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BY
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1. Introduction
Let M denote the 2-manifold obtained from a compact connected surface

M by deleting k points (/c 0, 1, 2, from Core (M) nd let G(M)
denote the identity component of the spce of ull homeomorphisms of M
onto itself topologized by the compact-open topology.
We use the homeotopy (exact) sequence for M [1, Def. 4.12, p. 298]

together with theorems of G. S. McCrty [1] nd H. B. Griffiths [2] toobtir
certain isomorphisms between the homotopy groups r[G(M)] of G(M)
(k 0, l, 2, ). Combining these isomorphisms with results obtained by
M.-E. Hmstrom [3], [4] we establish the following theorem.

THEOREM. Let M denote a compact orientable or non-orientable connected
surface with or without boundary.
() If M has a non-abelian fundamental group and M is not a Klein bottle,

then r[G(M)] r[G(M)] (n >- 0, ] >_- 0).
(b) IfM is a closed orientable surface of genus g (g >- 2), then r[G(M)] 0

(n >= 0,] >- 0).
(c) If M is a Klein bottle or a torus, then v[G(M)] 0 (n >= 0, k >__ 1).
(d) If M is a Moebius strip, then r[G(M)] r[G(M)] and

r[G(M)] 0 (n 0, n -> 2/ -> 1).

(e) If M is an annulus, then r[G(M)] r[G(M)] (n >- 0, k >= 1).
(f) If M is a real projective plane, then r[G(M)] ,r[G(M)] and

r=[G(M)] 0 (n 0, n >- 2,/ >- 2).
(g) If M is a disk, then r[G(M)] 0 (n >_- 0, k >_- 2).
(h) If M is a 2-sphere, then r[G(M)] 0 (n >_- 0,/ >- 3).

Remark 1. With respect to the as yet unknown homotopy groups in the
statements (a), (d), (e), and (f) of the theorem, it is expected that they will
be explicitly determined using techniques currently being developed by M. -E.
Hamstrom [4], [5].

Remark 2. We note that there are exactly eleven spaces G(M) which are
not included in the statement of the theorem and that each of these spaces
has at least one non-zero homotopy group (cf. 3). This combined with what
we presently know suggests the conjecture that all of the spaces G(M)
included in the statement of the theorem are homotopically trivial.
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We conclude by thanking both M.-E. Hamstrom and the referee for sug-
gesting that the results of the originally submitted manuscript [6] be
extended to include non-orientable surfaces.

2. Proof of the theorem
The space of all homeomorphisms H(X) of a manifold X is a fiber bundle

over Core (X) with fiber H(X, x) the isotropy group of H(X) at x
(x e Core (X)). The homotopy sequence of this bundle is exact and is
used to define the homeotopy (exact) sequence of X,-- ,[H(X, x)] -- n[U(X)] --. r,(X) --(cf. [1, Def. 4.12, p. 298)].
We first prove, simultaneously, Theorem (a) (cf. 1) and the following

lemma.

LEMM_ 1. If M is a Klein bottle, a torus, a Moebius strip, or an annulus,
then [G(/)] [G(M)] (n >= 0, -> 1).

Proof. For both Theorem (a) and Lemma 1, we have .(Mk) 0
(n >_- 2, ] >= 0). Thus, the homeotopy sequence for Mk implies

(2.1) [G(M)] r[G(i,x)] (n >= 2, k >= O)

where G(M) and G(M,x) are the identity components of H(M) and H(Mk, x)
respectively. By [1, Th. 4.4, p. 300] we have

(2.2) -,[G(M, x)] [G(M+)] (n -> 1, k -> 0)

and by definition 0[G(M)] 0 (k __> 0). These facts combined with (2.1)
yield by induction

(2.3) v.[G(M)] [G(M)] (n 0, n >= 2,/ >= 0)

H. B. Griffiths [2, Th. 4.4, p. 10] has shown that, if a surface which is not
a Klein bottle has a non-abelian fundamental group , then has trivial
center. Thus, for Theorem (a) we have I(M) (k >= 0) has trivial center
and for Lemma 1 we have I(M) (] >- 1) has trivial center. The image
of [G(Mk)] in r(M) in the homeotopy sequence for M is central [1,
Remark 5.24, p. 302] and as noted above 2(M) 0. Combining these
facts with (2.2) we have for Theorem (a)

[G(/)] r[G(Mk+)] (] >- 0)
and by induction we obtain

(2.4) ,[G(M)] v[G(M)] (/ >= 0).

For Lemma 1 we have ,[G(M)] I[G(M+*)] (/ => 1) and by induction
we obtain

(2.5) [G(M1)] [G(M)] (] >__ 1).
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Combining (2.3), (2.4), and (2.5) completes the proof of Theorem (a)
and Lemma 1.

In [3] and [4] M.-E. Hamstrom has obtained the homotopy groups of cer-
tain spaces of homeomorphisms G(X), with G(X) topologized by the uniform
convergence metric. In the cases considered X is a compact metric space,
thus the topology on G(X) coincides with the compact-open topology [7],
thereby making her results valid in the compact-open topology.

In [4] it is announced that rn[G(M)] 0 (n >= 0) if M is a compact
orientable connected surface with two or more handles. Applying Theorem
(a) we obtain Theorem (b).
Also announced in [4] was the result that, if M is a Klein bottle, then

rn[G(M, x)] 0 (n >- 0). In [3] it is proven that, if M is a torus, then
r[G(M)] r(M) (n >= 0). Applying Remark 3.31 [1, p. 296] it follows
directly that in this case we also have r[G(M, x)] 0 (n >= 0). Recalling
that -n[G(M, x)] r[G(M1)] (n >- O) and applying Lemma 1 we obtain
Theorem (c).

Also given in [4] are the homotopy groups of G(M), where M is a Moebius
strip. In particular, -n[G(M)] 0 (n >= 2). Substitution of this group
into the homeotopy sequence for the Moebius strip yields r[G(M1)] 0
(n >= 2). Thus, applying Lemma 1 we obtain Theorem (d).
Theorem (e) is contained in the statement of Lemma 1.
The following lemma can be proven in a manner completely analogous to the

proof of Theorem (a), in this case noting that, if M is a disk or a real projective
plane, then r(Mk) (] >- 2) has trivial center and r.(Mk) 0 (n 0,
n>__ 2, k>_ 2).

LEMMA 2. If M is a disk or a real projective plane, then

r,[G(M2)] r,[G(M)] (n _>- 0, k >- 2).

From [4] we have r[G(M)] 0 (n >= 2), where M is a once punctured
real proiective plane. The homeotopy sequence for M yields r[G(M)] 0
(n >- 2). Thus, applying Lemma 2 we obtain Theorem (f).
Let H(x) and H(X, x) be defined as in the beginning of this section. If

r0[H(A, x)] r0[H(A)] and r0[H(B, y)] r0[H(B)] in the homeotopy se-
quence for A and B respectively, then

r0[H(A X B, (x, y))] r0[H(A X B)]

in the homeotopy sequence for A X B [1 Remark 3.41, p 297].
this fact to show that, if M is a disk, then -n[G(M)] 0 (n >_- 0).

If A is a half open interval and B is a circle, then

We use

r0[H(X, x)] r0[H(X)] (X= A,B)

in the homeotopy sequences for A and B respectively. Thus,

r0[H(A X B, (x, y)] r0[H(A X B)]
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in the homeotopy sequence for A X B M a disk M with an interior point
deleted. This implies that I[G(M1) maps onto 1(M) Z in this sequence.
Since rl[G(M)] Z (cf 3), this mapping is an isomorphism in this se-
quence. This implies rl[G(M2)] 0. Furthermore, since n[G(M)] 0
(n ->_ 2) (cf. 3) and (M) 0 (n >__ 2), we have ,[G(M)] 0 (n >_- 2).
Applying Lemma 2 we obtain Theorem (g).
A proof of Theorem (h), which is due to G. S. McCarty can be found in

[1, p. 303].
This completes the proof of the theorem.

3. On the spaces G(M) which are not included in the theorem
For M a compact orientable or non-orientable connected surface with or

without boundary the following eleven spaces M are the only spaces for
which G(M) is not included in the theorem: a Klein bottle, toms, Moebius
strip, annulus, disk, disk with one interior point deleted, real projective plane,
real projective plane with one point deleted, and a 2-sphere with 0, 1, or 2
points deleted. This assertion follows from the fact that there is only a
finite number of surfaces which have abelian fundamental groups [2, Th.
4.3, p. 10].
Not one of these eleven spaces G(M) is homotopically trivial. For the

homotopy groups of G(M) where M is a Klein bottle, torus, Moebius strip,
real proiective plane, or a real projective plane with one point deleted see
[3], [4] and when M is a disk or a 2-sphere with 0, 1, or 2 points deleted see
[8], [9, p. 521], [1, pp. 302-303].

If M is a disk, the homeotopy sequence for M yields

[G(M1)] r,[G(M)] (n >- 0).

Since [G(M)] [G(S)] r,(S)(n >_- 0), where S is a circle [8, p. 295],
[1, p. 302] we have that r[G(M1)] Z and v[G(M)] 0 (n _-> 2). Thus,
G(M) is not homotopically trivial.

If M is an annulus, then M I X S where I is a closed interval and S is a
circle. As in 2, we use Remark 3.41 [1, p. 297] to obtain

0[H(M, x)] 0[H(/)]

in the homeotopy sequence for M. This implies that r[G(M)] maps onto
(M) Z in this sequence, thus [G(M)] 0.
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