FINITE MOBIUS-PLANES ADMITTING A ZASSENHAUS GROUP AS
GROUP OF AUTOMORPHISMS!

BY
Hrinz LUNEBURG

We call an incidence structure 9 consisting of points and circles and an
incidence relation between points and circles a Mébius-plane (= inversive
plane), if the following axioms are satisfied (see e.g. Benz [1]):

(1) 1If P, Q, R are three different points of 9N, then there exists one and only

one circle k in N such that P, Q, R ¢ k.
(2) If kis a circle and P a point on k and if Q is a point not on k, then there
exists one and only one circle l with P, Q el and knl = {P}.

(8) There are four points which do not all lie on the same circle, and every

circle carries at least one point.

o is called an automorphism of M, if ¢ is a permutation of the points of M
which maps concyclic points on concyclic points. The full automorphism
group of I is called the Mésbius-group of IM.

If P is a point of 91, then we derive an incidence structure @ (91, P) from
9 and P in the following way:
(a) The points of @(M, P) are the poinis of N which are different from P.
(b) The lines of (M, P) are the circles through P.
(e¢) A point Q and a line | of (M, P) are incident if and only if the corre-
sponding point Q and the corresponding circle I are incident in IN.

It is a well known fact that @ (9%, P) is an affine plane (Benz [1, Satz 1]).

If 9N is a finite Mobius-plane, then it follows from the fact that a(9n, P)
is an affine plane that the number of points of 91 is ¢* + 1 and the number of
points which lie on a circle is ¢ + 1. It is easily seen that the number of
circles is ¢(¢* + 1). We call q the order of 1.

Let ® be a set of circles and P a point. We call ® a tangent bundle through
P, if the following hold:
(i) ® = 0.
(ii) k,le®and k = limply knl = {P}.
(ili) ke®andknl = {P} imply l e ®.

Let 2 be a permutation group on the set ®; then we call £ Zassenhaus
transitive on @, if = is doubly transitive on ® and if only the identity fixes
three different elements of ®.

Received June 15, 1963.

1 Research supported in part by the U. S. Army European Research Office, Frankfurt
am Main.

586



FINITE MOBIUS PLANES 587

Now the only two known classes of finite Mébius-planes are the following
ones:

1. The finite miquelian Mébius-planes: The Mobius-group of these planes
contains a subgroup isomorphic to the PSLsy(¢*), where ¢ is the order of the
plane. We shall show (Theorem 2) that this fact characterizes these planes.
(For the definition and the properties of these planes see e.g. Benz [2, §2 and
§4.6].)

2. The finite Mbius-planes of order ¢ = 27" > 2 which are constructed
with the Suzuki-group S(2"') (see Theorem 1): We shall show that a
Méobius-plane of order ¢ = 2" on which the Suzuki-group S(g) acts as an
automorphism group is uniquely determined up to isomorphisms. We shall
call these Mébius-planes Suzuki-planes.

The subgroup PSLs(q") of the Mobius-group of a miquelian Mébius-plane
and the subgroup S(q) of the Mébius-group of a Suzuki-plane act Zassenhaus-
transitively on the points of these planes. We shall see that a Mobius-plane
which admits an automorphism group being Zassenhaus transitive on the
points is either miquelian or a Suzuki-plane.

Finally we shall prove the somewhat surprising theorem that the only finite
Moébius-planes which admit an automorphism group which is transitive on the
incident point-circle pairs and such that only the identity fixes three different
points are the miquelian ones.

2r-41

TuroreM 1. If g = 2" > 2, then there is one, and up to isomorphism only
one, Mdbius-plane M of order g which admits an automorphism group Z iso-
morphic to the Suzuki-group S(q).

Proof. The existence part of this theorem was proved by Hughes in (8], so
we have only to prove the uniqueness.

Let 9% be a Mébius-plane with ¢* 4+ 1 points (¢ = 2™ > 2) and = an
automorphism group of 9 isomorphic to S(¢g). If M is a 2-Sylow subgroup
of Z, then the normalizer M of M in = is a subgroup of maximal order in =
(Suzuki [11, Theorem 9]). Let 3 be a system of transitivity of points. We
can assume that 3 contains at least two points. Now we have

(¢ + 1g*(q = 1) = o(2) = [5]o(2r)
where P is a point of 3 and Z» the stabilizer of P. This implies
o(2) > o(2r) 2 ¢’(g — 1) = o(:M).

Hence T, = 9M for a suitable 2-Sylow subgroup M of Z. It follows that
|3] = ¢ + 1,ie. = is transitive on the points of 9. The group of inner
automorphisms of T is Zassenhaus transitive on the 2-Sylow subgroups of Z=.
This and the fact that =, = 9tM imply that = is Zassenhaus transitive on the
points of 9. We put H = 2. Then H is a Frobenius group and therefore
H = MT where M is a 2-Sylow subgroupof Zand M nT = 1, M < H and
o(M) = ¢, o(T) = ¢ — 1. Finally M is transitive on the points different
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from P. The number of tangent bundles through P is ¢ + 1. Therefore
there exists a tangent bundle ® through P with &" = ®. If ke®, then
o(M;) = g, since M is transitive and regular on the points different from P
and since every point of 91 is on a circle of ®. This implies that o(H;) = ¢¢
where ¢ is a divisor of ¢ — 1. Now we assume that = is different from Hy .
Then there is a o € Z; with P* # P. This implies that = is transitive on the
points of k. Therefore ¢ + 1 is a divisor of o(Z) = (¢" + 1)¢’(¢ — 1), a
contradiction proving =, = H,. Let X = {k” : ¢ eZ}. Then we have

(¢ + Dd'(q = 1) = o(2) = | K] o(Zs) = | 5| qgt.
This implies, since ¢ is a divisor of ¢ — 1, that
0@ + 1) 2 | %] =q(d’ + 1g"(g — DI Z (" + 1).

Hence | X | = q(¢° + 1) and t = ¢ — 1 so that H is sharply doubly transitive
on k — {P} and therefore M, is an elementary abelian 2-group. This implies
that M; = ZM, the center of M (Suzuki [11, Theorem 6 and Lemma 1]).
LetH, = Aand ZM = Z. Let P = Py, P;, - - -, Py be all the points which
are on k and H; the stabilizer of P;. Denote by 3C the set consisting of all the
H,. Finally we define A = {ceZ : o 'Hoed}. Now we can describe 9
in T in the following way: We define the mappings

Q — Ho ifand only if P° = Q,
l— Ar ifandonlyif k™ = 1.

These mappings are one-to-one and onto. We define incidence by Ho I A7
if and only if P°ek’. It is easily seen that Ho I Ar if and only if or " € A.
If 9n™ is a second Mébius-plane which satisfies the conditions of Theorem 1
and if =¥, H*, M* jetc. have the same meaning as =, H, M, etc., then first of
all £ and =™ are isomorphic (Suzuki [11, Theorem 8]). Now there is exactly
one 2-Sylow subgroup M; of = such that 9%IM n 9tM; = T and exactly one 2-Sy-
low subgroup Mi of =* such that 9tM™ n 9tM; = T*. This implies, since
the inner automorphisms of = are doubly transitive on the 2-Sylow subgroups
of =, that there is an isomorphism o from = onto =* such that M* = M* and
M{ = M¥. This implies that T* = T* H* = H* 3 = 5* and A* = A%
Q.E.D.

The proof of Theorem 1 shows also the validity of the following:

CoROLLARY 1. I 7s transitive on the circles and Zassenhaus transitive on the
potints of M.

COROLLARY 2. In 9N the bundle-theorem (Bischelsatz) is satisfied but not the
theorem of Miquel. Q(9N, P) is desarguesian for every point P of M.

(For a statement of these two configuration theorems see e.g. Benz [2, §2].)
Proof. The Méobius-group of a finite miquelian Mébius-plane is isomorphic
to the PTLs(q"), if ¢ is the order of the plane (see e.g. Benz [2, §4.6]). Since
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S(q) is not contained in the PTL,(¢’), we see that 9 is a nonmiquelian
Mobius-plane. Now let © be a Tits-ovaloid in the projective 3-space 8 over
GF(q) (see Tits [12, §§4.2 and 4.3]). If the points of O are the points of a
geometry 9 and the planar sections of © containing more than one point are
the circles of 9 and if incidence in 9 is equivalent to incidence in 8, then it
is easily seen that 9 is a Suzuki-plane. It follows from this construction
that 9 satisfies the bundle-theorem and that @ (9%, P) is desarguesian for all
P of M. Corollary 2 follows now from Theorem 1.

TaEOREM 2. If ¢ = p" (p a prime number), then there is one, and up to
isomorphism only one, Mobius-plane N of order q admitting an automorphism
group = being isomorphic to the PSLy(¢*).

Proof. The existence of such planes is well known (see e.g. Benz [2,
§82 and 4.6]), so we have only to prove their uniqueness. If ¢ # 3, then it
follows from Dickson [3, §263] that = is doubly transitive on the points of 91.
If ¢ = 3 and 2 is not transitive on the points of 91, then = has exactly four
fixed points {3, §263] which is easily seen to be impossible. Therefore = is
doubly transitive in either case. Let P be a point of 9 and H = =5, the
stabilizer of P. Then o(H) = a '¢’(¢" — 1) with @ = 1, if ¢ is even, and
a = 2,if ¢ is odd. Furthermore H = MT, where M is a p-Sylow subgroup of
= and o(T) = a (¢ — 1). Since the number of tangent bundles through
P is ¢ + 1, the p-Sylow subgroup M fixes some tangent bundle ® through P.
If k e B, then 0(My) = ¢ and therefore o(H;) = ¢t with ¢ a divisor of ¢ — 1.
Now let & be the set {k’ : ¢ ¢Z}. Then we have

o+ 1)z %] =(+ 1P — 1)(ao(Zk)) ™

This implies o(Z:) = ¢ 'g(¢" — 1). Therefore we have =, # Hx. Hence
2k is transitive on the points of k. Put =, = A.

Case 1. p = 2. In thiscasea = 1 and A =2 PSLy(q) (this follows from
the order of A and the list of subgroups of the PSLy(¢°) in [3, §260]). This
implies | ® | = ¢(¢® + 1). Therefore T is transitive on the circles of 9n.
Since A is transitive on the point of %, it follows that = is transitive on the
incident point-circle pairs of 9. Therefore we can describe 9 within = in
the following way: We define the mappings

Q@ —> Ho if and only if P’ = Q,
l— Ar ifand only if % = I

These mappings are one-to-one and onto. If we define incidence by
Ho I Ar if and only if P’ e k’, then it follows from Higman and McLaughlin
[6, Proposition 1] that Ho I A7 if and only if He n A7 £ @. A comparison
with the miquelian plane of order ¢ shows now that 91 itself is miquelian.

Case 2. p ¥ 2. In this case A contains a subgroup A, =2 PSLy(q) of

index 1 or 2 (Dickson [3, §260]). If [ is a circle with I*° = [, then we have



590 HEINZ LUNEBURG

l = k;if Q € k, then there is one and only one p-Sylow subgroup M, of Ay such
that Q" = Q and since two different p-Sylow subgroups of = intersect only
in the identity, @ is the only fixed point of My. But My must leave fixed a
point on [, so Q isonland [ = k. Now Z is isomorphic to the PSLs(g"), so
we have 9A, =% PGLy(q) (Dickson [3, §255]). Furthermore k£ is the only
circle left fixed by Ao. This implies that A = 9TA,. It follows that = splits
the set € of the circles of 9 into two orbits € and @;. If 9N, (4 = 1, 2) is
the incidence structure consisting of the points of 9 and the circles of ©;,
then Z is transitive on the incident point-circle pairs of 9;. Let P be a
point of 9. There exist circles k; (¢ = 1, 2) such that Pek; and k; e C;.
Let H be the stabilizer of P and A; the stabilizer of k;. Since 2 is transitive
on the incident point-circle pairs of both 9; and 9., we can represent 9 in
the following way: We define the mappings

Q — Ho ifand only if P’ = Q,
l—Ayr ifandonlyif 1eC; and ki =1(z = 1,2).

These mappings are one-to-one and onto. It follows from Higman and
MecLaughlin [6] that P? ¢ k; if and only if He n A;r # 0. A comparison with
the miquelian Mébius-plane of order ¢ shows now that 91 itself is miquelian,
Q.E.D.

Lemma. A finite Mobius-plane I of order q admits an automorphism group
whach 1s sharply doubly transitive on the points of M, if and only of ¢ = 2.

Proof. If 9 is the Mobius-plane of order 2, then 91 has 5 points and
every circle carries exactly 3 points. This implies that every set of three
points is a cirele. It follows that the M&bius-group of 91 is the symmetric
group of degree 5 which in fact contains a sharply doubly transitive subgroup.

To prove the converse we assume that 91 is a Mébius-plane with ¢* + 1
points and that = is an automorphism group of 9 which is sharply doubly
transitive on the points of 9. Since = is sharply doubly transitive the degree
¢’ + 1 of = is a power of a prime p. Now V. A. Lebesgue [10] proved that
¢+ 1 = p" implies »r = 1, so =p is cyclic. = induces a collineation group
in @(9, P) which is cyclic and transitive on the points of @(9M, P). By
Hoffman [7], ¢ = 2, Q.E.D.

TarEorREM 3. Let 9 be a finite Mobius-plane of order g and Z an auto-
morphism group of 9 which is Zassenhaus transitive on the points of M. Then,
if q s odd, M is miquelian and if q s even, then I is either migquelian or a
Suzuki-plane.

Proof. If T contains a normal subgroup of order ¢* + 1, then it follows
from Feit [4, Lemma 4.1] that = contains a subgroup which is sharply doubly
transitive on the points of 9. It follows from our lemma that 9N is the
miquelian plane of order 2. Therefore we can assume that = does not contain
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such a normal subgroup. This implies (Suzuki [11], Feit [4] and Ito [9]) that
either = = §(2"™) with ¢ = 2" or = contains a subgroup =, = PSLy(p"")
with ¢ = p". Theorem 3 follows now from Theorems 1 and 2.

THEOREM 4. A finite Mobius-plane 9 vs miquelian if and only of M admits
an automorphism group which is transitive on the incident point-circle pairs and
such that only the identity leaves three distinct points fixed.

Proof. If 9N is a miquelian Mobius-plane, then 9% has a sharply triply
transitive automorphism group 2 (see e.g. Benz [2, §4.6]). It is obvious that
T is transitive on the incident point-circle pairs and that only the identity
leaves three distinct points fixed. To prove the converse assume that 9 is a
finite Mé6bius-plane and = an automorphism group of 9 which satisfies the
requirements of the theorem. I, induces a collineation group of @(9N, P).
Now 0(Zr) = ¢q(q¢ + 1)s, since Zp is transitive on the cireles through P.
This implies that 2 is a divisor of 0(Zp). Therefore there is a nontrivial
involution ¢ in Zp .

Case 1. ¢ is even. In this case P is the only fixed point of ¢, since only
the identity fixes three different points. Therefore ¢ induces a translation in
G (9N, P) Since Zpis transitive on the lines of @ (917, P) it follows from Gleason
[56, Lemma 1.6] that @(91, P) is a translation plane and that =, contains the
translation group of @(9M, P). This implies that 2 is Zassenhaus transitive
on the points of 9. It follows from Theorem 3 that 91T is either miquelian
or a Suzuki-plane. Since the translation group of G (91, P) is a 2-Sylow sub-
group of 2 and since it is elementary abelian, £ cannot be the group S(q)
(Suzuki [11, Theorem 6 and Lemma 1]). Hence 9 is miquelian,

Case 2. q¢ — 1 is even. Then ¢ is a homology of @(M, P). But it is
obvious that ¢ is not the only involutory homology of @(9, P) in 2. This
implies that there is a nontrivial translation of @(91, P) in 2» and we deduce
as above that G(91, P) is a translation plane and that =» contains the trans-
lation group of @(IM, P). It follows that = is Zassenhaus transitive on the
points of 9. Hence 9N is miquelian by Theorem 3.
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