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We call an incidence structure consistin of points and circles and an
incidence relation between points and circles a M6bius-p]ane (= inversive
plane), if the followin axioms are satisfied (see e.. Benz [1]):

(1) If P, Q, R are three different points of 9, then there exists one and only
one circle/c in such that P, Q, R

(2) If lc is a circle and P a point on/ and if Q is a point not on k, then there
exists one and only one circle with P, Q and l a P

(3) There are four points which do not all lie on the same circle, and every
circle carries at least one point.

a is called an automorphism of
which maps concyclic points on concyclic points. The full automorphism
group of 9 is called the MSbius-group of

If P is a point of 9, then we derive an incidence structure ((9, P) from
9 and P in the following way"

(a) The points of ((9, P) are the points of which are different from P.
(b) The lines of ((, P) are the circles through P.
(c) A point Q and a line of ((9, P) are incident if and only if the corre-

sponding point Q and the corresponding circle are incident in ff.

It is a well known fact that ((, P) is an affine plane (Benz [1, Satz 1]).
If 9 is a finite MSbius-plane, then it follows from the fact that a(, P)

is an affine plane that the number of points of is q2 + 1 and the number of
points which lie on a circle is q - 1. It is easily seen that the number of
circles is q(q2

_
1). We call q the order of ).

Let (B be a set of circles and P a point. We call 5 a tangent bundle through
P, if the following hold"

(i)
(ii) /,le6and/c limply/al {P}.
(iii) le6andkal {P} implyle6.

Let 2 be a permutation group on the set (e; then we call 2: Zassenhaus
ransitive on (P, if 2: is doubly transitive on (P and if only the identity fixes
three different elements of
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Now the only two known classes of finite MSbius-planes are the following
ones:

1. The finite miquelian MSbius-planes" The MSbius-group of these planes
contains a subgroup isomorphic to the PSL2(q2), where q is the order of the
plane. We shall show (Theorem 2) that this fact characterizes these planes.
(For the definition and the properties of these planes see e.g. Benz [2, 2 and
.6].)

22r+12. The finite MSbius-planes of order q > 2 which are constructed
with the Suzuki-group S(22r+1) (see Theorem 1): We shall show that a
MSbius-plane of order q 22r+ on which the Suzuki-group S(q) acts as an
automorphism group is uniquely determined up to isomorphisms. We shall
call these MSbius-planes Suzuki-planes.
The subgroup PSL(q) of the MSbius-group of a miquelian MSbius-plane

and the subgroup S(q) of the MSbius-group of a Suzuki-plane act Zassenhaus-
transitively on the points of these planes. We shall see that a MSbius-plane
which admits an automorphism group being Zassenhaus transitive on the
points is either miquelian or a Suzuki-plane.

Finally we shall prove the somewhat surprising theorem that the only finite
MSbius-planes which admit an automorphism group which is transitive on the
incident point-circle pairs and such that only the identity fixes three different
points are the miquelian ones.

THEOREM 1. If q 2r+ > 2, then there is one, and up to isomorphism only
one, MSbius-plane 9 of order q which admits an automorphism group 2: iso-
morphic to the Suzuki-group S(q).

Proof. The existence part of this theorem was proved by Hughes in [8], so
we have only to prove the uniqueness.

Let be a MSbius-plane with q + 1 points (q 2+1 > 2) and 2: an
automorphism group of 9 isomorphic to S(q). If M is a 2-SyloW subgroup
of 2, then the normalizer 9M of M in 2: is a subgroup of maximal order in 2:
(Suzuki [11, Theorem 9]). Let 3 be a system of transitivity of points. We
can assume that 5 contains at least two points. Now we have

(q + 1)q(q 1) o(2) 5 o(2:)

where P is a point of 5 and 2e the stabilizer of P. This implies

0(2:) > o() >= q2(q- 1)= o(9M).

Hence 2:e 9M for a suitable 2-Sylow subgroup M of 2:. It follows that
[1 q -k 1, i.e. 2 is transitive on the points of 9. The group of inner
automorphisms of 2: is Zassenhaus transitive on the 2-Sylow subgroups of 2:.
This and the fact that 2: 9M imply that 2: is Zassenhaus transitive on the
points of . We put H 2:. Then H is a Frobenius group and therefore
H MT where M is a 2-Sylow subgroup of 2 and M n T 1, M <:1 H and
o(M) q, o(T) q 1. Finally M is transitive on the points different
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from P. The number of tangent bundles through P is q + 1. Therefore
there exists a tangent bundle through P with M . If k e 5, then
o(Mk) q, since M is transitive and regular on the points different from P
and since every point of is on a circle of (. This implies that o(Hk) qt
where is a divisor of q 1. Now we assume that 2k is different from Hk.
Then there is a a e 2; with P P. This implies that 2: is transitive on the
points of k. Therefore q - 1 is a divisor of o(2) (q2 + 1)q(q 1), a
contradiction proving 2 H. Let {] a e 2}. Then we have

(q - 1)q2(q 1) o() o() 3C qt.

This implies, since is a divisor of q 1, that

q(q2 + 1) __> NI q(q2 + 1)q2(q 1)t- --> q(q - 1).

Hence : q(q + 1) and q i so that H is sharply doubly transitive
on ]c {P} and therefore M: is an elementary abelian 2-group. This implies
that Mk ZM, the center of M (Suzuki [11, Theorem 6 and Lemma 1]).
Let H A and ZM Z. Let P P1, P, ..., Pq+] be all the points which
are on ] and H the stabilizer of P. Denote by C the set consisting of all the
H. Finally we define A {ae2:a-Hae}. Now we can describe 9
in 2 in the following way" We define the mappings

Q--Ha if and only if P Q,

l--*Ar if and only if ]c l.

These mappings are one-to-one and onto. We define incidence by Ha I Ar
if and only if P
If * is a second MSbius-plane which satisfies the conditions of Theorem 1
and if 2*, H*, M* ,etc. have the same meaning as 2, H, M, etc., then first of
all 2 and 2* are isomorphic (Suzuki [11, Theorem 8] ). Now there is exactly
one 2-Sylow subgroup M of 2 such thatM M T and exactly one 2-Sy-
low subgroup M* of 2* such that 9M* M* T*. This implies, since
the inner automorphisms of 2 are doubly transitive on the 2-Sylow subgroups
of 2, that there is an isomorphism a from 2 onto 2* such that M" M* and
M M. This implies that T H*, and *,
Q.E.D.
The proof of Theorem 1 shows also the validity of the following"

COROLLARY 1.
points of

is transitive on the circles and Zassenhaus transitive on the

COROLLARY 2.
theorem of Miquel.

In the bundle-theorem (Bischelsatz is satisfied but not the
((, P) is desarguesian for every point P of .

(For a statement of these two configuration theorems see e.g. Benz [2, 2].)
Proof. The MSbius-group of a finite miquelian M:Sbius-plane is isomorphic

to the PFL(q:), if q is the order of the plane (see e.g. Benz [2, 4.6]). Since
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S(q) is not contained in the PFL2(q2), we see that ) is a nonmiquelian
MSbius-plane. Now let 0 be a Tits-ovaloid in the projective 3-space g over
GF(q) (see Tits [12, 4.2 and 4.3]). If the points of 0 are the points of a
geometry and the planar sections of (9 containing more than one point are
the circles of and if incidence in is equivalent to incidence in $, then it
is easily seen that is a Suzuki-plane. It follows from this construction
that satisfies the bundle-theorem and that a(, P) is desarguesian for all
P of . Corollary 2 follows now from Theorem 1.

THEOREM 2. If q pr (p a prime number), then there is one, and up to
isomorphism only one, Mdbius-plane of order q admitting an automorphism
group being isomorphic to the PSL2(q2).

Proof. The existence of such planes is well known (see e.g. Benz [2,
2 and 4.6]), so we have only to prove their uniqueness. If q 3, then it
follows from Dickson [3, 263] that 2 is doubly transitive on the points of .
If q 3 and 2 is not transitive on the points of , then 2 has exactly four
fixed points [3, 263] which is easily seen to be impossible. Therefore 2 is
doubly transitive in either case. Let P be a point of and H 2p, the
stabilizer of P. Then o(H) a-lq2(q 1) with a 1, if q is even, and
a 2, if q is odd. Furthermore H MT, where M is a p-Sylow subgroup of
2 and o(T) a-(q 1). Since the number of tangent bundles through
P is q + 1, the p-Sylow subgroup M fixes some tangent bundle 6t through P.
If/ B, then o(Mk) q and therefore o(Hk) qt with a divisor of q 1.
Now let 3 be the set/] a e 2} Then we have

q(q2-- 1) => I1 (q- 1)q(q- 1)(ao(21))-.
This implies o(2) >- a-q(q 1). Therefore we have 2 H. Hence
2 is transitive on the points of k. Put 2 A.

Case 1. p 2. In this case a 1 and A PSL(q) (this follows from
the order of A and the list of subgroups of the PSL(q) in [3, 260]). This
implies ![ q(q2 -t- 1). Therefore 2; is transitive on the circles of .
Since A is transitive on the point of k, it follows that 2 is transitive on the
incident point-circle pairs of . Therefore we can describe within 2 in
the following way" We define the mappings

Q -- Ha if and only if-- Ar if and only if

These mappings are one-to-one nd onto. If we define incidence by
Ha I Ar if and only if P e k, then it follows from Higman and McLaughlin
[6, Proposition 1] that Ha I hr if and only if Ha n Ar 0. A eomparison
with the miquelian plane of order q shows now that 9E itself is miquelian.

Case 2. p 2. In this ease A contains a subgroup A0 PSL2(q) of
index 1 or 2 (Diekson [3, 260]). If is a circle with l, then we have
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lc; if Q e k, then there is one and only one p-Sylow subgroup M0 of A0 such
that QM0 Q and since two different p-Sylow subgroups of 2 intersect only
in the identity, Q is the only fixed point of M0. But M0 must leave fixed a
point on l, so Q is on and /c. Now 2 is isomorphic to the PSL2(q2), so
we have A0 PGL2(q) (Dickson [3, 255]). Furthermore k is the only
circle left fixed by A0. This implies that A A0. It follows that 2 splits
the set a of the circles of into two orbits al and a2. If (i 1, 2) is
the incidence structure consisting of the points of 9; and the circles of as,
then 2 is transitive on the incident point-circle pairs of i. Let P be a
point of . There exist circles lci (i 1, 2) such that P e lci and/s e s.
Let H be the stabilizer of P and As the stabilizer of lci. Since 2 is transitive
on the incident point-circle pairs of both 1 and , we can represent 9E in
the following way: We define the mappings

Q--.Hz if and only if P Q,

Air if and only if e Cs and /c (i 1, 2).

These mappings are one-to-one and onto. It follows from Higman and
McLaughlin [6] that P e ks if and only if Hz a Asr A_ comparison with
the miquelian MSbius-plane of order q shows now that itself is miquelian,
Q.E.D.

LEMMA. A finite Mbius-plane 9E of order q admits an automorphism group
which is sharply doubly transitive on the points of , if and only if q 2.

Proof. If 9 is the MSbius-plane of order 2, then has 5 points and
every circle carries exactly 3 points. This implies that every set of three
points is a circ,le. It follows that the MSbius-group of 9E is the symmetric
group of degree 5 which in fact contains a sharply doubly transitive subgroup.
To prove the converse we assume that is a MSbius-plane with q + 1

points and that 2 is an automorphism group of 9E which is sharply doubly
transitive on the points of r. Since 2 is sharply doubly transitive the degree
q 1 of 2 is a power of a prime p. Now V. A. Lebesgue [10] proved that

prq 1 implies r 1, so 2e is cyclic. 2e induces a collineation group
in a(9;, P)which is cyclic and transitive on the points of a(, P). By
Hoffman [7], q 2, Q.E.D.

THEOREM 3. Let 9E be a finite MSbius-plane of order q and an auto-
morphism group of 9E which is Zassenhaus transitive on the points of 9E. Then,
if q is odd, is miquelian and if q is een, then 9E is either miquelian or a
Suzuki-plane.

Proof. If 2 contains a normal subgroup of order q - 1, then it follows
from Feit [4, Lemma 4.1] that 2 contains a subgroup which is sharply doubly
transitive on the points of . It follows from our lemma that is the
miquelian plane of order 2. Therefore we can assume that 2 does not contain
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such a normal subgroup. This implies (Suzuki [11], Feit [4] and Ito [9]) that
either 2

_
S(2r+l) with q 22r+1 or 2: contains a subgroup 2:0 PSL.(p)

with q p. Theorem 3 follows now from Theorems 1 and 2.

THEOREM 4. A finite MSbius-plane is miquelian if and only if admits
an automorphism group which is transitive on the incident point-circle pairs and
such that only the identity leaves three distinct points fixed.

Proof. If is a miquelian M6bius-plane, then has a sharply triply
transitive automorphism group 2 (see e.g. Benz [2, 4.6]). It is obvious that
2: is transitive on the incident point-circle pairs and that only the identity
leaves three distinct points fixed. To prove the converse assume that is a
finite MSbius-plane and 2: an automorphism group of which satisfies the
requirements of the theorem. 2:p induces a collineation group of a(, P).
Now o(2:,) q(q + 1)s, since 2: is transitive on the circles through P.
This implies that 2 is a divisor of o(2:e). Therefore there is a nontrivial
involution in 2:e.

Case 1. q is even. In this case P is the only fixed point of z, since only
the identity fixes three different points. Therefore induces a translation in
a(1), P) Since 2:e is transitive on the lines of a(9, P) it follows from Gleason
[5, Lemma 1.6] that a(9, P) is a translation plane and that 2:p contains the
translation group of a(, P). This implies that 2: is Zassenhaus transitive
on the points of r. It follows from Theorem 3 that is either miquelian
or a Suzuki-plane. Since the translation group of a(1), P) is a 2-Sylow sub-
group of 2: and since it is elementary abelian, 2 cannot be the group S(q)
(Suzuki [11, Theorem 6 and Lemma 1]). Hence is miquelian.
Case 2. q 1 is even. Then is a homology of a(9, P). But it is

obvious that z is not the only involutory homology of a(, P) in 2:e. This
implies that there is a nontrivial translation (f a(or, P) in and we deduce
as above that a(, P) is a translation plane and that 2 contains the trans-
lation group of a(, P). It follows that 2: is Zassenhaus transitive on the
points of . Hence is miquelian by Theorem 3.
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