COMMUTATORS AND CUP PRODUCTS

BY
Martin Arkowitz

1. Introduction

There has been evidence that cup products in the cohomology groups of a space Y are related to commutators for the suspension ΣY of Y. There is the result of Berstein and Ganea [4], \checkmark-long $Y \leqq$ conil ΣY, which asserts that if the basic n-fold co-commutator map ψ_{n} in $\pi\left(\Sigma Y,{ }^{n} \Sigma Y\right)$ is trivial, then all cup products in Y of length n vanish. Furthermore, in [3] it is proved that ψ_{n} has finite order if and only if all rational cup products of length n vanish. In this paper we make explicit the relationship between cup products in Y of length n and the basic n-fold co-commutator map ψ_{n} of ΣY. Thus we obtain a new characterization of the cup product of a space in terms of a commutator in the suspension of the space.

We proceed as follows. For any X which is an H^{\prime}-space (i.e., a space of normalized Lusternik-Schnirelmann category $\leqq 1$) and any spaces A_{1} and A_{2}, we define in $\S 3$ a product $\pi\left(X, A_{1}\right) \times \pi\left(X, A_{2}\right) \rightarrow \pi\left(X, A_{1} b A_{2}\right)$, where $A_{1} b A_{2}$ is a space obtained from A_{1} and A_{2}. This product, called the flat product, is defined by means of an H^{\prime}-space commutator. In $\S 4$ we take A_{i} to be an Eilenberg-MacLane space $K\left(G_{i}, m_{i}+1\right)$ and we choose a certain map

$$
\theta: A_{1} b A_{2} \rightarrow K\left(G_{1} \otimes G_{2}, m_{1}+m_{2}+1\right)
$$

By composing the flat product with θ we obtain a cohomology flat product which assigns to $\alpha_{1} \epsilon H^{m_{1}+1}\left(X ; G_{1}\right)$ and $\alpha_{2} \epsilon H^{m_{2}+1}\left(X ; G_{2}\right)$ an element

$$
\left\langle\alpha_{1}, \alpha_{2}\right\rangle \in H^{m_{1}+m_{2}+1}\left(X ; G_{1} \otimes G_{2}\right) .
$$

Our main result (Theorem 4.4) is that if the H^{\prime}-space X is the suspension ΣY of Y, then the cohomology flat product for X is, up to natural isomorphism, the cup product in the cohomology of Y. This proves a conjecture which appeared in [1, p. 22].

A few applications of Theorem 4.4 are given in $\S 5$. We easily obtain another proof of the inequality \smile-long $Y \leqq$ conil ΣY of [4]. We also improve on a result from [3] by showing that $N \cdot \psi_{n}=0$ implies that N times any n-fold cup product is zero. Our final application concerns a modified distributive law in which the deviation from distributivity is given in terms of a dual Hopf invariant and a flat product.

In the Eckmann-Hilton theory H^{\prime}-spaces or spaces of normalized category $\leqq 1$ are dual to H-spaces and the functor b is dual to the smashed product \#. Thus the flat product is the dual of the generalized Samelson product for an

Received June 1, 1963.
H-space (see [2]) and the cohomology flat product is the dual of the Samelson product in the homotopy groups of an H-space. It is well known that Whitehead products in the homotopy groups of a space are essentially Samelson products in the homotopy groups of the loops on the space. This fact and Theorem 4.4 exhibit the duality that exists between Whitehead products and cup products. ${ }^{1}$ It should be noted that another approach to this duality, entirely different from ours, has been given by Hilton [7, §16].

We would like to express our sincere thanks to C. R. Curjel for helpful criticism and valuable suggestions. We are also very grateful to P. J. Hilton for the proof of Proposition 5.1.

2. Preliminaries

By a space we shall always mean a path-connected space with a base point which has the based homotopy type of a CW-complex. We further assume that all maps and homotopies keep base points fixed. The same symbol is used for a map and its homotopy class. We let $\pi(X, Y)$ denote the collection of homotopy classes of maps from the space X into the space Y. Maps $f: X^{\prime} \rightarrow X$ and $g: Y \rightarrow Y^{\prime}$ induce $f^{*}: \pi(X, Y) \rightarrow \pi\left(X^{\prime}, Y\right)$ and $g_{*}: \pi(X, Y) \rightarrow \pi\left(X, Y^{\prime}\right)$ in the obvious way. We consistently adopt the following notation: $C X$ for the reduced cone over $X, \Sigma X$ for the reduced suspension of X and ΩY for the loop space of Y. The sets $\pi(\Sigma X, Y)$ and $\pi(X, \Omega Y)$ each have a group structure and there is a natural isomorphism, called the adjoint isomorphism,

$$
\tau: \pi(\Sigma X, Y) \cong \pi(X, \Omega Y)
$$

The wedge $X \vee Y$ is considered a subset of the cartesian product $X \times Y$. The fibre of the inclusion map $X \vee Y-\rightarrow X \times Y$ is denoted $X b Y$. Clearly $X b Y$ can be regarded as the space of paths in $X \times Y$ that begin at the base point and end in $X \vee Y$. The map $i: X b Y \rightarrow X \vee Y$ which projects a path onto its end point is essentially the inclusion of the fibre into the total space. Furthermore, we denote by $X \# Y$ the identification space $X \times Y / X \vee Y$. Thus $X \# Y$ is the cofibre of the (self-dual) map $X \vee Y \rightarrow X \times Y$ and $X b Y$ is the fibre.

We call X an H^{\prime}-space if there is a $\phi: X \rightarrow X \vee X$ such that $j \phi=\Delta$ in $\pi(X, X \times X)$, where $j: X \vee X \rightarrow X \times X$ is the inclusion and $\Delta: X \rightarrow X \times X$ is the diagonal map. H^{\prime}-spaces are exactly the spaces of normalized Lusternik-Schnirelmann category $\leqq 1$ [7, p. 245]. If X is an H^{\prime}-space, then there is a binary operation or multiplication in $\pi(X, Y)$ for which the constant $\operatorname{map} e$ in $\pi(X, Y)$ is a unit (i.e., $\alpha \cdot e=\alpha=e \cdot \alpha$ for all $\alpha \epsilon \pi(X, Y)$). We

[^0]call an H^{\prime}-space X inversive if there exist $\lambda, \rho: X \rightarrow X$ such that $\lambda \cdot \iota=e$ and $\iota \rho=e$ in $\pi(X, X)$, where ι and e respectively denote the identity map and the constant map in $\pi(X, X)$. If X is inversive, then any α in $\pi(X, Y)$ has a left inverse $L(\alpha)=\alpha \circ \lambda$ and a right inverse $R(\alpha)=\alpha \circ \rho$. We call an H^{\prime}-space X associative if $(\iota \vee \phi) \phi=\left(\begin{array}{l}\phi \vee \imath) \phi \text { in } \pi(X, X \vee X \vee X) \text {. If }, ~ . ~\end{array}\right.$ X is an associative, inversive H^{\prime}-space, then $\lambda=\rho$ and $\pi(X, Y)$ is a group. An example of such a space is a reduced suspension. If X and X^{\prime} are H^{\prime}-spaces, then $f: X^{\prime} \rightarrow X$ is called a homomorphism if $\phi f=(f \vee f) \phi^{\prime}$ in $\pi\left(X^{\prime}, X \vee X\right)$. Such a map induces a homomorphism $f^{*}: \pi(X, Y) \rightarrow \pi\left(X^{\prime}, Y\right)$ of multiplicative structures. If X and X^{\prime} are inversive, we require a homomorphism $f: X^{\prime} \rightarrow X$ to satisfy the additional conditions $f \lambda^{\prime}=\lambda f$ and $f_{\rho^{\prime}}=\rho f$. Then the induced map $f^{*}: \pi(X, Y) \rightarrow \pi\left(X^{\prime}, Y\right)$ preserves inverses.

In the sequel we only consider H^{\prime}-spaces which are inversive. The following proposition shows that this is not a serious restriction.

Proposition 2.1. Every 1-connected H^{\prime}-space is inversive. In addition, every homomorphism of 1-connected H^{\prime}-spaces is a homomorphism of inversive H^{\prime}-spaces.

Since we shall not need this result, we omit its proof. (See [7, p. 230] for a proof of the dual proposition.)

3. The flat product

Throughout this section A_{1} and A_{2} are arbitrary spaces and X is an inversive H^{\prime}-space. We adopt the following notation:
$\begin{array}{lll}l_{i}: A_{i} \rightarrow A_{1} \vee A_{2} & \text { for the injections, } & \\ p_{i}: A_{1} \vee A_{2} \rightarrow A_{i} & \text { for the projections, } & \\ j: A_{1} \vee A_{2} \rightarrow A_{1} \times A_{2} & \text { for the inclusion, } & i=1,2 .\end{array}$
We now define the flat product.
Elements $\alpha_{1} \epsilon \pi\left(X, A_{1}\right)$ and $\alpha_{2} \epsilon \pi\left(X, A_{2}\right)$ determine $\alpha_{1}^{\prime}=l_{1 *}\left(\alpha_{1}\right)$ and $\alpha_{2}^{\prime}=l_{2 *}\left(\alpha_{2}\right)$ in $\pi\left(X, A_{1} \vee A_{2}\right)$. We form the commutator

$$
\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=L\left(\alpha_{2}^{\prime} \cdot \alpha_{1}^{\prime}\right) \cdot\left(\alpha_{1}^{\prime} \cdot \alpha_{2}^{\prime}\right)
$$

where L denotes the left inverse in $\pi\left(X, A_{1} \vee A_{2}\right)$. Now

$$
p_{1 *}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=L\left(p_{1 *} \alpha_{2}^{\prime} \cdot p_{1 *} \alpha_{1}^{\prime}\right) \cdot\left(p_{1 *} \alpha_{1}^{\prime} \cdot p_{1 *} \alpha_{2}^{\prime}\right)=L\left(e \cdot \alpha_{1}\right) \cdot\left(\alpha_{1} \cdot e\right)=e
$$

and similarly $p_{2 *}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=e$. Therefore $j_{*}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)=e$. Since

$$
A_{1} b A_{2} \xrightarrow{i} A_{1} \vee A_{2} \xrightarrow{j} A_{1} \times A_{2}
$$

is essentially a fibre sequence, there is an exact sequence

$$
\begin{equation*}
\pi\left(X, A_{1} b A_{2}\right) \xrightarrow{i_{*}} \pi\left(X, A_{1} \vee A_{2}\right) \xrightarrow{j_{*}} \pi\left(X, A_{1} \times A_{2}\right) . \tag{3.1}
\end{equation*}
$$

We then conclude that $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$ is in the image of i_{*}. We prove a lemma which guarantees that the pre-image of ($\alpha_{1}^{\prime}, \alpha_{2}^{\prime}$) is unique.

Lemma 3.2. If X is an H^{\prime}-space then $i_{*}: \pi\left(X, A_{1} b A_{2}\right) \rightarrow \pi\left(X, A_{1} \vee A_{2}\right)$ is one-one for any A_{1} and A_{2}.

Proof. Suppose X is a suspension, $X=\Sigma Y$. Then the commutative diagram

$$
\begin{gathered}
\pi\left(\Sigma Y, A_{1} b A_{2}\right) \xrightarrow{i_{*}} \pi\left(\Sigma Y, A_{1} \vee A_{2}\right) \\
\approx \neq \mid \tau \\
\pi\left(Y, \Omega\left(A_{1} b A_{2}\right)\right) \xrightarrow{\Omega i_{*}} \pi\left(Y, \Omega\left(A_{1} \vee A_{2}\right)\right)
\end{gathered}
$$

and the existence of a left homotopy inverse for $\Omega i[7, \mathrm{p} .112]$ show that i_{*} is one-one. However it is known that every H^{\prime}-space is dominated by a suspension (see [5, pp. 624-629]). This fact now establishes Lemma 3.2.

We return to the definition of the flat product. By exactness of the sequence (3.1) there is an element in $\pi\left(X, A_{1} b A_{2}\right)$, written $\left\{\alpha_{1}, \alpha_{2}\right\}$, such that $i_{*}\left\{\alpha_{1}, \alpha_{2}\right\}$ is the commutator $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)$. By Lemma 3.2, $\left\{\alpha_{1}, \alpha_{2}\right\}$ is determined uniquely.

Definition 3.3. The flat product of $\alpha_{1} \epsilon \pi\left(X, A_{1}\right)$ and $\alpha_{2} \epsilon \pi\left(X, A_{2}\right)$ is the unique element $\left\{\alpha_{1}, \alpha_{2}\right\} \in \pi\left(X, A_{1} b A_{2}\right)$ which is defined by the equation

$$
i_{*}\left\{\alpha_{1}, \alpha_{2}\right\}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}\right)
$$

where $\alpha_{i}^{\prime}=l_{i *}\left(\alpha_{i}\right)$. Here it is assumed that X is an inversive H^{\prime}-space.
Remark 3.4. If we set $X=\Sigma Y$, we obtain by means of the adjoint isomorphism τ a product $\left[\beta_{1}, \beta_{2}\right] \epsilon \pi\left(Y_{,}^{-} \Omega\left(A_{1} b A_{2}\right)\right)$ of $\beta_{1} \epsilon \pi\left(Y, \Omega A_{1}\right)$ and $\beta_{2} \in \pi\left(Y, \Omega A_{2}\right)$, for any spaces A_{1}, A_{2} and Y. This product was briefly considered in [1] under the name of the dual product.

The following proposition is easily verified.
Proposition 3.5. (a) If $f: X^{\prime} \rightarrow X$ is a homomorphism of inversive H^{\prime}-spaces then $f^{*}\left\{\alpha_{1}, \alpha_{2}\right\}=\left\{f^{*} \alpha_{1}, f^{*} \alpha_{2}\right\}$ for all $\alpha_{i} \in \pi\left(X, A_{i}\right), i=1,2$.
(b) If $g_{i}: A_{i} \rightarrow A_{i}^{\prime}$ are any maps then $\left(g_{1} b g_{2}\right)_{*}\left\{\alpha_{1}, \alpha_{2}\right\}=\left\{g_{1 *} \alpha_{1}, g_{2 *} \alpha_{2}\right\}$ for all $\alpha_{i} \in \pi\left(X, A_{i}\right)$.

4. The cohomology flat product

In this section we show how the flat product gives rise to a binary cohomology operation for H^{\prime}-spaces. Our main result (Theorem 4.4) then asserts the equivalence, for a suspension, of this product with the cup product. We begin by borrowing some notation and a lemma from [6].

Let A_{1} and A_{2} be any spaces, $q: \Omega A_{1} \times \Omega A_{2} \rightarrow \Omega A_{1} \# \Omega A_{2}$ the projection and C the reduced cone functor. Then there is a homotopy equivalence

$$
k: C \Omega A_{1} \times \Omega A_{2} \text { ч } \Omega A_{1} \times C \Omega A_{2} \rightarrow \Sigma\left(\Omega A_{1} \# \Omega A_{2}\right)
$$

defined as the composition of the natural map

$$
s: C \Omega A_{1} \times \Omega A_{2} \text { ч } \Omega A_{1} \times C \Omega A_{2} \rightarrow \Sigma\left(\Omega A_{1} \times \Omega A_{2}\right)
$$

with

$$
\Sigma q: \Sigma\left(\Omega A_{1} \times \Omega A_{2}\right) \rightarrow \Sigma\left(\Omega A_{1} \# \Omega A_{2}\right)
$$

We also observe that it is not difficult to define a map

$$
h: C \Omega A_{1} \times \Omega A_{2} \cup \Omega A_{1} \times C \Omega A_{2} \rightarrow A_{1} b A_{2} \quad[6, \text { p. } 135] .
$$

If A_{1} and A_{2} are 1-connected, then h is a homotopy equivalence [6, p. 135]. Next we define $\bar{c}: \Sigma\left(\Omega A_{1} \times \Omega A_{2}\right) \rightarrow A_{1} \vee A_{2}$. Consider the two elements of $\pi\left(\Sigma\left(\Omega A_{1} \times \Omega A_{2}\right), A_{1} \vee A_{2}\right)$ which are the compositions of the following evident maps ($i=1,2$)

$$
\Sigma\left(\Omega A_{1} \times \Omega A_{2}\right)=\Sigma \Omega\left(A_{1} \times A_{2}\right) \rightarrow A_{1} \times A_{2} \rightarrow A_{i} \rightarrow A_{1} \vee A_{2}
$$

By definition, the group commutator of these two elements is \bar{c}. The relationship between the maps h, k and \bar{c} is exhibited in the following lemma of Ganea, Hilton and Peterson.

Lemma 4.1. [6, p. 134] If A_{1} and A_{2} are any 1-connected spaces and

$$
a: A_{1} b A_{2} \rightarrow \Sigma\left(\Omega A_{1} \times \Omega A_{2}\right) \quad \text { and } \quad b: \Sigma\left(\Omega A_{1} \times \Omega A_{2}\right) \rightarrow A_{1} b A_{2}
$$

are defined by $a=s h^{-1}$ and $b=h k^{-1} \Sigma q$, where h^{-1} and k^{-1} are the homotopy inverses of h and k, then $b a=\iota$ and $i b=\bar{c}$.

In dealing with cohomology groups and Eilenberg-MacLane spaces $K(G, m)$ it is convenient to identify $H^{m}(A ; G)$ with $\pi(A, K(G, m))$ and $K(G, m)$ with $\Omega K(G, m+1)$, for any space A. The natural isomorphism

$$
\tau: H^{m+1}(\Sigma A ; G) \rightarrow H^{m}(A ; G)
$$

of cohomology groups is then just the adjoint isomorphism

$$
\tau: \pi(\Sigma A, K(G, m+1)) \rightarrow \pi(A, \Omega K(G, m+1))
$$

Now let $A_{i}=K\left(G_{i}, m_{i}+1\right)$, where m_{i} is an integer $>0(i=1,2)$. For an inversive H^{\prime}-space X, the flat product assigns to $\alpha_{i} \in H^{m_{i}+1}\left(X ; G_{i}\right)$ an element $\left\{\alpha_{1}, \alpha_{2}\right\} \in \pi\left(X, A_{1} b A_{2}\right)$. Since $A_{1} b A_{2}$ is not an Eilenberg-MacLane space even though A_{1} and A_{2} are, we do not yet have a cohomology product. However we shall define $\theta: A_{1} b A_{2} \rightarrow K\left(G_{1} \otimes G_{2}, m_{1}+m_{2}+1\right)$ which will determine our cohomology product. Consider the isomorphisms

$$
\begin{array}{r}
H^{m+1}\left(\Sigma\left(\Omega A_{1} \# \Omega A_{2}\right) ; G\right) \stackrel{\tau}{\approx} H^{m}\left(\Omega A_{1} \# \Omega A_{2} ; G\right) \stackrel{\eta}{\approx} \operatorname{Hom}\left(H_{m}\left(\Omega A_{1} \# A_{2}\right), G\right) \\
=\operatorname{Hom}(G, G)
\end{array}
$$

where $m=m_{1}+m_{2}, G=G_{1} \otimes G_{2}$ and η is the homomorphism of the universal
coefficient theorem for cohomology. There exists a map

$$
l: \Sigma\left(\Omega A_{1} \# \Omega A_{2}\right) \rightarrow K(G, m+1)
$$

such that $\eta \tau(l)=\mathrm{id}$, the identity automorphism in $\operatorname{Hom}(G, G)$. Now with $A_{i}=K\left(G_{i}, m_{i}+1\right), G=G_{1} \otimes G_{2}$ and $m=m_{1}+m_{2}$ we define

$$
\theta: A_{1} b A_{2} \rightarrow K(G, m+1)
$$

to be the following composition:

$$
\begin{equation*}
A_{1} b A_{2} \xrightarrow{h^{-1}} C \Omega A_{1} \times \Omega A_{2} \cup \Omega A_{1} \times C \Omega A_{2} \xrightarrow{k} \Sigma\left(\Omega A_{1} \# \Omega A_{2}\right) \xrightarrow{l} K(G, m+1) \tag{4.2}
\end{equation*}
$$

Definition 4.3. The cohomology flat product of $\alpha_{1} \in H^{m_{1}+1}\left(X ; G_{1}\right)$ and $\alpha_{2} \in H^{m_{2}+1}\left(X ; G_{2}\right)$ is the element

$$
\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\theta \circ\left\{\alpha_{1}, \alpha_{2}\right\} \quad \text { in } \quad H^{m_{1}+m_{2}+1}\left(X ; G_{1} \otimes G_{2}\right),
$$

where X is an inversive H^{\prime}-space and $m_{1}, m_{2}>0$. The extension to n-fold products is immediate. If $\alpha_{i} \in H^{m_{i}+1}\left(X ; G_{i}\right), i=1, \cdots, n$, then $\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle$ in $H^{m_{1}+\cdots+m_{n}+1}\left(X ; G_{1} \otimes \cdots \otimes G_{n}\right)$ is inductively defined by

$$
\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle=\left\langle\left\langle\alpha_{1}, \cdots, \alpha_{n-1}\right\rangle, \alpha_{n}\right\rangle .
$$

Theorem 4.4. If $\alpha_{i} \in H^{m_{i}+1}\left(\Sigma Y ; G_{i}\right), i=1, \cdots, n$, then

$$
\tau\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle=\tau \alpha_{1} \smile \cdots \cup \tau \alpha_{n}
$$

where \checkmark denotes cup product and $\tau: H^{r+1}(\Sigma Y ;) \rightarrow H^{r}(Y ;)$ is the adjoint isomorphism.

Remark 4.5. Theorem 4.4 may clearly be rephrased as follows: For any space Y and any $\beta_{i} \in H^{m_{i}}\left(Y ; G_{i}\right)$ where $i=1, \cdots, n$,

$$
\beta_{1} \cup \cdots \cup \beta_{n}=\tau\left\langle\tau^{-1}\left(\beta_{1}\right), \cdots, \tau^{-1}\left(\beta_{n}\right)\right\rangle .
$$

Proof. Let us first prove Theorem 4.4 in the case $n=2, Y=\Omega A_{1} \times \Omega A_{2}$ and $\tau \alpha_{i}$ is the projection q_{i} of $\Omega A_{1} \times \Omega A_{2}$ onto ΩA_{i}. The general case will follow. The proof may be more easily visualized by considering the diagram

in which all of the four triangles are commutative.

We must show

$$
\begin{equation*}
\tau\left(\theta\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}\right)=\smile \tag{4.6}
\end{equation*}
$$

where \smile stands for $q_{1} \cup q_{2}$ in $H^{m}\left(\Omega A_{1} \times \Omega A_{2} ; G\right)$ and τ^{\prime} denotes the inverse of τ. In the short exact sequence
$0 \rightarrow H^{m}\left(\Omega A_{1} \# \Omega A_{2} ; G\right) \xrightarrow{q^{*}} H^{m}\left(\Omega A_{1} \times \Omega A_{2} ; G\right) \xrightarrow{j^{*}} H^{m}\left(\Omega A_{1} \vee \Omega A_{2} ; G\right) \rightarrow 0$ we have $j^{*}(\cup)=0$. Therefore there is a unique element

$$
\checkmark^{\prime} \in H^{m}\left(\Omega A_{1} \# \Omega A_{2} ; G\right)
$$

such that $q^{*}\left(\smile^{\prime}\right)=\cup$. Now $\Omega A_{i}=K\left(G_{i}, m_{i}\right), G=G_{1} \otimes G_{2}, m=m_{1}+m_{2}$ and the element \checkmark is the universal cup product element. Therefore $\eta\left(\checkmark^{\prime}\right)=$ id in the diagram

$$
H^{m}\left(\Omega A_{1} \# \Omega A_{2} ; G\right) \xrightarrow{\eta} \operatorname{Hom}\left(H_{m}\left(\Omega A_{1} \# \Omega A_{2}\right), G\right)=\operatorname{Hom}(G, G)
$$

Since the map $l: \Sigma\left(\Omega A_{1} \# \Omega A_{2}\right) \rightarrow K(G, m+1)$ is defined by the equation $\eta \tau(l)=$ id it follows that $\tau(l)=\smile^{\prime}$. Hence $q^{*} \tau(l)=q^{*}\left(\smile^{\prime}\right)=\smile$ and so

$$
\tau(l \Sigma q)=\cup
$$

Therefore, in order to establish (4.6), it suffices to prove

$$
\begin{equation*}
l \Sigma q=\theta\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\} \tag{4.7}
\end{equation*}
$$

where $\tau^{\prime}=\tau^{-1}$. We look more closely at the element $\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}$. By definition $i_{*}\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}$ is the commutator ($l_{1} \tau^{\prime} q_{1}, l_{2} \tau^{\prime} q_{2}$), where

$$
l_{i}: A_{i} \rightarrow A_{1} \vee A_{2}
$$

and

$$
i_{*}: \pi\left(\Sigma\left(\Omega A_{1} \times \Omega A_{2}\right), A_{1} b A_{2}\right) \rightarrow \pi\left(\Sigma\left(\Omega A_{1} \times \Omega A_{2}\right), A_{1} \vee A_{2}\right)
$$

But $\left(l_{1} \tau^{\prime} q_{1}, l_{2} \tau^{\prime} q_{2}\right)=\left(l_{1} e_{1} \Sigma q_{1}, l_{2} e_{2} \Sigma q_{2}\right)$, where $e_{i}: \Sigma \Omega A_{i} \rightarrow A_{i}$. However, from the definition of $\bar{c}: \Sigma\left(\Omega A_{1} \times \Omega A_{2}\right) \rightarrow A_{1} \vee A_{2}$ preceding Lemma 4.1, $\bar{c}=\left(l_{1} e_{1} \Sigma q_{1}, l_{2} e_{2} \Sigma q_{2}\right)$. Therefore by Lemma 4.1,

$$
i_{*}\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}=\bar{c}=i_{*}(b)
$$

Since i_{*} is one-one (Lemma 3.2),

$$
\begin{equation*}
\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}=b \tag{4.8}
\end{equation*}
$$

By (4.7) and (4.8) we see that it suffices to prove

$$
\begin{equation*}
l \Sigma q=\theta b \tag{4.9}
\end{equation*}
$$

By definition $\theta=l k h^{-1}$ (4.2) and $b=h k^{-1} \Sigma q$ (Lemma 4.1), and so (4.9) is verified. This proves (4.6) and demonstrates the theorem in the case $n=2$, $Y=\Omega A_{1} \times \Omega A_{2}$ and $\tau \alpha_{i}=q_{i}$.

Theorem 4.4 for $n=2$ is now easily established. If Y is any space and $\alpha_{i} \epsilon H^{m_{i}+1}\left(\Sigma Y ; G_{i}\right)$ are any elements, $i=1,2$, then the $\tau \alpha_{i}: Y \rightarrow \Omega A_{i}$ determine a map $\alpha: Y \rightarrow \Omega A_{1} \times \Omega A_{2}$ such that $q_{i} \alpha=\tau \alpha_{i}$. Then

$$
\begin{aligned}
\tau \alpha_{1} \cup \tau \alpha_{2} & =\alpha^{*}\left(q_{1} \cup q_{2}\right) \\
& =\alpha^{*} \tau\left\langle\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\rangle \\
& =\tau\left(\Sigma \alpha^{*}\left\langle\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\rangle\right) \\
& =\tau\left\langle\Sigma \alpha^{*} \tau^{\prime} q_{1}, \Sigma \alpha^{*} \tau^{\prime} q_{2}\right\rangle \quad \text { (by Proposition 3.5) } \\
& =\tau\left\langle\alpha_{1}, \alpha_{2}\right\rangle .
\end{aligned}
$$

This proves the theorem for $n=2$. A simple inductive argument now yields Theorem 4.4 for arbitrary n.

Remark 4.10. The cohomology flat product is defined by choosing a certain θ in $\pi\left(A_{1} b A_{2}, K(G, m+1)\right)$. We observe here that θ is uniquely determined by Theorem 4.4. That is, if θ^{\prime} is any element in

$$
\pi\left(A_{1} b A_{2}, K(G, m+1)\right)
$$

such that

$$
\tau\left(\theta^{\prime} \circ\left\{\alpha_{1}, \alpha_{2}\right\}\right)=\tau \alpha_{1} \cup \tau \alpha_{2}
$$

for all $\alpha_{i} \in H^{m_{i}+1}\left(\Sigma Y ; G_{i}\right)$, then $\theta=\theta^{\prime}$. For

$$
\tau\left(\theta^{\prime}\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}\right)=\smile=\tau\left(\theta\left\{\tau^{\prime} q_{1}, \tau^{\prime} q_{2}\right\}\right)
$$

and so by (4.8), $\tau\left(\theta^{\prime} b\right)=\tau(\theta b)$. Therefore we have $\theta^{\prime} b=\theta b$. But, by Lemma 4.1, b admits a right homotopy inverse, and so $\theta^{\prime}=\theta$.

5. Applications

In this section we present a few applications of the preceding material. Our first application concerns the relationship between n-fold cup products and the co-commutator map of weight n. We begin by extending previous definitions and results from $n=2$ to arbitrary n.

For any n spaces A_{1}, \cdots, A_{n} we inductively define a map

$$
i_{n}: A_{1} b \cdots b A_{n} \rightarrow A_{1} \vee \cdots \vee A_{n}
$$

where

$$
\begin{aligned}
A_{1} b \cdots b A_{n} & =\left(A_{1} b \cdots b A_{n-1}\right) b A_{n} \\
A_{1} \vee \cdots \vee A_{n} & =\left(A_{1} \vee \cdots \vee A_{n-1}\right) \vee A_{n}
\end{aligned}
$$

For $n=2$, let $i_{2}=i: A_{1} b A_{2} \rightarrow A_{1} \vee A_{2}$. For $n>2, i_{n}$ is the composition

$$
\begin{aligned}
& \left(A_{1} b \cdots b A_{n-1}\right) b A_{n} \xrightarrow{i} \\
& \quad\left(A_{1} b \cdots b A_{n-1}\right) \vee A_{n} \xrightarrow{i_{n-1} \vee \iota}\left(A_{1} \vee \cdots \vee A_{n-1}\right) \vee A_{n} .
\end{aligned}
$$

The following proposition extends Lemma 3.2.
Proposition 5.1. If A_{1}, \cdots, A_{n} are 1 -connected spaces and X is an H^{\prime} space, then $i_{n *}: \pi\left(X, A_{1} b \cdots b A_{n}\right) \rightarrow \pi\left(X, A_{1} \vee \cdots \vee A_{n}\right)$ is one-one.

Proof. As in Lemma 3.2 it suffices to prove this result for $X=\Sigma Y$, since every H^{\prime}-space is dominated by a suspension [5]. Thus it is sufficient to show that

$$
\Omega i_{n *}: \pi\left(Y, \Omega\left(A_{1} b \cdots b A_{n}\right)\right) \rightarrow \pi\left(Y, \Omega\left(A_{1} \vee \cdots \vee A_{n}\right)\right)
$$

is one-one. We do this by proving by induction on n that the map

$$
\Omega i_{n}: \Omega\left(A_{1} b \cdots b A_{n}\right) \rightarrow \Omega\left(A_{1} \vee \cdots \vee A_{n}\right)
$$

has a left homotopy inverse.
For the case $n=2$, see the proof of Lemma 3.2. Now assume that Ωi_{n-1} has a left homotopy inverse. Since Ωi_{n} is the composition

$$
\begin{aligned}
& \Omega\left(\left(A_{1} b \cdots b A_{n-1}\right) b A_{n}\right) \xrightarrow{\Omega i} \\
& \quad \Omega\left(\left(A_{1} b \cdots b A_{n-1}\right) \vee A_{n}\right) \xrightarrow{\Omega\left(i_{n-1} \vee \iota\right)} \Omega\left(\left(A_{1} \vee \ldots \vee A_{n-1}\right) \vee A_{n}\right)
\end{aligned}
$$

and since Ωi has a left homotopy inverse, it only remains to prove that $\Omega\left(i_{n-1} \vee \iota\right)$ has a left homotopy inverse.

It is well known that for any spaces B_{1} and B_{2} there is a natural homotopy equivalence

$$
\Omega\left(B_{1} \vee B_{2}\right) \simeq \Omega B_{1} \times \Omega B_{2} \times \Omega\left(B_{1} b B_{2}\right) \quad[7, \text { p. 112] }
$$

If B_{1} and B_{2} are 1-connected, we have seen in $\S 4$ that

$$
k h^{-1}: B_{1} b B_{2} \rightarrow \Sigma\left(\Omega B_{1} \# \Omega B_{2}\right)
$$

is a homotopy equivalence. Thus there is a natural homotopy equivalence

$$
\Omega\left(B_{1} \vee B_{2}\right) \simeq \Omega B_{1} \times \Omega B_{2} \times \Omega \Sigma\left(\Omega B_{1} \# \Omega B_{2}\right)
$$

We use this last fact to show that $\Omega\left(i_{n-1} \vee \imath\right)$ has a left homotopy inverse. Let $B_{1}=A_{1} b \cdots b A_{n-1}, B_{1}^{\prime}=A_{1} \vee \cdots \vee A_{n-1}$ and $B_{2}=A_{n}$ and consider the diagram

$$
\begin{aligned}
& \Omega\left(B_{1} \vee B_{2}\right) \simeq \Omega B_{1} \times \Omega B_{2} \times \Omega \Sigma\left(\Omega B_{1} \# \Omega B_{2}\right) \\
& \Omega\left(i_{n-1} \vee \iota\right) \mid \mid \Omega i_{n-1} \times \iota \times \Omega \Sigma\left(\Omega i_{n-1} \# \iota\right) \\
& \Omega\left(B_{1}^{\prime} \vee B_{2}\right) \simeq \Omega B_{1}^{\prime} \times \Omega B_{2} \times \Omega \Sigma\left(\Omega B_{1}^{\prime} \# \Omega B_{2}\right)
\end{aligned}
$$

Since by the inductive assumption Ωi_{n-1} has a left homotopy inverse, so does $\Omega\left(i_{n-1} \vee \iota\right)$. This completes the proof of Proposition 5.1.

Next let X be an associative, inversive H^{\prime}-space and let us write ${ }^{n} X$ for $X \vee \cdots \vee X$ (n summands $)$. Then a co-commutator map $\psi_{n}=\psi_{n}(X)$ of
weight n in $\pi\left(X,{ }^{n} X\right)$ [4, p. 103] is inductively defined as follows: ψ_{2} is the ordinary group commutator of the two inclusions $X \rightarrow X \vee X . \psi_{n}$ is the commutator of ψ_{n-1} followed by the inclusion ${ }^{n-1} X \rightarrow{ }^{n} X$ and of the inclusion $X \rightarrow{ }^{n-1} X \vee X={ }^{n} X$.

Proposition 5.2. If ι is the identity map of an associative, inversive H^{\prime}-space X and $i_{n *}: \pi(X, X b \cdots b X) \rightarrow \pi(X, X \vee \cdots \vee X)$, then

$$
i_{n *}\{\iota, \cdots, \iota\}=\psi_{n}(X)
$$

where $\{\iota, \cdots, \iota\}$ is the flat product of ι with itself n times and $\psi_{n}(X)$ is the co-commutator map of weight n.

Proof. It follows immediately from the definitions that $i_{*}\{\iota, \iota\}=\psi_{2}(X)$ A simple induction then establishes Proposition 5.2.

Proposition 5.3. Let X be a 1-connected, associative, inversive H^{\prime}-space and let $\alpha_{i} \in H^{m_{i}+1}\left(X ; G_{i}\right)$ be any elements, $m_{i}>0(i=1, \cdots, n)$.
(a) If $\psi_{n}(X)=0$, then $\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle=0$.
(b) If $N \cdot \psi_{n}(X)=0$, then $N \cdot\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle=0 .{ }^{2}$

Proof. A straightforward inductive construction based on definition (4.2) shows that there is a map

$$
\theta_{n}: A_{1} b \cdots b A_{n} \rightarrow K\left(G_{1} \otimes \cdots \otimes G_{n}, m_{1}+\cdots+m_{n}+1\right)
$$

where $A_{i}=K\left(G_{\imath}, m_{i}+1\right)$, such that

$$
\theta_{n} \circ\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle
$$

for all $\alpha_{i} \in H^{m_{i}+1}\left(X ; G_{i}\right)$. Thus by Proposition 3.5

$$
\theta_{n *}\left(\alpha_{1} b \cdots b \alpha_{n}\right)_{*}\{\iota, \cdots, \iota\}=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle .
$$

This equation, the equation stated in Proposition 5.2, and the fact that $i_{n *}: \pi(X, X b \cdots b X) \rightarrow \pi(X, X \vee \cdots \vee X)$ is one-one (Proposition 5.1) establish the proposition.

Theorem 4.4 and Proposition 5.3 now yield
Corollary 5.4. Let Y be any (path-connected) space and let $\beta_{i} \in H^{m_{i}}\left(Y ; G_{i}\right)$ be any elements, $m_{i}>0(i=1, \cdots, n)$.
(a) If $\psi_{n}(\Sigma Y)=0$, then the n-fold cup product $\beta_{1} \cup \cdots \vee \beta_{n}=0$.
(b) If $N \cdot \psi_{n}(\Sigma Y)=0$, then $N \cdot\left(\beta_{1} \cup \cdots \cup \beta_{n}\right)=0$.

Corollary 5.4 (a) generalizes the result of Berstein and Ganea [4, Theorem 5.8], \checkmark-long $Y \leqq$ conil ΣY. We note that another proof of 5.4 (a) appears in [6, Theorem 4.4]. Corollary 5.4 (b) generalizes a result of Arkowitz and Curjel [3].

Our final application deals with a modified distributive law. Let B and C

[^1]be any spaces and $\alpha \in \pi(\Omega B, \Omega C)$ any element. We write all group operations additively. Then there is an element $\gamma=-\alpha q_{2}-\alpha q_{1}+\alpha\left(q_{1}+q_{2}\right)$ in $\pi(\Omega B \times \Omega B, \Omega C)$, where $q_{1}, q_{2}: \Omega B \times \Omega B \rightarrow \Omega B$ are the projections. If
$$
j^{*}: \pi(\Omega B \times \Omega B, \Omega C) \rightarrow \pi(\Omega B \vee \Omega B, \Omega C)
$$
then clearly $j^{*}(\gamma)=0$. Consequently there is a unique element $H(\alpha)$ in $\pi(\Omega B \# \Omega B, \Omega C)$ such that $q^{*} H(\alpha)=\gamma$, where $q: \Omega B \times \Omega B \rightarrow \Omega B \# \Omega B$ s the identi fication map. Thus we have a function
$$
H: \pi(\Omega B, \Omega C) \rightarrow \pi(\Omega B \# \Omega B, \Omega C)
$$

Now we define the dual Hopf invariant $\mathfrak{H C}: \pi(\Omega B, \Omega C) \rightarrow \pi(\Omega(B b B), \Omega C)$ to be the following composition:

$$
\begin{aligned}
\pi(\Omega B, \Omega C) \xrightarrow{H} \pi(\Omega B \# \Omega B, \Omega C) \xrightarrow{\tau^{-1}} \pi(& (\Omega B \# \Omega B), C) \xrightarrow{\left(k h^{-1}\right)^{*}} \\
& \pi(B b B, C) \xrightarrow{\Omega} \pi(\Omega(B b B), \Omega C) .
\end{aligned}
$$

Proposition 5.5 (Modified Distributivity). For any spaces A, B, C and any elements $\beta_{1}, \beta_{2} \in \pi(A, \Omega B)$ and $\alpha \in \pi(\Omega B, \Omega C)$,

$$
\alpha \circ\left(\beta_{1}+\beta_{2}\right)=\alpha \circ \beta_{1}+\alpha \circ \beta_{2}+\mathcal{H}(\alpha) \circ \tau\left\{\tau^{-1}\left(\beta_{1}\right), \tau^{-1}\left(\beta_{2}\right)\right\} .
$$

The proof of this proposition requires a straightforward but rather long computation, and hence is omitted. However we do make a few remarks. First we note that the dual of Proposition 5.5 is well known. The duality between $\mathfrak{H C}$ and the Hopf invariant is best seen by taking B to be an EilenbergMacLane space. Secondly, the element $\tau\left\{\tau^{-1}\left(\beta_{1}\right), \tau^{-1}\left(\beta_{2}\right)\right\}$ is just $\left[\beta_{1}, \beta_{2}\right]$, the dual product of β_{1} and β_{2} as defined in [1] (see also Remark 3.4). Finally, we observe that actual distributivity holds in Proposition 5.5 whenever $\mathscr{H}(\alpha) \circ \tau\left\{\tau^{-1}\left(\beta_{1}\right), \tau^{-1}\left(\beta_{2}\right)\right\}=0$. Since $\left\{\tau^{-1}\left(\beta_{1}\right), \tau^{-1}\left(\beta_{2}\right)\right\}$ is defined by means of a commutator, this occurs, for instance, whenever the group $\pi(\Sigma A, B \vee B)$ is abelian.

References

1. M. Arkowitz, The generalized Whitehead product, Pacific J. Math., vol. 12 (1962), pp. 7-23.
2. - Homotopy products for H-spaces, Michigan Math. J., vol. 10 (1963), pp. 1-9.
3. M. Arkowitz and C. R. Curjel, Homotopy commutators of finite order (I), Quart. J. Math. Oxford (2), vol. 14 (1963), pp. 213-219.
4. I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math., vol. 5 (1961), pp. 99-130.
5. T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. (3), vol. 10 (1960), pp. 623-639.
6. T. Ganea, P. J. Hilton and F. P. Peterson, On the homotopy-commutativity of loopspaces and suspensions, Topology, vol. 1 (1962), pp. 133-141.
7. P. J. Hilton, Homotopy theory and duality, Mimeographed notes, Cornell University. 1959.

Princeton University
Princeton, New Jersey
Dartmouth College Hanover, New Hampshire

[^0]: ${ }^{1}$ Although the smashed product of two spheres is a sphere, the flat product of two Eilenberg-MacLane spaces is not an Eilenberg-MacLane space. Thus the main (technical) difficulty in the definition of the cohomology flat product was to choose a suitable map θ so that Theorem 4.4 holds. Remark 4.10 asserts that there is essentially one way of doing this.

[^1]: ${ }^{2}$ We are here writing group operations additively.

