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1. Introduction

A classical problem in the theory of groups concerned the finite nonabelian
groups of which every proper subgroup is abelian. Miller and Moreno con-
sidered this problem in 1903--see [10J--and Rdei gave a list of all such groups
in his paper [11]. The corresponding problem with "abelian" replaced by
"nilpotent" is the subiect of [12] and [9], and in the many other generalisations
attention has been concentrated on nonnilpotent groups; for instance, Suzuki
in [13] showed that any finite simple group with every second maximal
subgroup nilpotent has order 60.
The aim of the present paper is to generalige the classical problem in another

direction--we study nilpotent groups of which every proper subgroup, or
every mth maximal subgroup, is nilpotent of given class, and while results
can be found for infinite groups we shall keep matters simple by examining
the finite case only.
The following facts can be assembled from [10], or deduced from Rdei’s

list in [11], or proved independently without hardship:

THEOREM. Let G be a nonabelian group of order pr+l in which every sub-
group of order pr is abelian. Then

G is generated by two elements;
(ii) G has class 2;
(iii) "2(G) has order p;
(iv) G/I G) has order p2.

That is the theorem to be generalised. Two other points of interest emerge
from Rdei’s paper: there are two infinite sequences of these p-groups to-
gether with an exceptional 2-group namely the quaternion group of order 8;
and/ is unbounded.

In any group the product of normal subgroups with classes n and n
respectively has class n - n2; that is a theorem of Fitting [2], and it is a
best possible result because in [5], P. Hall gives an example, for any n, which
is of class precisely n and which is the product of n abelian normal subgroups.
(For what it is worth, we state that there are even metabelian groups with
these properties.) Now, since every maximal subgroup of a finite p-group
G is normal, G has class 2n when every proper subgroup has class n, and we
ask when the class is precisely 2n. This is certainly possible when n 1,
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by the classical result. We shall prove

THEOREM 1. Let G be a finite metabelian p-group of class precisely 2n with
every proper subgroup of class n. Then n 1.

Without the metabelian assumption the problem is more intractable,
though we shall show that the case n 2 can never occur and we shall give
an example for n 3 in Theorem 4.
The other general result is

THEOREM 2. Let G be a group of order pr+, in which every subgroup of order
pr has class n, while G itself is not of class n. Then

(i) G has a set of ot most m n generators;
(ii) the class of G is bounded by f(m, n)

(iii) the order of n-(G) is a factor of
(iv) the order G/,(G) is a factor of p(’’).

Here f, g, h are certain functions of m and n but not of r.

Again the classical case, which corresponds to m n 1, has been gen-
eralised. In particular, when m 1 and so G has class 2n, there are bounds
on the orders of /n+ and G/, but not on the order of n//n+l as Theorem 5
will show.
Next we consider the class bounds in special cases; thus Theorem 3 (see

Section 4) deals with groups for which m n 2. Finally we have examples.

THEOREM 4. Let a prime p >= 5 be given. Then there is a finite p-group of
class precisely 6 with every proper subgroup having class 3. In addition, the
set of third Engel elements coincides with (G), which has class 2.

In this connection we note a result of Heineken [8, Satz 2’]" every element
a of order prime to 210, satisfying (a, g, g, g) 1 and (a-, g, g, g) 1 for
all g in the group G, lies in (G) where ]c __< 2.3. On the one hand this
bound on lc is generally thought to be large, on the other hand only the trivial
lower bound k _>- 3 seems known as yet. But, Theorem 4 tells us that/c => 5.

THEOREM 5. Let an odd prime p and positive integers m and n be given.
Then there is a finite metacyclic p-group of class precisely m n with every
subgroup of index p’ having class n. In addition, the group may be chosen so
that ,/’,+ has arbitrarily large order when m 1.

This example will serve to show that certain class bounds for small m and n
are exact, but there is a big gap between the bound ra + n and the general
bound given in Theorem 2 (ii).

2. Preliminaries

Let Xl, ..., Xn be a set of elements in a group G. Then
and (Xl, xn) denote respectively the least subgroup and the least normal
subgroup in which the elements are contained. We shall denote y-lxy by
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-1 -1xy and xt x2 xl x. by (xl, x). For n > 2 we define the left-normed com-
mutator (xl, xn) of weight n by induction"

(x, -.., x) ((x, ..., x_), x).

We repeat the standard list of commutator identities"

(2.1) (x-l, y)X (x, y-1)y (x, y)-l,
(2.2) (uv, xy) (u, y)V(v, y)(u, x)V(v, x),
(2.3) (z, X-1, y)X(x, y-, z)(y, z-, x) 1.

It is easy to deduce

(2.4) (x, y, x-, y-1)(x, y, y-l, x(.)) 1.

We say that G is metabelian whenever (u, v; x, y) 1, defining (u, v; x, y)
to be (u, v), (x, y) ), for al:l u, v, x, y in G. It is not difficult to show that in
such a case we have

(2.5) (u, v, x, y) (u, v, y, x),

and further that the value of (xt, ..., x,) is unaltered when xa, ..., x.
are permuted in any way.
The members of the lower central series

G 5’1 > ’ > > 5’ >

of G are defined thus" 7. 7(G) is generated by the commutators
(xl, ..., x) found as the x vary in G. Sometimes we write G’ for 7.(G).
The members of the upper central series

1 ’0< ’1< <- <...=

are defined thus" ’ (G) is the centre Z(G) of G, and % %(G), when
n > 1, is that subgroup of G for which Z(G/,_I) %/’n-1. It can be shown
that ’+1 1 if and only if G, in which case G is said to be "nilpotent
of class n" or just "of class n". We shall say that the class of G is precisely
n when the class is n but not n 1.

Application of (2.3) and (2.4) in a group of class n, where n -> 4, gives

(x ..., x,_ x_, x)
(2.6)

(xl, "., x._, x.-1, x)(x, ..., xn_, x., x,-1)-,

(2.7) (x, y, x, y, xl "", x,_) (x, y, y, x, xl "’, x,_).

It is easy to see that every two-generator subgroup in a group of class 4 is
metabelian.
The Frattini subgroup (G) of a finite p-group G is generated by G’ and

by the p powers of the elements of G. Such a group G is generated by n
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elements but not by n 1 if and only if the same is true of G/(G), in which
case (G) has order pr--n when G has order pr.

Let x be an element of G for which (x, y, ..., y) 1 for all y e G, the
commutator having weight n + 1. Then x is said to be an nh Engel element,
and if every element of G has this property G is said to satisfy the nh Engel
condition.

3. The general theorems
We assemble elementary facts in

LEMMA 1. Let G be a finite p-group in which every maximal subgroup has
class n. Then (x} has class n for each x in G, and G satisfies the (n
Engel condition. Further, if G has class precisely 2n then two elements generate G.

Proof. Since (x} -< {x, ((G)} and since either G is cyclic or G/(G) is
noncyclic, it follows that G is cyclic, or (x} is a proper subgroup of G and has
class n. Consequently G satisfies the required Engel condition.

Suppose now that G has class precisely 2n, and choose an element x in G
but not in (G). Then there is a maximal subgroup M of G such that
G M(x), which implies by Fitting’s theorem that the class of (x) is precisely
n. That is to say, there are elements y, yl, y,- (we assume n > 1)
for which

(x, x, x’, x-) 1.
Since it follows that

(x, y, x, x1, ..., x-) 1

we see that (x, y) does not have class n; therefore {x, y} G.
This completes the proof of Lemma 1.

Proof of Theorem 1. We shall assume that n > 1 and that G has class
2n, and prove that G has class 2n 1. In accordance with Lemma 1 we
choose a and b so that G {a, b}. If

c (, -.-,

then c 1 whenever n -t- 1 of the xi are equal; we shall denote c by ci when

xl a, x2 b,

x3-- x+2--- a,

Xi+3 Xi-b-b2 b.

Therefore we have to prove that c_._ 1, as (2.5) makes clear.
Let us take c and put

xl a, x2 Xn-b2 ab,

Xn..$ Xn-br2 a,

Xn-br- X2n b,
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whereO <- r _-< n- 2, so thatc 1.
C(n,n--r--1)

Cn--l,n--1

Expansion by means of (2.2) gives

1.

It is well known that when n is composite the highest common factor of
C(n, n r 1) for 0 -< r =< n 2 is 1;consequently we suppose that n
is a power of some prime p and as Cn-l,n-1 1 we shall take p p.

Since {ab, (G)} has class n we find

(3.1) (a’, aib, ..., ab) 1 for 0 =< i =< p- l,

the left-normed commutator being of weight n + 1. By (2.2) we have

a’, aiD) ap, b
C (p,j-l)CO Cjo Cp--l,O

and thus (3.1) gives, again with the use of (2.2),

(3.2)
(Coo, aib ..., ab p (Cjo, aib, aib) c(p’j+l)

(Cp-l,0, ab, ..., aib) 1,

where the commutators now have weight n.
We deduce from (3.2) with i 0 that

CO,n--1 Cj,n--1 Cp--l,n--1 1,
and hence that

(3.3) Cn--p/,i,n--1 1 for p- 1 >= j => 1, Cn--p,n--1 Cn--l,n--1 1;

similarly

(3.4) 1Cn--l,n--+" 1 for p- 1 >___. j >-- 1, Cn--l,n--pCn--l,n--1

Thus ’.n(G) has exponent p.
Now we prove by induction that ’2n-+’+1 has exponent p for p 2 => j > 0,

assuming as we must that p > 2. Identities (3.3) and (3.4) make it clear
that the result holds for j p 2. We assume inductively that ’2n-+’+:
has exponent p where j is fixed and p 3 >_- j > 0, and we consider com-
mutators of weight 2n p + j - 1. The inductive hypothesis enables us
to deduce from (3.2) that

(3.5) (Cn--+j,O ab, ab) 1.
...( n--l,n--k+lIn expanding this by means of (2.2) let us put d -++,--1, so that

we find

(3.6) d d --cp--’--I 1.

As (3.6) holds for i 0, 1, p j 1, we have a system of equations
which can be solved for d, ., d, d__l, and evaluation of the

C(n, m) denotes the number of combinations of n things taken m at a time.
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elementary determinant which appears shows that

Because n is a power of p we have C(n 1, n /c 1) (- 1)k modulo p,
and so

1 forO</c<p--j-- 1.Cn--p-{--j-l-It, n--k--1

This and the inductive hypothesis show that 2-++1 has exponent p.
Whether p 2 or not the exponent of 3’2n-+ is therefore p. Next

is to be tackled by the method of the inductive step above--by (3.2) we have

(3.7) c ab, ab) 1,c_, ab ab n--l,0

.C(n--I n--k--l)and so if dk denotes n--+,---- we have

($k cbp--1 Cn--l,n--1 1.

do Cn--l,n--1 1. Solution of the system of equations givesBy (3.3) we have
pd_l 1, which with (3.4) implies that C_,n_i 1.
Therefore G has class 2n 1. We conclude that the only possible value

of n is 1, and this completes the proof of Theorem 1.

Proof of Theorem 2. (i) Suppose that every set of generators of G con-
tains m A- n -4- 1 or more elements. Then the subgroup generated by any
n -t- 1 elements has order dividing pr and class n; consequently G has class
n. Therefore G has a set of at most m A- n generators.

This result can be improved when n > 2. A theorem of Heineken [7]
states that if n > 2 and if every n elements of a group G generate a subgroup
of class n then G has class n. Therefore if n > 2 our group has a set of at
most m - n 1 generators.

(ii) Fitting’s theorem shows that when m 1 G has class 2n, and induc-
2 n.tion on m shows that f(m, n) <=

(iii) By (i) and (ii) we may assume that G {a, ..., as} where
s =< m A- n and that G has class f f(m, n). For 1 __< i -< f n the abelian
groups /n+i/3’++1 are generated by a number of commutators like
(a’l, a’n. )3’+i+1 where 1 =< j =< s, and this number is clearly bounded
by a function of m and n. We shall show that each of these commutators
has order dividing pm.

Because the subgroup {a, af} is contained in q(G) its index in G is at
least min(p:, p+). Similarly {af ..., a, lies in q(O(G)) and its
index is at least min(p, pr+). This argument with induction shows that
{a a, has index at least min( p+)p in G, and hence class n.
Consequently

a, a+i 1,

(a,, a-n+ v(+)
[n+i-4-1 fnA-i+l

for 1 =< i _-< f n. Thus the commutators (a,, ..., a.+),.++ have
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orders dividing p’, which is the link showing that ’n+/v++l has its order
bounded by a function pg0 where go go(m, n). Since v]+l 1 we conclude
that the order of +1 is bounded by pg, for a suitable function g g(m, n),
and that proves (iii).

(iv) Since G/, has class f, since by (i) G/,, is generated by at most
m + n elements, and since we shall show that G/, has finite exponent of the
appropriate form, it will follow that the order of G/t is bounded by some
function ph(m,n). In fact we shall prove that xfg i% for all x G.

Let x, x be arbitrary elements of G. Repeated applications of (2.2)
and (2.3) show that

Xpfg, Xi Xn Xp($-l)g, Xl Xn

by (iii), where c is theproduct of conjugates of left-normed commutators and
inverses of weight n -t- 2 or more, with x(f-) occurring at least once in each.
We continue this process with each of the commutators in c. The general
step consists in expunding a left-normed commutator of weight n - i where

p(f--i-bl)g1 _-< i _-< f n, m which x occurs; the result s by (111) the product of
conjugates of left-normed commutators of weight n W i - 1 or more, in
each of which x(-) occurs. Since ]+1 1 we find that

(x, x, x) 1,

and that G/ has exponent p.
the theorem

That completes the proof of (iv) and of

4. Some cases with small m and n

In this section G will denote a group of order p+ in which every subgroup of
order p has class n, and we shall look at class bounds in special cases other
than the classical case m n 1.

COROLLARY 1 TO THEOREM 1.
subgroup of order pr has class 2.

Let G be a group of order p+ in which every
Then G has class 3.

Proof. Clearly G has class 4, and by Theorem 2 we may assume that G
has at most three generators. If no two elements generate G then each
{x, y} is a proper subgroup and has class 2. Thus G satisfies the second Engel
condition, the facts about which are recorded on p. 322 of [3]. They lead us
to the conclusion that G has class 3, and even class 2 if p 3.

If two elements generate G then G is metabelian. Therefore Theorem 1
shows that the class of G cannot be precisely 4, and so is 3.

COROLLARY 2 TO THEOREM 1. Let G be a group of order p+: in which every
subgroup of order p is abelian. Then G has class 3.

Proof. This is an immediate consequence of Corollary 1.
When m 1 and n 3 we have 6 for the cluss of G, and Theorem 4 will

show that sometimes the class is precisely 6. The crude means at out disposal
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enable us to say a little more about this case when G is generated by precisely
three elements. Then {x, y} is a proper subgroup and G satisfies the third
Engel condition, which has been investigated by Heineken in [6]. His results
tell us that G has class 4 if p 2 and p 5.
We now consider the case m n 2, which is harder.

THEOREM 3.
pr has class 2.

Let G be a group of order pr+2 in which every subgroup of order
Then the class of G is 4; and G is metabelian if p 2.

Proof. We know from Theorem 2 that either G has class 2 or G can be
generated by a set of fewer than five elements. By the results for m 1,
every proper subgroup has class 3 and G has class 6.

If G is not generated by any set of three elements then every {x, Y in G
has class 2 and the second Engel condition holds. Thus G has class 3, G is
metabelian, and if the class is precisely 3 then p 3.
Next suppose that G cannot be generated by any pair of its elements. If

every maximal subgroup has less than three generators a theorem of Black-
burn (see [1, Theorem 3.1]) enables us to establish that G has class 2. Assume
therefore that there is a maximal subgroup M generated by no pair of its
elements, so that p 3 or M has class 2 by the results for m 1 and n 2
applied to M. Since G M(x} for some x M we see that G has class 4
or p 3, but in the latter case the fact that G satisfies the third Engel con-
dition proves that G has class 4 anyway.

Let G {a, b, c}. To show that G is metabelian it will suffice to verify
that (a, b; a, c) 1. We start by using (2.6)

(a, b; a, c) (a, b, a, c)(a, b, c, a)-1.
Since Ix, (G)} has class 2, and now p 2,

(a, b), ac, ac) 1,

Hence we have
(a, b, a, c)(a, b, c, a) 1.

(a, b; a, c) (a, b, a, c) 2.
Since a, (G) has class 2,

1 ((a, b), a, c) (a, b, a, c),
and so (a, b; a, c) 1; G is metabelian.
We are left with the formidable final case in which G can be generated by

two elements a and b.
If each maximal subgroup is generated by a suitably chosen pair of ele-

ments we have a situation in which further theorems of Blackburn can be
brought to bear. Theorems 4.2 and 5.1 of [1] assert that G has order dividing
p5 (and so class 4), or G is metacyclic, or G/’a has order p and /3 coincides
with the subgroup P1 generated by the ph powers of the elements of G. If G
is metacyclic then we may suppose that {a} is normal while (b) has class 3
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as usual, so G (a}(b) has class 4. If G/3 has order p3 and ’3 P1 then
each {x, ’3} has class 2 and the identity

u, v, w, x, x 1

follows; in order to prove that G has class 5 it will suffice to show that
a, b, a, b, a, b 1. Since

(a, b, a, b, a, b) (a, b, b, a, a, b),

by (2.7), G does indeed have class 5. Considering commutators of weight
5 we find that

(a, b; a, ab, ab 1,

(a, b, a, a, b) (a, b, a, b, a)-(a, b, b, a, a)-1,
the last step following from (2.7). These facts are enough to establish that
G has class 4.

In the next situation to be corisidered there exists a maximal subgroup
M a, (G)} of G which cannot be generated by any pair of its elements.
Application to M of the facts for the case rn 1 and n 2 contained in the
proof of Corollary 1 above shows that M is second Engel, and so of class 3
ifp 3 and of class 2otherwise. Hence G M(b}hasclass6 ifp 3
and class 5 otherwise.

Considering the case p 3 we show that the classes of G and M are in
fact 5 and 2 respectively. Note carefully that (x, a, a) 1 for all x in M.
The fact that the class of (ab} is 3 gives

a, ab, ab, a, ab, ab 1, a, b, b, a, b, a) 1.

Thus we may deduce by means of (2.7) that

(a,b,a,b,b,a)-- 1.
Similarly (2.7) gives

(a, b, a, b, a, b) (a, b, b, a, a, b) 1,

and we see that G has class 5. In M we have the laws

(x, y, z) (y, z, x) (y, x, z)-1,
as shown on p. 322 of [3], and M is generated by a, b and the commutators
in G. The classes of G and M being what they are, it will follow that M
has class 2 as soon as we prove that (c, a, b) 1 where c is any commutator
in G, and where we can assume that c is of weight 2 or 3. If c (a, b) we have

((a, b) a, 53 (a, 53 (a, b))

((a, b)3(a, b, b) ’, (a, b))

(a, b, b, (a, b))3
((a, b), 53 (a, b))
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If c (a, b, a) we have

((a, b, a), a, b3) ((a, b), a, a, b3)
1.

Ifc (a,b,b) wehave

((a, b, b), a, 5 (a, b, (a, b, b))3
((a, b), 53, (a, b))-1

1.
Therefore M has class 2.

It is now our intention to prove that G has class 4, first in the case which
arises when p is odd. If the subgroup/b, (a, b)} is not maximal then it has
class 2 and so, as we shall prove, does (b}. We have

(bx, b, by) (b, x, b; b, y)(b, x, b, b),

by (2.2). Since b, (a, b) has class 2 we have

(b, a, b; b, a) 1
nd hence

(b,x,b;b,y)- 1.

If x abc with c e G’ then use of (2.2) gives

(b, x, b, b) (b, c, b, b)(b, a, b, b)(b, a’, btc, b, b)

(b,a,b,b)

(b, a, b, b)’(b, a, a, b, b)

(b, a, a, b, b)-)

since b, (a, b)} has class 2, and it remains to consider (b, a, a, b, b). Thus

(b, a, a, b, b) (b, a, b, b)-((b, a)a, b, b)

(b,a, ba-l, ba-1)

(b, a, b(b, a)-, b(b, a)-t)

We have now shown that (bx, b, by) 1, so (b) and G M(b} have classes
2 and 4 respectively.
At this point we may suppose that b, (a, b)} is maximal and so contains

(a,b,a)"
(a, b, a) b(a, b)(a, b, b) modulo ,4(G),

(a, b, a, b, b) (a, b, b, b),
1 a, b, b, b, a ,
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for some/1, f2, fla. Since M has class 2 we find

((a, b, b), bY, a) 1, (a, b, b, b, a)’ 1.

Therefore either G has class 4 or 0 modulo p. Since {b, (G)} has
class 3 we find

(a,b,b,b) 1,

(a, b, b, b)(a, b, a, b, b)(-)l 1.

This with the fact that (a, b, a, b, b) (a, b, b, b) shows that (a, b, b, b) 1
and (a, b, a, b, b) 1, and by means of (2.7) we deduce that (a, b, b, a, b) 1.
Finally, expansion of

a, ab, ab, ab, ab 1

will show that (a, b, b, b, a) 1, so G has class 4.
There remains the case p 2. Siace M {a, (G)} has class 2, we fiad

after manipulation of (2.4) with x b and y a that

Further
(a, b, a, b) (a, b, b, a).

(a, b), a, b) 1,

(a, b, a, b)(a, b, a, b, b) 1;

((a, b), b, a) 1,

(a, b, b, a)(a, b, b, b, a) 1.

This establishes the relation

and of course we have

by (2.7).

will lead to

(a, b, a, b, b) (a, b, b, b, a),

(a, b, a, b, b) (a, b, b, a, b)

Now expansion of

a, ab, ab, ab, ab 1

(a, b, a, b, b) 1;

since p 2 we have (a, b, a, b, b) 1, and G has class 4.
We have thus proved that if G is generated by two elements then G has

class 4. As it follows at once that G is metabelian the proof of Theorem 3
is complete.

COROLLARY TO THEOREM 3.
subgroup of order pr is abelian.

Let G be a group of order pr+a in which every
Then the class of G is 4, and G is metabelian.
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5. The examples

Proof of Theorem 4. Some of the numerous but easy details in the con-
struction of the required group G will be omitted in order to shorten the
exposition. We start from a group A isomorphic to G’ and reach G by two
cyclic extensions.

Let A0 be the group generated by the elements c, dl, d2 and defined by the
relations

cp d 1, (di, c) f, (41, d.) z6,
(c, fi)= (d,f)= (c, z)= (d, z)= 1,

where i and j each take the values 1 and 2. Thus A0 has class 2 and order
p. Let elements ei generate groups of order p where 1 __< i __< 3, and define
A to be the direct product of A0, lel}, /e2}, /e}.
Now the group A has an automorphism a such that

e--6--6 --6ca cdl, dl dl el, d a dej j.z

--2 --1 --4 --1e o el, e2 a ee f z ea o e3 f z

It is easy to verify that a is an automorphism and that

flv fi, Aa f2z-1, Za Z;

the fact that a has order p follows from the identities

--6 --6 --6 C(r,2)Z6Cca c dl e(’), d2 o d2 e2(f2 (f z (f-2Z-1) (r,2)

which hold for any positive integer r. Form the splitting extension of A
by a group of order p, a generator of which induces a in A. This gives
B {A, a} in which defining relations are those of A and

ap 1, (c, a) d,
e--6--6 --6(d, a) e, (d2, a) e211 J2z

(e, a) 1, (e2, a) -2 -1 - -1fl z (ea, a) f2 z

The group B has an automorphism f such that

a ac, c cd.,

dl d e2 d2 d2 e3

el fl e f z-, e2 e2 f z, e3 [ e3

from which it follows that

f fiz, f. A, z z.

A calculation typical of those verifying that is an automorphism is the
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following"
c, a cd2 ac

(d2, c)(c, a)d2C(d2, a)

f 2c -6--,
"1 .(e2J1J2z

--6--6 --6f. zf. z

dl e2

(c, a).
The most difficult step in establishing that has order p comes from the
identity

C(r 2) (r ,3)6 C (r ,3)a acr a2 ea j2

which holds for any positive integer r. Form the splitting extension of B by
group of order p, a generator of which induces 2 in B. This gives G {B, b}

in which defining relations are those of B and

b"= 1, (a,b) =c,

(c, b) d, (d, b) e, (d, b) e,

(e, b) f z- (e, b) f z, (ca, b) 1

It is clear that G has order pi and that G’ A. The class of G is at least
6 because

(a, b, a, b, a, b) (c, a, b, a, b)

(dl, b, a, b)

(e,a,b)

(f- z-, b

--2
Z

Thus it will follow that G has class precisely 6 when we have shown that each
maximal subgroup M has class 3. We may take M to be {ab", G’} with
0 < < por0 < n < p. After some calculation we have

"),(M) 1;

the details are omitted. The class of G is precisely 6.
Next we consider the Engel properties of G. It is clear that if g e G then

{x, g} has class 3 and (g, x, x, x) 1. If g G’ then g ab’g where 0 < < p
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or0 < v < p, andg’eG’;suppose0 < < p. Working modulo5(G)we
have

(ab’g’, b, b, b) =- (a, b, b, b) =- e
so (g, b, b, b) e-5(G), and (g, b, b, b) 1. Thus ifgeG then g is not a
third Engel element. Clearly G’ 5(G) as G has class precisely 6 and GIG’
has order p, so we have proved all the assertions in Theorem 4.

It is of interest that G satisfies the fourth Engel condition, by Lemma 1;
and that if p > 5 then G has exponent p as it is a regular p-group generated
by elements of order p (see [4, Theorem 4.26]).

Proof of Theorem 5. Consider the group G generated by elements a and b
with defining relations

a aI+p, a
p’+ l, bp’+’-I 1.

It is easily verified that the order is p2m+2-1 and that the class is precisely
m+n.
Now any subgroup S of G is cyclic modulo S n {a}. Therefore if S has

order pm+2-I we may suppose that elements a" and b’a generate S, where
m+n--r0 _-< r __< m + n and 0 _-< s =< m - n 1. The order of apr is p and

the order modulo {a} of b"a" is p+-’-, so on considering the order of S we
arrive at the inequality

m--2n-- 1 >_ (m -n--r) + (m--n-- s-- 1),

rs > m.
pr pS ..., bP,a,The left-normed commutator (a o a, of weight i + 1 is equal

to a() since it must lie in {a}, and it may be shown by induction that

co(i) l-- 1 -t- (1 -[-p)’}pr
for all i > 0. Since p > 2, p(S+i)n+r is a factor of 0(n); and

(s + 1)n + r >=_ (r + s) -+- n .>_ m W n.

Therefore a() 1. It follows that S has class n.
The modification when m 1 consists in replacing the third defining re-

lation b 1 by b+ 1, and we omit the proof that G still has the re-
quired properties together with the property that i’/’+ has order p+-.
Theorem 5 shows that, for p odd, the class bounds in the corollaries to

Theorem 1, in Theorem 3 and in the corollary to Theorem 3 are best possible.
But the bound m + n is not always best possible, as Theorem 4 showed in the
casein landn 3.
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