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1. Introduction

A trace form on a Lie algebra L is a bilinear form f on L for which there is
a representation A of L, of finite degree, such that

f(a, b) tr(AaAb) (a, b e L).

In this paper we shall show that if L is a Lie algebra over an algebraically
closed field F of characteristic p > 3, and if L has a nondegenerate trace
form, then L is a direct sum of Lie algebras which are either one-dimensional,
isomorphic to a total matrix algebra M(F) with n a multiple of p, or simple
of classical type but not of type PA. The simple algebras of classical type
were classified by Mills and Seligman in [3]; they are the analogues (as
described, for example, in [4] over F of the complex simple algebras (including
the five exceptional algebras). Included among the simple algebras of clas-
sical type are the algebras of type PA, a Lie algebra L over F being said to be
of type PA if for some multiple n of p, L - PSM,(F), the Lie algebra of
all n n matrices of trace 0, modulo scalar matrices.

Conversely, it is known that all of the direct summands mentioned above
do have a nondegenerate trace form, with the possible exception of the algebra
of type Es when p 5.

It is to be hoped that the results of this paper will be applicable to the
theory of finite groups. For the relationship to that subiect, see [6]. Actually,
for this pplication, one is concerned with the case in which the base field F
is finite. Theorem 5.1 below gives the structure of L over finite fields; the
actual classification of the algebras in this case is, however, a quite different
topic.

2. Preliminaries
If f is a trace torm on a Lie algebra L, we shall denote by L the radical of f,

that is, the set of all a in L such that f(a, b) 0 for all b in L. Now L is
an ideal of L and f induces a bilinear form on the quotient algebra/, L/L’.
By a quotient trace form on a Lie algebra L is meant any bilinear form] arising
in this way from a trace form f on an algebra L such that L L/L’. Thus
a quotient trace form is in particular a nondegenerate symmetric invariant
form.

It has been shown by Block [1] that if L is a simple Lie algebra over an
algebraically closed field F of characteristic p > 3, and if L has a quotient
trace form, then L is of classical type. The algebras of type PA have a
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quotient trace form, but it was shown in [1] that they have no nondegenerate
trace form. The other simple algebras of classical type over F are known to
have a nondegenerate trace form, except that information is lacking about
the algebra of type Es when p 5.

In the Structure Theorem of Zassenhaus [5] it is proved that a Lie algebra
L with a quotient trace form is a direct sum of mutually orthogonal ideals
each of which is orthogonally indecomposable and has a quotient trace form,
and the center zL of L has the same dimension as L/L2; moreover, if the charac-
teristic is neither 2 nor 3 and the algebra L with a quotient trace form is or-
thogonally indecomposable but is neither one-dimensional nor simple, then
0 c zL c L and L: is the sum of mutually orthogonal perfect ideals
L1, L, of L such that there is the decomposition

L/zL i=I(Lj + zL)/zL

of the factor algebra L/zL into the direct sum of the m ideals (Lj + zL)/zL,
each of which is simple.

It is also stated in [5] that if L is a Lie algebra of characteristic p 2, 3,
and if L has a quotient trace form and is orthogonally indecomposable, then
L and L are indecomposable. There is a gap in [5] in the proof of the in-
decomposability of L (and thus in the proof of the indecomposability of L,
which in [5] is made to follow from that of L:). We wish to use the fact that
L: is indecomposable; we therefore close the gap in [5] here with the following
proofs.

LEMMA 2.1. Let L be a finite-dimensional Lie algebra over a field F of charac-
teristic x 2, with a nondegenerate symmetric invariant bilinear form f. Then
L is a direct sum of mutually orthogonal ideals L1, Ln, each of which is
indecomposable.

Proof. If L is abelian, then, since x 2, there is an element x in L such
that f(x, x) O, so that L is orthogonally decomposable into the direct sum
of the ideal Fx and the orthogonal complement (Fx)" of Fx; applying in-
duction to (Fx)’, we see that the lemma holds in this case. Now suppose
that L is not abelian; then there is a decomposition of L into the direct sum
of the ideals L1 and R, where L1 is nonabelian and indecomposable. Now
f(L,R) =f(L,LIR) 0, sothatLnLi

___
(LI+R) 0. Since

nnLinn LinL 0,

there is a linear subspace X of L containing L and complementary to L1 n Li
in L1. Since L

___
X, X is an ideal of L. Therefore L is t.he direct sum of

the ideals X and L1 n Li. Since L is nonabelian, X 0; since L is in-
decomposable, it follows that L1 n L 0. Hence L is the direct sum of
L1 and L, and the lemma follows by induction on the dimension.
With the result of Lemma 2.1, the proof given in [5, p. 71] of the following

statement is now essentially correct but needs clarification, which we provide
here.
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LEMMA 2.2. Let L be an indecomposable Lie algebra, over a field F of charac-
teristic distinct from 2 and 3, with a quotient trace form f. Then L is inde-
composable.

Proof. We may assume that F is infinite by using the reduction to this
case given in [5]. Let H be a Cartan subalgebra of L. Then H is abelian
by Lemma 4 of [5] (see Lemma 3.1 of [1]). Suppose that there is a decompo-
sition of L into the direct sum of two proper ideals A and B of L2. Then
L # L; also L is perfect and zL L (see [5]). Since L is perfect, A and
B are perfect and hence are orthogonal ideals of L. The adjoint mapping
induces a representation of L on A; let

A A0 + 0A.
be the decomposition into weight spaces (with respect to H) for this repre-
sentation. Each weight is a root of L and A.-

_
L. hence f(A., H) 0

for all nonzero a. Now

A + zL (Ao + zL) + -’,oA,,
where Ao + zL H and ,0A,

_
H’. Since f induces a nondegenerate

bilinear form on H, we have (A0 + zL) H O,

(A + zL nH"
_
,oA,

_
A.

But zL (L2) , so that

(A n L2)"nil" (A + zL) n H

_
A,

(A n 5 + H A

and similarly with A replaced by B. Hence there are linear subspaces H and
H. of H such that, as linear spaces, A" and B have the decompositions

A" H (AnL2), B H.4- (B’n

SinceAnB 0, wehaveA" +B L. ButL A +B, sothat

L H + H2 + L HI -- B + H. + A.

AlsoAnB= zL (A’nL2) n (Bnff)and (A’nL2) + (B+/-nL2)
so that, writing d for dimension, we have

dill + dU2 dA" + dR d(An 52) d(Bn 52) dL d(L2).

It follows that L, as a linear space, is the direct sum L H B H A.
Also f(AA’, L) f(A, A) 0, so that AA 0 and AH 0; similarly
BH. 0. Since H is abelian, it now follows that L is the direct sum of the

This is needed (if one is interested in the nonalgebraically closed case) because it is
not known whether Lie algebras over a finite field necessarily possess a Cartan sub-
algebra. There are two misprints in the argument in [5, pp. 71-72]" in the two places
where it occurs, the index s should be replaced by t.



546 RICHARD E. BLOCK AND HANS ZASSENHAUS

ideals H1 W B and H2-t- A.
and the lemma is proved.

This contradicts the indecomposability of L,

3. The irreducible representations of a direct
sum of Lie algebras

LEMMA 3.1. Let L1 and L. be Lie algebras over an algebraically closed field F,
and let F be an irreducible representation of the direct sum L L1 L2 Then
F is equivalent to the Lie-Kronecker sum F1 (R) F2 of two irreducible representations
F1 and F. of L such that

(3.1) r(L.) r(L1) 0.

Proof. Let a be the enveloping associative algebra (including the identity
I) of r(L) (i 1, 2). Then al commutes elementwise with a2, so that an
irreducible representation of the Kronecker product algebra
over F is obtained by setting (A1 (R) A2) A1 A2 (Aie ai, i 1, 2). It then
follows that there are irreducible representhtions 1 of 61 and . of 62 such
that is the Kronecker product 1 (R) 2--indeed, since 6 has a unit and is
irreducible, is equivalent to
and hence to a constituent of the Kronecker product of the regular represen-
tations of 61 and 6.. But upon taking Kronecker products of the terms in
reductions of representations of 61 and 6., one obtains a reduction of the
Kronecker product representation. Hence is equivalent to a constituent
of 0 01 (R) 0. , where O is an irreducible constituent of the regular represen-
tation of 6 (i 1, 2) since F is algebraically closed, by a theorem of Burnside
0 is irreducible and hence equivalent to . Now 1 and 2 induce irreducible
representations F1 and F2 of L satisfying (3.1), and F is their Lie-Kronecker
sum, since for al in L1 and

r(a + a.) (ral)I + I(ra2) (ra (R) I - I (R) ra)

(ra) (R) I + I (R) (ra.) (r al) (R) 12 - 11 (R) (ra).

This proves the lemma.
If the representation I’ is assumed to be centrally irreducible, the above

result holds over any field F (see [7, I, p. 173; II, p. 67]) however in proving
our structure results we shall need to use it only in the algebraically closed case.

4. Structure of the derived algebra

The following key lemma is given in more generality than is needed in this
paper, in order that it may be of use also in the determination of the algebras
with a quotient trace form.

LEMMA 4.1. Let L be a Lie algebra of characteristic distinct from 2 and 3,
with a trace form f such that L zL. Denote the quotient algebra L/L by, and suppose that 2 L1 L2, where 1 and 2 are orthogonal perfect
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ideals of L. Let L be the inverse image of L under the natural mapping of L
onto L (i- 1,2). Then L1L2 O and L2 r L

_
L’.

Proof. By extending the base field, we may assume without loss of gener-
ality that it is algebraically closed. Since L is perfect,

Li L +L" (i 1,2).
It follows that L is perfect (i 1, 2); indeed, since L" zL, we have

-2 L)2L (L + (L,) Since L and L2 are orhogonal, f(L L2, L)
f(L, L2) 0, that is, LI L :_ L" :__ zL. Therefore by the 3acobi identity,

0 (.LIL)L: (L A- L’)L LL,

which proves the first statement of the conclusion.
Now suppose that L n L L’. Then we may take elements c and d in

L such that
c e L n L, f(c, d) 0.

Then for some irreducible constituent, say A, of the representation of L of
which f is the trace form, we have

(4.1) tr(/cAd) O.

Since L + L is an ideal of L, by Lemma 1 of [5] the irreducible constituents
of the restriction of A to L + L are all equivalent, say to O. Now form the
direct sum of L and L, and denote it. byM. Since L1 L2 0, a representation
F of M is obtained by setting F(al, a2) Oa -4- Oa2 (where (a, a2) denotes
the element of M with component a in L). Clearly I" is irreducible. There-
fore, by Lemma 3.1, F is equivalent to F1 (R) F2 for some irreducible represen-
tations F1 and I’ of M such that F(0, a.) l’2(a, 0) 0 for all ai in L
(i 1, 2). Denote the degree of F by ri.

Now suppose that p does not divide r. Note that L1 n L2

___
z(L -4- L2)

since LL 0. If e e L a L then (e, 0) zM, and since M is perfect, F(e, 0)
is a scalar matrix of trace 0, and hence Fl(e, 0) 0. Therefore

Oe r(e, 0) r(e, 0) (R) I A- !r () F2(e, 0) 0,

so that/e is nilpotent. Thus the restriction of the irreducible representation
/ to the ideal L L is a nilrepresentation, so that by Lemma 2 of [5], it is a
null representution of L a L and therefore 5c 0. This contradicts (4.1).

Therefore p lr. Similarly p lr. Note that for any a and b in M, since
M is perfect, tr(F1 a)tr(F2 b) 0. Thus for any a and b in M,

tr(rarb) tr((F a (R) I + I (R) F. a) (F b (R) It2 + Ir (R) r2 b))

r2 tr(F aF b) -4- tr F a tr F b -f- tr F1 b tr F a -4- r tr(FaF b) 0.

It follows that the trace form fo of 0 vanishes identically. Therefore fa
vanishes identically on L + L. Since L -4- L isa perfect ideal of L, we have

f/,(L + L, L) f(L -t-- L, (L + L)L) O.
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This contradicts (4.1), and the lemma is proved.

5. The determination of L

THEOREM 5.1. Let L be a Lie algebra of characteristic distinct ,from 2 and 3,
with a nondegenerate trace form. Then L is the direct sum of indecomposable
mutually orthogonal ideals L1, .., Lr where each Li is either one-dimensional,
simple, or such that 0 zLi L, zL L/L L is perfect, and L./zL,’ is
simple.

Proof. By Lemma 2.1, .L is the direct sum of indecomposable mutuully
orthogonal ideals, each with a nondegenerate trace form, so that we may
assume without loss of generality that L itself is indecomposable. We may
also suppose that L is neither abelian nor simple. Now by Theorem 3 of [5],
we have 0 zL L, zL L/L, and L is the sum of mutually orthogonal
perfect ideals L, ..., L of L such that (L -- zL)/zL is simple for
j 1, ...,m. The only thing remaining to be proved is thatm 1. If
m > 1 then we may take L1 and L -- + L in the roles of L and L,
respectively, in Lemma 4.1. We conclude that

L1 n (’.= L) L n (’_-_ L)
_

L" 0,

that is, L1 is a direct summandof L2. But by Lemma 2.2, L is indecomposable,
a contradiction. Hence m 1, and the theorem is proved.

THEOREM 5.2. Let L be a Lie algebra over an algebraically closed field F of
characteristic p > 3, with a nondegenerate trace form. Then L is the direct sum

of mutually orthogonal ideals which are either one-dimensional, simple of classical
type but not of type PA, or isomorphic to the total matrix algebra M(F) for some
multiple n of p.

Proof. We may assume that L itself is one of the indecomposable direct
summands described in Theorem 5.1, and that L is not one-dimensional. If
L is simple then by [1], L is of classical type but not of type PA. Now we may
suppose that 0 zL L, zL L/L, L is perfect and L/zL is simple.
Since (L)" zL, we see that L/zL has a quotient trace form and thus by
[1] is simple of classical type.

It is proved in [2] (and also in [8]) that if M --. 21 is a homomorphism
of a perfect Lie algebra M over F onto a simple Lie algebra of classical
type, with kernel K contained in zM, then either K 0 or else for some
multiple n of p, 2I

_
PSM,(F) and M SMn(F), the algebra of all n n

matrices of trace 0. In the present case, with M L and K zL, it
follows that L SM(F), where p In. Now since L/L is one-dimersional,
L is spanned by L and some element x. Note that ad x does not induce an
inner derivation of L, since otherwise L would be a direct summand of L.
But every derivation of SMn(F) is induced by an element of M(F). It
follows that L M,(F), and the theorem is proved.
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