theorem 1 and if $\Sigma^{*}, H^{*}, M^{*}$, etc. have the same meaning as $\Sigma, H, M$, etc., then first of all $\Sigma$ and $\Sigma^{*}$ are isomorphic (Suzuki [11, Theorem 8]). Now there is exactly one 2-Sylow subgroup $\mathrm{M}_{1}$ of $\Sigma$ such that $\mathfrak{T M} \cap \mathfrak{T} \mathrm{M}_{1}=\mathrm{T}$ and exactly one 2-Sylow subgroup $\mathrm{M}_{1}^{*}$ of $\Sigma^{*}$ such that $\mathfrak{T} \mathrm{M}^{*} \cap \mathfrak{T} \mathrm{M}_{1}^{*}=\mathrm{T}^{*}$. This implies, since the inner automorphisms of $\Sigma$ are doubly transitive on the 2-Sylow subgroups of $\Sigma$, that there is an isomorphism $\alpha$ from $\Sigma$ onto $\Sigma^{*}$ such that $M^{\alpha}=M^{*}$ and $\mathrm{M}_{1}^{\alpha}=\mathrm{M}_{1}^{*}$. This implies that $\mathrm{T}^{\alpha}=\mathrm{T}^{*}, \mathrm{H}^{\alpha}=\mathrm{H}^{*}, \mathscr{H}^{\alpha}=\mathscr{H}^{*}$ and $\Delta^{\alpha}=\Delta^{*}$, Q.E.D.

The proof of Theorem 1 shows also the validity of the following:
Corollary 1. $\Sigma$ is transitive on the circles and Zassenhaus transitive on the points of $\mathfrak{T T}$.

Corollary 2. In $\mathfrak{M t}$ the bundle-theorem (Büschelsatz) is satisfied but not the theorem of Miquel. $\quad \mathbb{Q}(\mathfrak{T}, P)$ is desarguesian for every point $P$ of $\mathfrak{T}$.
(For a statement of these two configuration theorems see e.g. Benz [2, §2].)
Proof. The Möbius-group of a finite miquelian Möbius-plane is isomorphic to the $P \Gamma L_{2}\left(q^{2}\right)$, if $q$ is the order of the plane (see e.g. Benz [2, §4.6]). Since
$S(q)$ is not contained in the $P \Gamma L_{2}\left(q^{2}\right)$, we see that $\mathfrak{T}$ is a nonmiquelian Möbius-plane. Now let $\mathcal{O}$ be a Tits-ovaloid in the projective 3 -space $\mathcal{S}$ over $G F(q)$ (see Tits [12, $\S \S 4.2$ and 4.3]). If the points of $\mathcal{O}$ are the points of a geometry $\mathfrak{T}$ and the planar sections of $\mathcal{O}$ containing more than one point are the circles of $\mathfrak{N}$ and if incidence in $\mathfrak{N}$ is equivalent to incidence in $S$, then it is easily seen that $\mathscr{T}^{\prime}$ is a Suzuki-plane. It follows from this construction that $\mathfrak{N}$ satisfies the bundle-theorem and that $\mathfrak{Q}(\mathfrak{N}, P)$ is desarguesian for all $P$ of $\mathfrak{T}$. Corollary 2 follows now from Theorem 1.

Theorem 2. If $q=p^{r}$ ( $p$ a prime number), then there is one, and up to isomorphism only one, Möbius-plane $\mathfrak{N}$ of order $q$ admitting an automorphism group $\Sigma$ being isomorphic to the $P S L_{2}\left(q^{2}\right)$.

Proof. The existence of such planes is well known (see e.g. Benz [2, $\S \S 2$ and 4.6]), so we have only to prove their uniqueness. If $q \neq 3$, then it follows from Dickson [3, §263] that $\Sigma$ is doubly transitive on the points of $\mathfrak{M}$. If $q=3$ and $\Sigma$ is not transitive on the points of $\mathfrak{T}$, then $\Sigma$ has exactly four fixed points [3, §263] which is easily seen to be impossible. Therefore $\Sigma$ is doubly transitive in either case. Let $P$ be a point of $\mathfrak{T}$ and $H=\Sigma_{P}$, the stabilizer of $P$. Then $o(H)=a^{-1} q^{2}\left(q^{2}-1\right)$ with $a=1$, if $q$ is even, and $a=2$, if $q$ is odd. Furthermore $\mathrm{H}=\mathrm{MT}$, where M is a $p$-Sylow subgroup of $\Sigma$ and $o(T)=a^{-1}\left(q^{2}-1\right)$. Since the number of tangent bundles through $P$ is $q+1$, the $p$-Sylow subgroup M fixes some tangent bundle $\mathbb{B}$ through $P$. If $k \in B$, then $o\left(\mathrm{M}_{k}\right)=q$ and therefore $o\left(\mathrm{H}_{k}\right)=q t$ with $t$ a divisor of $q-1$. Now let $\mathcal{K}$ be the set $\left\{k^{\sigma}: \sigma \epsilon \Sigma\right\}$. Then we have

$$
q\left(q^{2}+1\right) \geqq|\mathscr{K}|=\left(q^{2}+1\right) q^{2}\left(q^{2}-1\right)\left(a o\left(\Sigma_{k}\right)\right)^{-1}
$$

This implies $o\left(\Sigma_{k}\right) \geqq a^{-1} q\left(q^{2}-1\right)$. Therefore we have $\Sigma_{k} \neq H_{k}$. Hence $\Sigma_{k}$ is transitive on the points of $k$. Put $\Sigma_{k}=\Lambda$.

Case 1. $\quad p=2$. In this case $a=1$ and $\Lambda \cong P S L_{2}(q)$ (this follows from the order of $\Lambda$ and the list of subgroups of the $P S L_{2}\left(q^{2}\right)$ in [3, §260]). This implies $|\Re|=q\left(q^{2}+1\right)$. Therefore $\Sigma$ is transitive on the circles of $\mathfrak{N}$. Since $\Lambda$ is transitive on the point of $k$, it follows that $\Sigma$ is transitive on the incident point-circle pairs of $\mathfrak{N}$. Therefore we can describe $\mathfrak{M}$ within $\Sigma$ in the following way: We define the mappings

$$
\begin{aligned}
Q \rightarrow \mathrm{H} \sigma & \text { if and only if } \\
l \rightarrow \Lambda \tau & P^{\sigma}=Q \\
\text { if and only if } & k^{\tau}=l
\end{aligned}
$$

These mappings are one-to-one and onto. If we define incidence by $\mathrm{H} \sigma \mathrm{I} \Lambda \tau$ if and only if $P^{\sigma} \epsilon k^{\tau}$, then it follows from Higman and McLaughlin [6, Proposition 1] that $\mathrm{H} \sigma \mathrm{I} \Lambda \tau$ if and only if $\mathrm{H} \sigma \cap \Lambda \tau \neq \emptyset$. A comparison with the miquelian plane of order $q$ shows now that $\mathfrak{T}$ itself is miquelian.

Case 2. $\quad p \neq 2$. In this case $\Lambda$ contains a subgroup $\Lambda_{0} \cong P S L_{2}(q)$ of index 1 or 2 (Dickson [3, §260]). If $l$ is a circle with $l^{\Lambda_{0}}=l$, then we have
$l=k$; if $Q \epsilon k$, then there is one and only one $p$-Sylow subgroup $\mathrm{M}_{0}$ of $\Lambda_{0}$ such that $Q^{\mathrm{M}_{0}}=Q$ and since two different $p$-Sylow subgroups of $\Sigma$ intersect only in the identity, $Q$ is the only fixed point of $\mathrm{M}_{0}$. But $\mathrm{M}_{0}$ must leave fixed a point on $l$, so $Q$ is on $l$ and $l=k$. Now $\Sigma$ is isomorphic to the $\operatorname{PSL} L_{2}\left(q^{2}\right)$, so we have $\mathfrak{N} \Lambda_{0} \cong P G L_{2}(q)$ (Dickson [3, §255]). Furthermore $k$ is the only circle left fixed by $\Lambda_{0}$. This implies that $\Lambda=\mathscr{N} \Lambda_{0}$. It follows that $\Sigma$ splits the set $\mathfrak{C}$ of the circles of $\mathfrak{N}$ into two orbits $\mathfrak{C}_{1}$ and $\mathfrak{C}_{2}$. If $\mathfrak{N}_{2}(i=1,2)$ is the incidence structure consisting of the points of $\mathfrak{N}$ and the circles of $\mathfrak{C}_{i}$, then $\Sigma$ is transitive on the incident point-circle pairs of $\mathscr{N}_{i}$. Let $P$ be a point of $\mathfrak{M}$. There exist circles $k_{i}(i=1,2)$ such that $P \in k_{i}$ and $k_{i} \in \mathcal{C}_{i}$. Let H be the stabilizer of $P$ and $\Lambda_{i}$ the stabilizer of $k_{i}$. Since $\Sigma$ is transitive on the incident point-circle pairs of both $\mathfrak{T}_{1}$ and $\mathfrak{N}_{2}$, we can represent $\mathfrak{M}$ in the following way: We define the mappings

$$
\begin{aligned}
Q & \rightarrow \mathrm{H} \sigma
\end{aligned} \quad \text { if and only if } P^{\sigma}=Q, ~ 子 \quad \Lambda_{i} \tau \quad \text { if and only if } l \epsilon C_{i} \text { and } k_{i}^{\tau}=l(i=1,2) .
$$

These mappings are one-to-one and onto. It follows from Higman and McLaughlin [6] that $P^{\sigma} \in k_{i}^{\tau}$ if and only if $\mathrm{H} \sigma \cap \Lambda_{i} \tau \neq \emptyset$. A comparison with the miquelian Möbius-plane of order $q$ shows now that $\mathfrak{M}$ itself is miquelian, Q.E.D.

Lemma. A finite Möbius-plane $\mathfrak{T l}$ of order $q$ admits an automorphism group which is sharply doubly transitive on the points of $\mathfrak{T}$, if and only if $q=2$.

Proof. If $\mathfrak{M}$ is the Möbius-plane of order 2, then $\mathfrak{T}$ has 5 points and every circle carries exactly 3 points. This implies that every set of three points is a circle. It follows that the Möbius-group of $\mathfrak{T}$ is the symmetric group of degree 5 which in fact contains a sharply doubly transitive subgroup.

To prove the converse we assume that $\mathfrak{M}$ is a Möbius-plane with $q^{2}+1$ points and that $\Sigma$ is an automorphism group of $\mathfrak{T}$ which is sharply doubly transitive on the points of $\mathfrak{N}$. Since $\Sigma$ is sharply doubly transitive the degree $q^{2}+1$ of $\Sigma$ is a power of a prime $p$. Now V. A. Lebesgue [10] proved that $q^{2}+1=p^{r}$ implies $r=1$, so $\Sigma_{P}$ is cyclic. $\Sigma_{P}$ induces a collineation group in $\mathbb{Q}(\mathfrak{N}, P)$ which is cyclic and transitive on the points of $\mathbb{Q}(\mathscr{N}, P)$. By Hoffman [7], $q=2$, Q.E.D.

Theorem 3. Let $\mathfrak{T l}$ be a finite Möbius-plane of order $q$ and $\Sigma$ an automorphism group of $\mathfrak{T K}$ which is Zassenhaus transitive on the points of $\mathfrak{M c}$. Then, if $q$ is odd, $\mathfrak{M}$ is miquelian and if $q$ is even, then $\mathfrak{N}$ is either miquelian or a Suzuki-plane.

Proof. If $\Sigma$ contains a normal subgroup of order $q^{2}+1$, then it follows from Feit [4, Lemma 4.1] that $\Sigma$ contains a subgroup which is sharply doubly transitive on the points of $\mathfrak{N}$. It follows from our lemma that $\mathfrak{N}$ is the miquelian plane of order 2. Therefore we can assume that $\Sigma$ does not contain
such a normal subgroup. This implies (Suzuki [11], Feit [4] and Ito [9]) that either $\Sigma \cong S\left(2^{2 r+1}\right)$ with $q=2^{2 r+1}$ or $\Sigma$ contains a subgroup $\Sigma_{0} \cong P S L_{2}\left(p^{2 r}\right)$ with $q=p^{r}$. Theorem 3 follows now from Theorems 1 and 2 .

Theorem 4. A finite Möbius-plane $\mathfrak{M c}$ is miquelian if and only if $\mathfrak{T C}$ admits an automorphism group which is transitive on the incident point-circle pairs and such that only the identity leaves three distinct points fixed.

Proof. If $\mathfrak{T C}$ is a miquelian Möbius-plane, then $\mathfrak{T}$ has a sharply triply transitive automorphism group $\Sigma$ (see e.g. Benz [2, §4.6]). It is obvious that $\Sigma$ is transitive on the incident point-circle pairs and that only the identity leaves three distinct points fixed. To prove the converse assume that $\mathfrak{T}$ is a finite Möbius-plane and $\Sigma$ an automorphism group of $\mathfrak{N}$ which satisfies the requirements of the theorem. $\Sigma_{P}$ induces a collineation group of $a(\mathscr{N}, P)$. Now $o\left(\Sigma_{P}\right)=q(q+1) s$, since $\Sigma_{P}$ is transitive on the circles through $P$. This implies that 2 is a divisor of $o\left(\Sigma_{P}\right)$. Therefore there is a nontrivial involution $\sigma$ in $\Sigma_{P}$.

Case 1. $q$ is even. In this case $P$ is the only fixed point of $\sigma$, since only the identity fixes three different points. Therefore $\sigma$ induces a translation in $Q(\mathfrak{H}, P) \quad$ Since $\Sigma_{P}$ is transitive on the lines of $Q(\mathscr{T}, P)$ it follows from Gleason [5, Lemma 1.6] that $\mathfrak{Q}(\mathfrak{T}, P)$ is a translation plane and that $\Sigma_{P}$ contains the translation group of $\mathfrak{a}(\mathscr{T}, P)$. This implies that $\Sigma$ is Zassenhaus transitive on the points of $\mathfrak{M}$. It follows from Theorem 3 that $\mathfrak{M}$ is either miquelian or a Suzuki-plane. Since the translation group of $\mathbb{Q}(\mathscr{T}, P)$ is a 2-Sylow subgroup of $\Sigma$ and since it is elementary abelian, $\Sigma$ cannot be the group $S(q)$ (Suzuki [11, Theorem 6 and Lemma 1]). Hence $\mathfrak{T}$ is miquelian.

Case 2. $q-1$ is even. Then $\sigma$ is a homology of $\mathbb{Q}(\mathfrak{M}, P)$. But it is obvious that $\sigma$ is not the only involutory homology of $\mathbb{Q}(\mathscr{T}, P)$ in $\Sigma_{P}$. This implies that there is a nontrivial translation of $\mathbb{Q}(\mathscr{T}, P)$ in $\Sigma_{P}$ and we deduce as above that $\mathcal{G}(\mathscr{M}, P)$ is a translation plane and that $\Sigma_{P}$ contains the translation group of $\mathbb{Q}(\mathfrak{H}, P)$. It follows that $\Sigma$ is Zassenhaus transitive on the points of $\mathfrak{M}$. Hence $\mathfrak{M}$ is miquelian by Theorem 3.

## Bibliography

1. W. Benz, Zur Theorie der Möbiusebenen I, Math. Ann., vol. 134 (1958), pp. 237-247.
2. ———Über Möbiusebenen, Jber. Deutsch. Math. Verein., vol. 63 (1960), pp. 1-27.
3. L. E. Dickson, Linear groups, Dover Publications, 1958.
4. W. Feit, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 4 (1960), pp. 170-186.
5. A. M. Gleason, Finite Fano planes, Amer. J. Math., vol 78 (1956), pp. 797-808.
6. D. G. Higman, and J. E. McLaughlin, Geometric ABA-groups, Illinois J. Math., vol. 5 (1961), pp. 382-397.
7. A. J. Hoffman, Cyclic affine planes, Canad. J. Math., vol. 4 (1952), pp. 295-301.
8. D. R. Hughes, Combinatorial analysis. t-designs and permutation groups, 1960 Institute on finite groups, pp. 39-41, Pasadena, 1962.
9. N. Itо, On a class of doubly transitive permutation groups, Illinois J. Math., vol. 6 (1962), pp. 341-352.
10. V. A. Lebesgue, Sur l'impossibilité en nombres entier de l'équation $x^{m}=y^{2}+1$, Nouv. Ann. Math., vol. 9 (1850), pp. 178-181.
11. M. Suzuki, On a class of doubly transitive groups, Ann. of Math. (2), vol. 75 (1962), pp. 105-145.
12. J. Tits, Les groupes simples de Suzuki et de Rhee, Séminaire Bourbaki, 13e année (1960/61), Fasc. 1.

Universität
Frankfurt am Main, Germany
Universität
Mainz, Germany


[^0]:    Received June 15, 1963.
    ${ }^{1}$ Research supported in part by the U. S. Army European Research Office, Frankfurt am Main.

