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1. Introduction

There has been evidence that cup products in the cohomology groups of a
space Y are related to commutators for the suspension 2Y of Y. There is
the result of Berstein and Ganea [4], j-long Y __< conil 2Y, which asserts
that if the basic n-fold co-commutator map in (2;Y, 2Y) is trivial, then
all cup products in Y of length n vanish. Furthermore, in [3] it is proved
that b has finite order if and only if all rational cup products of length n
vanish. In this paper we make explicit the relationship between cup products
in Y of length n and the basic n-fold co-commutator map b of 2Y. Thus
we obtain a new characterization of the cup product of a space in terms of a
commutator in the suspension of the space.
We proceed as follows. For any X which is an H-space (i.e., a space of

normalized Lusternik-Schnirelmann category __< 1 and any spaces A and A,
we define in 3 a product (X, A) X r(X, A) -. (X, A A), where
A A is a space obtained from A and A:. This product, called the fiat
product, is defined by means of an H-space commutator. In 4 we take A
to be an Eilenberg-MacLane space K(G, m -t- 1) and we choose a certain
map

0 A A - K(G (R) G, m -t- m -{- 1).

By composing the fiat product with 0 we obtain a cohomology fiat product which
assigns to o/1 {! Hm+i(x; G1) and a e H+(X; G) an element

um+m2+l(01.1, 012) : X G1 ( G2 ).

Our main result (Theorem 4.4) is that if the H’-space X is the suspension
2; Y of Y, then the cohomology flat product for X is, up o natural isomorphism,
the cup product in the cohomology of Y. This proves a conjecture which
appeared in [1, p. 22].
A few applications of Theorem 4.4 are given in 5. We easily obtain

another proof of the inequality -long Y _<_ conil ZY of [4]. We also improve
on a result from [3] by showing that N.k 0 implies that N times any
n-fold cup product is zero. Our final application concerns a modified distri-
butive law in which the deviation from distributivity is given in terms of
a dual Hopf invariant and flat product.

In the Eckmann-Hilton theory H’-spaces or spaces of normalized category
_< 1 are dual to H-spaces and the functor is dual to the smashed product #.
Thus the flat product is the dual of the generalized Samelson product for an
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H-space (see [2] and the cohomology flat product is the dual of the Samelson
product in the homotopy groups of an H-space. It is well known that White-
head products in the homotopy groups of a space are essentially Samelson
products in the homotopy groups of the loops on the space. This fact and
Theorem 4.4 exhibit the duality that exists between Whitehead products and
cup products. It should be noted that another approach to this duality,
entirely different from ours, has been given by Hilton [7, 16].
We would like to express our sincere thanks to C. R. Curjel for helpful

criticism and valuable suggestions. We are also very grateful to P. J. Hilton
for the proof of Proposition 5.1.

2. Preliminaries

By a space we shall always mean a path-connected space with a base point
which has the based homotopy type of a CW-complex. We further assume
that all maps and homotopies keep base points fixed. The same symbol is
used for a map and its homotopy class. We let r(X, Y) denote the collection
of homotopy classes of maps from the space X into the space Y. Maps
f X’ --. X and g: Y --> Y’ induce f*:r(X, Y) -- r(X’, Y) and
g. r(X, Y) -- r(X, Y’) in the obvious way. We consistently adopt the
following notation: CX for the reduced cone over X, 2X for the reduced
suspension of X and fry for the loop space of Y. The sets r(2:X, Y) and
r(X, 2Y) each have a group structure and there is a natural isomorphism,
culled the adjoint isomorphism,

r r(ZX, Y) -- r(X, Y).

The wedge X v Y is considered a subset of the cartesian product X X Y.
The fibre of the inclusion map X v Y---. X X Y is denoted X b Y. Clearly
X Y can be regarded as the space of paths in X X Y that begin at the base
point and end inX v Y. The mapi’X b Y--X v Ywhichprojectsa
path onto its end point is essentially the inclusion of the fibre into the total
space. Furthermore, we denote by X # Y the identification space
X X Y/X v Y. Thus X # Y is the cofibre of the (self-dual) map
X v Y--,X YandX Y is the fibre.
We call X an H’-space if there is a ’X -- X v X such that j A in

r(X, X X X), where j X v X -. X X is the inclusion and zX X --X X X
is the diagonal map. H’-spaces are exactly the spaces of normalized
Lusternik-Schnirelmann category __< 1 [7, p. 245]. If X is an H’-space, then
there is a binary operation or multiplication in r(X, Y) for which the constant
map e in r(X, Y) is a unit (i.e., a.e a e.a for all a e r(X, Y)). We

Although the smashed product of two spheres is a sphere, the fiat product of two
Eilenberg-MacLane spaces is not an Eilenberg-MacLane space. Thus the main (tech-
nical) difficulty in the definition of the cohomology fiat product was to choose a suit-
able map 0 so that Theorem 4.4 holds. Remark 4.10 asserts that there is essentially
one way of doing this.
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call an H’-space X inversive if there exist ),, p" X -- X such that ,. e and. p e in (X, X), where and e respectively denote the identity map and the
constant map in r(X, X). If X is inversive, then any a in (X, Y) has a
left inverse L(a) aok and a right inverse R(a) aop. We call an
H’-spaceXassociativeif ( v ) ( v )Oin(X,X v X v X). If
X is an associative, inversive H-space, then k p and r(X, Y) is a group.
An example of such a space is a reduced suspension. If X and X’ are H’-spaces,
then f: X’ -- X is called a homomorphism if Cf (f v f)’ in (X’, X v X).
Such a map induces a homomorphism f* -(X, Y) -- -(X’, Y) of multipli-
cative structures. If X and X’ are inversive, we require a homomorphism
f: X’ - X to satisfy the additional conditions fh’ hf and fp’ pf. Then
the induced map f* r(X, Y) -- r(X’, Y) preserves inverses.

In the sequel we only consider H’-spaces which are inversive. The following
proposition shows that this is not a serious restriction.

PROPOSITION 2.1. Every 1-connected H’-space is inversive. In addition,
every homomorphism of 1-connected H’-spaces is a homomorphism of inversive
H-spaces.

Since we shall not need this result, we omit its proof. (See [7, p. 230] for a
proof of the dual proposition.)

3. The fiat product
Throughout this section A1 and A2 are arbitrary spaces and X is an inversive

H’-space. We adopt the following notation:

li A -- A1 v A. for the injections,
pi A1 v A -- Ai for the projections,
j Ai v A -- A A for the inclusion) i 1, 2.

We now define the fiat product.
Elements a e (X, A) and a. e (X, A) determine al /,(ai) and

a 12.(a) in (X, A1 v A). We form the commutator

a2) L(a2.a).(al.a),

where L denotes the left inverse in (X, A1 v A). Now

(, .) i( .p,).( o,., ) i(.).(.) ,
and similarly p2.(a, a) e. Therefore 2.(a, a) e. Since

AbA i-A1 A.LAXA
is essentially a fibre sequence, there is an exact sequence

(3.1) r(X, AI A.) (X, A1 v A) J** r(X, A A2).
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We then conclude that (a, a2) is in the image of i.. We prove a lemma
which guarantees that the pre-image of (a, a) is unique.

LEMMA 3.2. IfX is an H’-space then i. 7(X, A1 A2) r(X, AI v A.)
is one-one for any A1 and A.

diagram
Suppose X is a suspension, X 2Y. Then the commutative

7(ZY, AI A) :i. 7(ZY, A v A)

7(Y, (A 5 A)) ai.*, 7(Y, (A v A2))

and the existence of a left homotopy inverse for 2i [7, p. 112] show that i. is
one-one. However it is known that every H’-space is dominated by a sus-
pension (see [5, pp. 624-629]). This fact now establishes Lemma 3.2.
We return to the definition of the flat product. By exactness of the se-

quence (3.1) there is an element in (X, A A.), written {a, as}, such that
i.{a, a} is the commutator (a, a). By Lemma 3.2, {al, a} is determined
uniquely.

DEFINITION 3.3. The fiat product of o/1 {! T’(X, A) and a e -(X, A2) is the
unique element la, a} e 7(X, A1 A) which is defined by the equation

where a l.(). Here it is assumed that X is an inversive H’-space.
Remart 3.4. If we set X 2Y, we obtain by means of the adioint iso-

morphism r a product [1, ] e 7(Y; gt(A A)) of t (Y, tA) and
f12 e r(Y, 2A.), for any spaces A, A and Y. This product was briefly con-
sidered in [1] under the name of the dual product.

The following proposition is easily verified.

PROIOSITION 3.5. (a) If f’X’ - X is a homomorphism of inversive
H’-spaces then f*la a} {f a f*a} for all ai (X, A), i 1, 2.

(b) If g A-- A are any maps then (g
for all a e (X, A).

4. The cohomology flat product
In this section we show how the flat product gives rise to a binary coho-

mology operation for H’-spaces. Our main result (Theorem 4.4) then asserts
the equivalence, for a suspension, of this product with the cup product. We
begin by borrowing some notation and a lemma from [6].

Let A and A be any spaces, q A X ftA -- ftA # frAy. the projection
and C the reduced cone functor. Then there is a homotopy equivalence

k" CA A. u A CA-. (AI # A)
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defined as the composition of the natural map

s: CA1 X A2 u AI >( CA. (A X A.)
with

We also observe that it is not difficult to define a map

h CfA fA u fA CfA:-- A 1 A. [6, p. 135].

If A and A are I-connected, then h is a homotopy equivalence [6, p. 135].
Next we define 5 2: (gA fA) -- A v A.. Consider the two elements
of 7r(2(fA1 X fAe), A1 v Ae) which are the compositions of the following
evident maps (i 1, 2)

(fA1 X fA) 2:(A A.)--* A. A--. A-- A v A.
By definition, the group commutator of these two elements is . The re-
lationship between the maps h, lc and is exhibited in the following lemma of
Ganea, Hilton and Peterson.

LEMMA 4.1. [6, p. 134] If A and A are any 1-connected spaces and

a A A.- (AI X fA2) and b ,(fA X fA2) -- A1 A.

are defined by a 8h-1 and b hk-2q, where h- and ]C-1 are the homotopy
inverses of h and to, then ba and ib .

In dealing with cohomology groups and Eilenberg-MacLane spaces K(G, m)
it is convenient to identify H’(A; G) with r(A, K(G, m)) and K(G, m) with
ftK(G, m + 1), for any space A. The natural isomorphism

r H’n+(2A;G) -- H’(A; G)

of cohomology groups is then iust the adioint isomorphism

r r(Z,A, K(G, m + 1)) --. zr(A, 2K(G, m + 1)).

Now letA K(G,m + 1),wheremisaninteger > 0 (i 1,2).
For an inversive H’-space X, the flat product ssigns to a e H+(X; G) an
element {a, a} e r(X, A A). Since A b A is not an Eilenberg-MacLane
space even though At nd A are, we do not yet have a cohomology product.
However we shall define 0 A A--. K(G (R) G., m + m + 1)which will
determine our cohomology product. Consider the isomorphisms

H’+l(2(ftA1 # ftA2); G) H’n(aA1 # aA ;G) Hom(Hm(ftA1 # A.), G)

Hom(G, G),

where m ml -- m, G (1 (R) (;2 and n is the homomorphism of the universal
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coefficient theorem for cohomology. There exists a map

Y,(A # 2A) K(G, m + 1)

such that ?T(1) id, the identity automorphism in Hom(G, G). Now with
A K(G,m-t- 1),G G @ Gandm mmwedefine

O A A K(G, m 1)

to be the following composition"

h- CA(4.2) AiA2 CA X A2uA X 2(A{A) K(e,m + 1).

DEFINITION 4.3. The cohomo.logy fiat product of a e H+(X; Gt) and
a e H+(X; G) is the element

(,1, ) 0 1, } in HI++(X; a ),

where X is an inversive H’-space and ml, m > 0. The extension to n-fold
products is immediate. If a e H+(X; G), i 1, ., n, then
in Umi+" "+m+ X Gi Gn is inductively defined by

(1, ..., "n) ((", "", --), ").

THEOREM 4.4. If ai e H+I(2Y; Gi), i 1, ..., n, then

( ) ""n

where denotes cup product and r H+(Y; H(Y;) is the adjoint
isomorphism.

Remark 4.5. Theorem 4.4 may clearly be rephrased as follows: For any
space Y and any ie H(Y; G) where i 1, n,

(-1(), ...,
Proof. Let us first prove Theorem 4.4 in the case n 2, Y AI X A

and ra is the projection q of A X A onto A. The general case will
follow. The proof may be more easily visualized by considering the diagram

CA X A u A1 X CAe-
h A AK(G,m + 1)

in which all of he four riangles are commutative.
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We must show

(4.6) -(O{r’q, r’q2}) j,

where
_

stands for ql q. in H’(A1 X gtA. G) and r’ denotes the verse
of r. In the short exact sequence

0 H(A A G) H(A X eA G) H(A v eA; G) 0

we have j*() 0. Therefore there is a unique element

He (A A ;G)

such thatq*(’) . NowA=K(G,m),G=G@G,m=m+m
and the element is the universal cup product element. Therefore
v(’) id in the diagram

H(A A G) Hom(H(Aa A), G) Horn(G, G).

Since the map Z(A A) K(G, m + 1) is defined by the equation
* ’ and sow(1) iditfollowsthatr(1) . Henceq*r(l) q

(lq) .
Therefore, in order to establish (4.6), it suffices to prove

(4.7) q o{’q q},
--1where r r We look more closely at the element {rq, rq}. By

definition i.{r’q r’q} is the commutator (l r’q l r’q), where

I’AA v A
and

i." (Z(A X A), A b A) r(Z(A X A), A v A).

But (ll ’q, 12 ’q) (l e Zq, l e q), where e ZA A. How-
ever, from the definition of 6 Z(A X A) A v A preceding Lemma
4.1, 6 (l e Zq, l e Zq). Therefore by Lemma 4.1,

i.{r’q,r q2} i.(b).

Since i. is one-one (Lemma 3.2),
(.s) {’q, ’q:} b.

By (4.7) and (4.8) we see that it suffices to prove

(4.9) tq ob.

By definition 0 lh-1 (4.2) and b h-iZq (Lemma 4.1), and so (4.9) is
verified. This proves (4.6) and demonstrates the theorem in the case n 2,
Y A X A: and rai q.
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Theorem 4.4 for n 2 is now easily established. If Y is any space and
ai e Hm+l(2Y; Gi) are any elements, i 1, 2, then the rai" Y -- 2Ai de-
termine a map a Y --* 2At X 2A. such that q a rai. Then

ra ra a (q q)

r(Y,a*r’ql, Y,a*r’qs) (by Proposition 3.5)

This proves the theorem for n 2. A simple inductive argument now yields
Theorem 4.4 for arbitrary n.

Remark 4.10. The cohomology fiat product is defined by choosing a certain
0 in r(A , A., K(G, m -k 1)). We observe here that 0 is uniquely de-
termined by Theorem 4.4. That is, if 0 is any element in

r(At , As, K(G, m + 1))
such that

for all a e Hm+(ZY; Gi), then 0 0’. For

r(O’{r’q r qs}) r(Oir’q r qs} ),

and so by (4.8), r(O’b) r(Ob). Therefore we have O’b Ob. But, by
Lemma 4.1, b admits a right homotopy inverse, and so 0’ 0.

5. Applications

In this section we present a few applications of the preceding material.
Our first application concerns the relationship between n-fold cup products
and the co-commutator map of weight n. We begin by extending previous
definitions and results from n 2 to arbitrary n.
For any n spaces A1, An we inductively define a map

where
in’Ath An--+AI v v An,

At v v An

(At , An-) [, A.,

(A v v An-t) v An.

For n 2, let is i At A. --* A v A2 For n > 2, in is the composition

i
(A1 A,-1) An

(A An-l) v An in-1V (A1 v v A._) v An.
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The following proposition extends Lemma 3.2.

PROPOSITION 5.]. If A1, ..., A, are 1-connected spaces and X is an H’-
space, then iv. r(X, A1 A) -- r(X, AI v v A,) is one-one.

Proof. As in Lemma 3.2 it suffices to prove this result for X % Y, since
every H’-space is dominated by a suspension [5]. Thus it is sufficient to
show that

i,. (Y, (A An)) w(Y, (A1 v v

is one-one. We do this by proving by induction on n that the map

i:(Ab bA)(A v v A)
has a left homotopy inverse.
For the case n 2, see the proof of Lemma 3.2. Now assume that in-

has a left homotopy inverse. Since i is the composition

a((A1 b An-l) An)

((AI b An-) v An) (i-1 v e)
,((A v v A_) v A)

and since i has a left homotopy inverse, it only remains to prove that
(in- V ) has a left homotopy inverse.

It is well known that for any spaces B and B there is a natural homotopy
equivalence

(B v B)B X B X (BbB) [7, p. 112].

If B and B are 1-connected, we have seen in 4 that

]h-1 B B UB UB
is a homotopy equivalence. Thus there is a natural homotopy equivalence

e(B v B) B X B: X e(B eB:).

We use this last fact to show that (in- V ) has a left homotopy inverse.
LetB Ab An_, B A v v A_land B Anandcon-
sider the diagram

(B v B) B X BX (BB)

Since by the inductive assumption 8i_ hs left homotopy inverse, so does
(i_ v ). This completes the proof of Proposition 5.1.
Next let X be n ssocitive, inversive H’-spce nd let us write "X for

X v v X (n summands). Then co-commutator mp , (X) of
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weight n in rr(X, nx) [4, p. 103] is inductively defined as follows" 2 is the
ordinary group commutator of the two inclusions X -+ X v X. kn is the
commutator of kn-1 followed by the inclusion "-ix --+ "X and of the inclusion
X-- -IX v X X.

PROPOSITION 5.2. If is the identity map of an associative, inversive H’-space
X and in. rr(X, X b b X) -- rr(X, X v v X), then

,{, } (X),

where {, ..., } is the flat product of with itself n times and ,,(X) is the
co-commutator map of weight n.

Proof. It follows immediately from the definitions that i.{
A simple induction then establishes Proposition 5.2.

PROPOSITION 5.3. Let X be a 1-connected, associative, inversive H’-space
and let ai e H’n+(X; Gi) be any elements, m > 0 (i l, n).

() If Cn(X) O, then ((Y.1, "’’, Ogn} O.
(b) If N.g/,(X) O, then N.(a, ..., an} 0.

Proof. A straightforward inductive construction based on definition (4.2)
shows that there is mp

On AI , , A, --+ K(G (R) (R) G,, m q-- -4- m, q- 1),

where A K(G, m q- 1), such that

en {1, "’’, n} (1, "’’, Ogn}

for 11 a e H+(X; G). Thus by Proposition 3.5

e,( > ),{,, ..., ,} (, ...,
This equation, the equation stated in Proposition 5.2, nd the fct that
i,, rr(X, X b b X) --+ rr(X, X v v X) is one-one (Proposition
5.1) establish the proposition.
Theorem 4.4 nd Proposition 5.3 now yield

COROLLARY 5.4. Let Y be any (path-connected) space and let fli H’ Y; g.,
be any elements, m > 0 (i 1, n ).

() If bn(Y) O, then the n-fold cup product ,._., ,. fin O.
(b) /fN-bn(Y) O, then N.(I va v_ fin) 0.

Corollary 5.4 (a) generalizes the result of Berstein and Ganea [4, Theorem
5.8], va-long Y =< conil 2Y. We note that another proof of 5.4 (a) appears
in [6, Theorem 4.4]. Corollary 5.4 (b) generalizes result of Arkowitz and
Curjel [3].
Our final application deals with a modified distributive law. Let B and C

We are here writing group operations dditively.
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be any spaces and a r(B, C) any element. We write all group opera-
tions additively. Then there is an element , -aq2- aql + a(ql + q2) in
r(fB X fB, fC), where ql, q. fB X fB - fB are the projections. If

a (aB X aB, aC)--+r(aB v aB, aC),
ghen clearly j*(,) 0. Consequengly ghere is a unique elemeng H() in
,(aB # aB, aC) such hag q*H() % where q’B X B --+ B # B
s ghe ideni flea,ion map. Thus we have a function

H r(fB, fC) --+ r(fB # aB, 2C).
Now we define the dual Hopf invariant aC r(B, ) --+ rr((B B), )
to be the following composition"

(aB, aC)
H r

-1

-(aB # aB, aC) -(Z(aB # aB ), C) (kh-1)*

r(B B, C) a_ (a(B B),
PROPOSITION 5.5 (Modified Distributivity). For any spaces A, B, C and

any elements 1, fl. e r(A, B) and a e (B, C),
(1 + 2) 1 + 2 + () T{ T-1 (1), T

-1 (2) }.
The proof of this proposition requires a straightforward but rather long

computation, and hence is omitted. However we do make a few remarks.
First we note that the dual of Proposition 5.5 is well known. The duality
between and the Hopf invariant is best seen by taking B to be an Eilenberg-
MacLane space. Secondly, the element r{r-l(), T--1(2)} is just [,
the dual product of and as defined in [1] (see also Remark 3.4). Finally,
we observe that actual distributivity holds in Proposition 5.5 whenever
(a) r{r-(), r-(B)} 0. Since {r-(), r-()} is defined by means
of a commutator, this occurs, for instance, whenever the group (A, B v B)
is abelian.

REFERENCES

1. M. ARKOWITZ, The generalized Whitehead product, Pacific J. Math., vol. 12 (1962), pp.
7-23.

2. --, Homotopy products for H-spaces, Michigan Math. J., vol. 10 (1963), pp. 1-9.
3. M. ARKOWITZ AND C. R. CURJEL, Homotopy commutators of finite order (I), Quart.

J. Math. Oxford (2), vol. 14 (1963), pp. 213-219.
4. I. BERSTEIN AND T. GANEA, Homotopical nilpotency, Illinois J. Math., vol. 5 (1961),

pp. 99-130.
5. T. GANEA, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc.

(3), vol. 10 (1960), pp. 623-639.
6. T. GANEA, P. J. HILTON AND F. P. PETERSON, On the homotopy-commutativity of loop-

spaces and suspensions, Topology, vol. 1 (1962), pp. 133-141.
7. P. J. HILTON, Homotopy theory and duality, Mimeographed notes, Cornell University,

1959.

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

DARTMOUTH COLLEGE
HANOVER, NEW I{AMPSHIRE


