ON L-SERIES WITH REAL CHARACTERS

BY
Raymond Ayoub

1. Introduction

Let d be the discriminant of an imaginary quadratic field. Thus there exists a square-free negative integer D with

$$
\begin{array}{rlrl}
d & =D & \text { if } & D \equiv 1 \\
& =4 D & & \text { if } \\
& D \equiv 2,3 & (\bmod 4) \\
(\bmod 4)
\end{array}
$$

Such integers d are frequently called fundamental discriminants.
Let

$$
\chi_{d}=\chi_{d}(n)=\left(\frac{d}{n}\right)
$$

be the Kronecker symbol and suppose that

$$
L\left(s, \chi_{d}\right)=\sum_{n=1}^{\infty} \frac{\chi_{d}(n)}{n^{s}}
$$

is the Dirichlet series associated with the real nonprincipal primitive character $\chi_{d} \bmod |d|$.

The behaviour of $L\left(s, \chi_{d}\right)$ for real s between 0 and 1 has important implications in the study of the class number $h(d)$ of quadratic fields of discriminant d. In particular the existence or nonexistence of roots of $L\left(s, \chi_{d}\right)$ in the interval $0<s<1$ has far-reaching consequences.

A conjecture, in milder form due to Hecke, states that if $0<s<1$, then $L\left(s, \chi_{d}\right) \neq 0$. This conjecture is still unsettled.

The object of this note is to examine the mean value of $L\left(s, \chi_{d}\right)$ summed over fundamental discriminants. In particular our object is to prove the following

Theorem. If d is a fundamental discriminant and $\chi_{d}(n)$ the associated Kronecker symbol, then for $\frac{1}{2}<s \leqq 1$, we have

$$
\sum_{0<-d \leqq N} L\left(s, \chi_{d}\right)=N \frac{\zeta(2 s)}{\zeta(2)} \prod_{p}\left(1-\frac{1}{(p+1) p^{2 s}}\right)+O\left(\frac{N^{(2 / 3)(2-s)} \log N}{2 s-1}\right)
$$

where the summation is over fundamental discriminants and the constant implied by the O is absolute.

This leads immediately to the following
Corollary. For any given s in the interval $\frac{1}{2}<s \leqq 1$, there exists $N_{0}=N(s)$

[^0]such that for all $N>N_{0}$,
$$
\sum_{0<-d \leqq N} L\left(s, \chi_{d}\right)>0
$$

This result contributes nothing to the conjecture of Hecke but perhaps sheds a modicum of light upon it.

The editor has kindly pointed out to the author that for the range $\frac{3}{4}<s<1$, the corollary is inherent in a theorem due to Chowla and Erdös [1]. They proved that if $g(a, x)$ is the number of discriminants d with $0<-d \leqq x$ for which $L\left(s, \chi_{d}\right)<a$, then for $\frac{3}{4}<s<1$,

$$
\lim _{x \rightarrow \infty} \frac{g(a, x)}{x / 2}=g(a)
$$

exists, $g(0)=0, g(\infty)=1$, and $g(a)$ is a continuous and strictly increasing function of a.

The proof of our theorem is straightforward and is based on a lemma which in its essential features is due to C. L. Siegel [2].

2. Proof of a lemma

Lemma. Let

$$
\begin{equation*}
T(n, N)=\sum_{0<-d \leqq N} \chi_{d}(n)=\sum_{0<-d \leqq N}\left(\frac{d}{n}\right) \tag{1}
\end{equation*}
$$

Then
(a) if n is not a square,

$$
\begin{equation*}
T(n, N)=O\left(N^{1 / 2} n^{1 / 4} \log ^{1 / 2} n\right) \tag{2}
\end{equation*}
$$

(b) if n is a square, $n=m^{2}$, then

$$
\begin{equation*}
T\left(m^{2}, N\right)=\frac{N}{2 \zeta(2)} g(m)+O(\sqrt{ } m \sqrt{ } N) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
g(m)=\prod_{p \mid m}(1+1 / p)^{-1} \tag{4}
\end{equation*}
$$

and the constants implied by the O are absolute.
Proof. We have

$$
\begin{align*}
T(n, N) & =\sum_{\substack{0<-d \leq N \\
d \equiv 1 \bmod 4)}} \chi_{d}(n)+\sum_{\substack{0<d \leqq N \\
d / 4=2(\bmod 4)}} \chi_{d}(n)+\sum_{\substack{0<-d \leq N \\
d / 4 \equiv 3(\bmod 4)}} \chi_{d}(n) \tag{5}\\
& =T_{1}(n, N)+T_{2}(n, N)+T_{3}(n, N) .
\end{align*}
$$

We consider these sums separately but concentrate on the easiest of them,
viz. T_{1}. The others are treated in the same way. Indeed we have
(6)

$$
\begin{aligned}
T_{1}(n, N) & =\sum_{\substack{0<-d \leq N \\
d \equiv 1(\bmod 4)}}\left(\frac{d}{n}\right) \mu^{2}(d)=\sum_{\substack{\left.0<-l l^{2 k} \leq N \\
k=1 \bmod \right) \\
(l, 2 n)=1}}\left(\frac{k}{n}\right) \mu(l) \\
& =\sum_{\substack{0<l \leq \sqrt{2} \\
(l, 2 n)=1}} \mu(l) \sum_{\substack{0<-k \leq N / 2 \\
k \equiv 1(\bmod 4)}}\left(\frac{k}{n}\right) .
\end{aligned}
$$

Let

$$
\begin{equation*}
P(n, r, M)=\sum_{\substack{0<-k \leq M \\ k \equiv r(\bmod 4)}}\left(\frac{k}{n}\right) \tag{7}
\end{equation*}
$$

Then if $\chi^{(1)}(k)$ and $\chi^{(3)}(k)$ are the two characters $\bmod 4, \chi^{(1)}(k)$ being the principal one, we have

$$
\begin{equation*}
P(n, 1, M)=\frac{1}{2} \sum_{0<-k \leqq M}\left(\frac{k}{n}\right)\left(\chi^{(1)}(k)+\chi^{(3)}(k)\right) \tag{8}
\end{equation*}
$$

Case (a). If n is odd and not a square, then $\left(\frac{k}{n}\right)$ is a character $\bmod n$ which is not principal and it is then easily seen that

$$
\left(\frac{k}{n}\right) x^{(1)}(k) \quad \text { and } \quad\left(\frac{k}{n}\right) \chi^{(3)}(k)
$$

are nonprincipal characters $\bmod 4 n$. According to Polya's theorem [3], as generalized by Landau [4], if χ is a character modulo k which is not principal and

$$
S(a, b)=\sum_{a \leqq m \leqq b} \chi(m)
$$

then

$$
\begin{equation*}
S(a, b)=O\left(k^{1 / 2} \log k\right) \tag{9}
\end{equation*}
$$

where the constant implied by the O is absolute. It follows then from (8) and (9), that

$$
\begin{equation*}
P(n, 1, M)=O\left(\min \left(n^{1 / 2} \log n, M\right)\right) \tag{10}
\end{equation*}
$$

Thus by (6), (7), and (10),

$$
\begin{align*}
T_{1}(n, N) & =O\left(\sum_{0<l \leqq \sqrt{ } N} \min \left(n^{1 / 2} \log n, N / l^{2}\right)\right) \\
& =O\left(N^{1 / 2} n^{1 / 4} \log ^{1 / 2} n\right) \tag{11}
\end{align*}
$$

If n is even and not a square, a similar argument applies and need only be used on $T_{1}(n, N)$, since when n is even $T_{2}=T_{3}=0$.

Thus if n is not a square, we get from (5) and (11),

$$
T(n, N)=O\left(N^{1 / 2} n^{1 / 4} \log ^{1 / 2} n\right)
$$

thus proving the first assertion of the lemma.

Case (b). Suppose now that n is a square, $n=m^{2}$, and assume in addition that m is odd. Then

$$
\begin{equation*}
P\left(m^{2}, 1, M\right)=\frac{1}{2} \sum_{0<-k \leqq M}\left(\frac{k}{m^{2}}\right)\left(\chi^{(1)}(k)+\chi^{(3)}(k)\right) \tag{12}
\end{equation*}
$$

On the other hand,

$$
\left(\frac{k}{m^{2}}\right) \chi^{(1)}(k)
$$

is the principal character $\bmod 4 m$ whereas

$$
\left(\frac{k}{m^{2}}\right) \chi^{(3)}(k)
$$

is nonprincipal. Thus

$$
P\left(m^{2}, 1, N / l^{2}\right)=\frac{\phi(4 m)}{8 m} \frac{N}{l^{2}}+O\left(\min \left(m, N / l^{2}\right)\right)
$$

Similar arguments hold for the corresponding sums in T_{2} and T_{3}. Combining these we get, if m is odd,

$$
\begin{align*}
T\left(m^{2}, N\right)= & \frac{\phi(m)}{4 m} N \sum_{\substack{0<l \leq \sqrt{ }) \\
(l, 2 m)=1}} \frac{\mu(l)}{l^{2}}+\frac{\phi(m)}{8 m} N \sum_{\substack{0<l \leq, \mathcal{V} / 2 \\
(l, 2 m)=1}} \frac{\mu(l)}{l^{2}} \\
& +O\left(\sum_{0<l \leqq \sqrt{ } N} \min \left(m, N / l^{2}\right)\right) \tag{13}\\
= & \frac{3 \phi(m)}{8 m} \sum_{\substack{l=1 \\
(l, 2 m)=1}}^{\infty} \frac{\mu(l)}{l^{2}}+O(\sqrt{ } N)+O(\sqrt{ } m \sqrt{ } N) .
\end{align*}
$$

However

$$
\begin{align*}
\sum_{(l, 2 m)=1} \frac{\mu(l)}{l^{2}} & =\prod_{p \nmid 2 m}\left(1+\frac{\mu(p)}{p^{2}}\right)=\prod_{p}\left(1+\frac{\mu(p)}{p^{2}}\right) \prod_{p_{1} 2 m}\left(1-\frac{1}{p^{2}}\right)^{-1} \tag{14}\\
& =\frac{1}{\zeta(2)} \frac{4 m}{3 \phi(m)} g(m)
\end{align*}
$$

By the same token, if m is even,

$$
\begin{equation*}
T\left(m^{2}, N\right)=\frac{\phi(m)}{2 m} N \sum_{\substack{l=1 \\(l, m)=1}}^{\infty} \frac{\mu(l)}{l^{2}}+O(\sqrt{ } m \sqrt{ } N) \tag{15}
\end{equation*}
$$

The sum on the right is

$$
\sum_{\substack{l=1 \\(l, m)=1}}^{\infty} \frac{\mu(l)}{l^{2}}=\frac{1}{\zeta(2)} \frac{m}{\phi(m)} g(m)
$$

Combining (13), (14), (15), and (16) we get the second assertion of the lemma.

3. Proof of the theorem

From the definition, we infer that

$$
\begin{align*}
\sum_{0<-d \leqq N} L\left(s, \chi_{d}\right) & =\sum_{0<-d \leqq N} \sum_{n \leqq M} \frac{\chi_{d}(n)}{n^{s}}+\sum_{0<-d \leqq N} \sum_{n>M} \frac{\chi_{d}(n)}{n^{s}} \tag{1}\\
& =A(s, N, M)+R(s, N, M),
\end{align*}
$$

where M will be chosen later as a function of N. On the other hand if we write

$$
S_{d}(x)=\sum_{n \leqq x} \chi_{d}(n)
$$

then from §2, (9),

$$
\begin{align*}
R(s, N, M) & =O\left(\sum_{0<-d \leqq N}\left|-\frac{S_{d}(M)}{M^{s}}+s \int_{M}^{\infty} \frac{S_{d}(x)}{x^{s+1}} d x\right|\right) \\
& =O\left(M^{-s} \sum_{0<-d \leqq N}|d|^{1 / 2} \log |d|\right) \tag{2}\\
& =O\left(M^{-s} N^{3 / 2} \log N\right) .
\end{align*}
$$

For $A(s, N, M)$, we have by $\S 2$, (1),

$$
\begin{align*}
A(s, N, M) & =\sum_{n \leqq M} \frac{1}{n^{s}} T(n, N) \\
& =\sum_{\substack{n \leqq M \\
n=m^{2}}} \frac{1}{n^{s}} T(n, N)+\sum_{\substack{n \leq M \\
n \neq m^{2}}} \frac{1}{n^{s}} T(n, N) \tag{3}\\
& =A_{1}(s, N, M)+A_{2}(s, N, M)
\end{align*}
$$

By the lemma, §2, (2),

$$
\begin{align*}
A_{2}(s, N, M) & =O\left(\sum_{\substack{n \leq M \\
n \neq m^{2}}} \frac{1}{n^{s}} N^{1 / 2} n^{1 / 4} \log ^{1 / 2} n\right) \tag{4}\\
& =O\left(N^{1 / 2} M^{-s+5 / 4} \log ^{1 / 2} M\right)
\end{align*}
$$

Again by the same lemma, §2,(3),

$$
\begin{align*}
& A_{1}(s, N, M)= \sum_{m \leqq \sqrt{ } M} \frac{1}{m^{2 s}} T\left(m^{2}, N\right) \\
&= \frac{N}{2 \zeta(2)} \sum_{m \leqq \sqrt{ } M} \frac{g(m)}{m^{2 s}}+O\left(N^{1 / 2} \sum_{m \leqq \sqrt{ } M} \frac{1}{m^{2 s-1 / 2}}\right) \\
&= \frac{N}{2 \zeta(2)} \sum_{m=1}^{\infty} \frac{g(m)}{m^{2 s}}+O\left(N \sum_{m>\sqrt{ } M} \frac{g(m)}{m^{2 s}}\right) \tag{5}\\
& \quad+O\left(N^{1 / 2} \sum_{m \leqq \sqrt{ } M} \frac{1}{m^{2 s-1 / 2}}\right) \\
&= \frac{N}{2 \zeta(2)} \sum_{m=1}^{\infty} \frac{g(m)}{m^{2 s}}+O\left(N \frac{M^{-s+1 / 2}}{2 s-1}\right)+O\left(N^{1 / 2} M^{1 / 4}\right) .
\end{align*}
$$

Therefore by (1), (2), (3), (4), and (5), we get

$$
\begin{align*}
\sum_{0<-d \leqq N} L\left(s, \chi_{d}\right) & =\frac{N}{2 \zeta(2)} \sum_{n=1}^{\infty} \frac{g(m)}{m^{2 s}} \tag{6}\\
+ & O\left(\left(M^{-s} N^{1 / 2}\right)\left(M^{5 / 4} \log ^{1 / 2} M+\frac{N^{1 / 2} M^{1 / 2}}{2 s-1}+M^{s+1 / 4}\right)\right)
\end{align*}
$$

If we put $M=N^{2 / 3}$, we infer from (6),

$$
\begin{equation*}
\sum_{0<-d \leqq N} L\left(s, \chi_{d}\right)=\frac{N}{2 \zeta(2)} \sum_{m=1}^{\infty} \frac{g(m)}{m^{2 s}}+O\left(\frac{N^{(2 / 3)(2-s)} \log ^{1 / 2} N}{2 s-1}\right) \tag{7}
\end{equation*}
$$

However we can sum the series on the right. Indeed since $g(m)$ is multiplicative and since

$$
g\left(p^{\alpha}\right)=g(p)=1-1 /(p+1)
$$

for a prime p, we deduce that

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{g(m)}{m^{2 s}} & =\prod_{p}\left(\sum_{k=0}^{\infty} g\left(p^{k}\right) p^{-2 k s}\right)=\prod_{p}\left(1+\frac{g(p) p^{-2 s}}{1-p^{-2 s}}\right) \\
& =\zeta(2 s) \prod_{p}\left(1-\frac{1}{(p+1) p^{2 s}}\right)
\end{aligned}
$$

The theorem is therefore proved.
It may be remarked that the argument can be applied to the case of a real quadratic field with virtually no change in the details.

References

1. S. Chowla and P. Erdös, A theorem on the distribution of the values of L-functions, J. Indian Math. Soc. (new series), vol. 15_(1951), pp. 11-18.
2. C. L. Siegel, The average measure of quadratic forms with given determinant and signature, Ann. of Math. (2), vol. 45 (1944), pp. 667-685.
3. G. Pólya, Über die Verteilung der quadratischen Reste und Nichtreste, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Mathe-matisch-physikalische Klasse), 1918, pp. 21-29.
4. E. Landau, Abschätzung von Charaktersummen, Einheiten und Klassenzahlen, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen (Mathematisch-physikalische Klasse), 1918, pp. 79-97.

The Pennsylvania State University
University Park, Pennsylvania

[^0]: Received April 26, 1963.

