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1. Introduction

H. Weyl [7] defines a convex polyhedron as a subset P, of a finite dimensional
space E’, which can be expressed as the intersection of a finite number of
half spaces. Here we generalize this definition in a meaningful way to infinite
dimensional spaces. In Section 1, it is shown that such sets have "faces"
and in general enjoy many of the geometric properties of their finite dimen-
sional counterparts. However, as Theorem 2.4 points out, nondegenerate
bounded convex polytopes in infinite dimensional spaces do not have any
extremal points. This enables us to prove that reflexive Banaeh spaces do
not contain any bounded convex polytopes.

In Section 3, a comparison is made between out convex polytopes and those
defined by Bastiani [1]. Although a direct comparison is not possible, we
show that our sets essentially satisfy her definition but produce a counter
example to show that the converse is not true.

Clarkson [3] and Fullerton [5] among others have characterized B-spaces by
the shapes of their unit spheres. Here we extend this work showing that
subspaees of the B-space (Co) of all sequences which converge to zero are,
and are the only, separable B-spaces whose unit spheres are convex polytopes.
The space (c0) itself is the only B-space whose unit sphere is a "paralleletope"
(a generalized parallelepiped). This generalizes and reproves a result of
Klee [6]. Namely that every symmetric convex polytope can be realized as
the central section of the unit ball of (c0).
The author wishes to acknowledge his indebtedness to Professor R. E.

Fullerton and the referee for their many fine suggestions and constructive
criticisms. Moreover, the author wishes to thank Professor M. N. Bleieher
for pointing out that the boundedness restriction cannot be removed from
Theorem 2.2.

2. Definition and properties of convex polytopes
Throughout this section, X will denote a real locally convex linear topological

space which is Hausdorff and P convex subset of X such that the origin
0 is in the interior p0, of P. If {E, a e A} is collection of closed half spaces
such that P [ {E, a e A} and if for each x e X there exists a finite sub-
collection at, a, .-., a of A having the property that

then P will be called a convex polytope. For the rest of this section, we will

Received September 19, 1962; received in revised form May 20, 1964.

623
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assume that P is a convex polytope and {E, a A} is such a collection of
half spaces, each of whose bounding hyperplanes and defining continuous
linear functional is H, and f, respectively, i.e.,

E, {x e X f,(x) <_
H, {xeX lf,(x c,},

pOwhere c, is a real number. Since 0 e we lose no generality by assuming
c, lforeachaeA.
PROPERTY 2.1. The intersection of two convex polytopes is a convex polytope.

PoeETv 2.2. For each x e X there exist a a a e A such that

x (NE,) (A,, , , ..., ).
p0Proof. Let y e There exists z e X such that x belongs to the hMf open

line segment (z,y] (i.e.,x az (1- a)y for 0 a < 1). From the
definition of P, we cn find a, a, ..., a e h such that

Let C(P, z) U(z, v) (veP). This cone is contained in

N {E, aA, a , a, ...,
and contains the point x in its interior. Therefore

x (NE,) (, , , ..., ).
Since the interior of the intersection of a collection of sets is always con-

tained in the intersection of their interiors, Property 2.2 ulso implies

x N (E,) ( A, , , ..., )
or equivalently
PnOEnTV 2.3. Each x in the boundary, b(P), of P is a member of at most

finitely many hyperplanes of the collection {H, ]a e A}.
Conversely we have

POeETV 2.4. Each x e b(P) is a member of at least one hyperplane of the
collection H, a, h

Proof. From Property 2.2, there exists a, a, ..., a such that

x ( E,) ( A, , , ..., ).
If x e H, for any integer i 1, 2, then x e ( E,) (i 1, 2, k)
so that we reach the contradiction that

xe(_E,,)o (E,)O pO (aeh, a a, a, ...,
PROPERTY 2.5. If F h then {H F} is closed.
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Proof. Since P is a convex polytope it follows that P’ ] {EI’ F}
is also a convex polytope. If x U {H[7 e F} then Property 2.2 implies
the existence of ’1, ’2, 7k e r such that x e E) (7 7, 7, ", 7).
Thus we can find an open set V containing x such that V H 9 for each
7 7, 7, 7. Clearly there exists an open set W containing x such
thatWH 9foreach7 7,7, ...,7. Thus(VaW)H
for each 7 e F and consequently x is not a limit point of {H 7 e F} so
that this set must be closed.

If G is a closed nondegenerate (G 9) convex subset of X such that x is
a boundary point of G and H is the only hyperplane which is tangent to G at
x then H will be referred to as a smooth (hyperplane) support of G and x as
a smooth point of the boundary of G. The half space E which contains G and
whose boundary is H will be called a smooth (half space) support of G.

PROPERTY 2.6. Every boundary point x of P is contained in a smooth hyper-
plane) support of P. Moreover the collection {E, a A} contains all of the
smooth supports of P.
The proof of this property depends on the following lemma.

LEMMA 2.1. If G is a closed convex set with interior point x and E is a half
space whose boundary H contains x, then H is a smooth support of E G.

Proof. Clearly E a G has a nonvoid interior. Since x is an interior point
of G there exists an open set V about x which is contained in G. Thus the
disk H V is a subset of E G. Let H’ be a suppo hyperplane of G n E
such that x e H’ but H’ H. It is easily seen that H is the only hyperplane
which contains the disk H n V Thus there exists y in the disk such
that y H’. But then we can also find z in the disk such that x is a member
of the open line segment (z, y). Hence H’ separates the point z from y
which contradicts the fact that both z and y belong to G E and H’ supports
this set.

Proof of Property 2.6. Property 2.4 and the definition of a smooth sup-
port assures the validity of the second assertion. For the first let H,,
H,, H, be the collection of all hyperplanes in {H, a e A} which con-
tain the boundary point x (this collection is finite from Property 2.3). For
notationM convenience order A so that a will be its it element and all non-
subscripted elements of h will follow a. There exists at least one index i,
such that

H n (n>, and P

Indeed for if the inequMity did not hold for i 1 and if we denote the closure
of G by cl (G), then we would have

The second equality being valid since if G is any convex set with a nonvoid
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interior then cl (G) cl (G). Thus P f] {Ela >_ a} and the argument
can be extended by induction until an appropriate index i is found. Clearly
one such i must be found before the/ 1 inductive step is reached; for if
not then we would see that P l {E, a >_ / + 1} which contradicts Prop-
erty 2.4. Lemma 2.1 now implies that H is a smooth support of P.
The above proof underscores the possibility of a convex polytope being

represented by more than one collection of half spaces which satisfies our
definition and, as can easily be verified by considering a 2-dimensional poly-
hedron, this is in fact the case. However, as Property 2.7 will indicate, there
is a unique minimal such representation.

In general a collection
representation of
member of some hyperplane
PROPERTY 2.7. The subcollection {He e B} of all smooth (hyperplane)

supports of P is a representation of P which is contained in all other representa-
tions of P. Moreover, the collection Eel e B} of smooth (half space) supports
of P satisfies the definition of a convex polytope and

P l{EelBeB}.

Proof. Property 2.6 and the definition of a smooth (hyperplane) support
imply the first assertion. The fact that P is a convex polytope and that the
collection {EelB e B} is contained in every representation of P then implies
that the set P’ {Eel B} is a convex polytope. It remains only to
show that P P’. Clearly P’ P. Suppose x ptp. Let y e p0. Then
the convexity of P implies the existence of z e (x, y)n b(P). But since
{He e B} is a representation of P there exists 0 e B such that z He0.
Thus we reach the contradiction that He separates y from x or that x e P’.

Hereafter we will assume that the collection {Hel/ e B} is the mini-
mum representation of P. For each eB we will define Fe HenP
to be a face of P. In Corollary 2.1.1 we will show that the faces of P are
precisely the maximal convex subsets of its boundary. Note that Property
2.7 implies that each face Fe0 of P contains a point x which is not in any other
face of P. For if this were not the case then the collection
would be a representation of Pwhich does not contain theminimum representa-
tion. Thus each face is uniquely determined by some point x. In Corollary
2.1.2 we will show that the points of b(P) which determine faces in this way
are the smooth points of P. We can generalize this notion by defining
set F to be the edge determined by y (y b(P)) if F is the intersection of the
collection of all faces which contain y. Since F is also the intersection of P
with 11 support hyperplanes He ( e B) which contain y, it is clear from
Property 2.3 that the set of M1 faces which contain y is finite. In Theorem
2.1, we show that the edges of P are precisely its facets, where
defined in [2]. In fact, if we define an exposed set of P to be a subset of its
boundary which can be expressed as the intersection of a support hyperplane
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with P then we can show that the edges and exposed sets are also synonymous.
To do this we will need the following lemma.

LEMMA 2.2. If the edge F is represented as

Pn[ =lHa] ( B)

then there exists an open set V containing x such that the disk

V n = Ha,]

is contained in F Thus x is an interior point of F with respect to the relative
topology on U=I H&

Proof. Suppose that the assertion is false. Then for each open set V
there exists y such that y is a member of the disk determined by V but not a
member of the edge. Each such y can be strictly separated from P by a
smooth (hyperplane) support Ha such that ,/., ,/k. But since
x is not a member of [ Ha I/ 1, 2, fk} we see that this union is
not closed, thereby contradicting Property 2.5.

THEOREM 2.1. If P is a convex polytope which contains 0 in its interior then
the following statements are equivalent.

1. F is an exposed set of P.
2. F is an edge of P.
3. F is a facet of P.
4. F is an extremal subset of P.

Proof. (i) To prove that statement 1 implies statement 2, we note
from Property 2.3 that there exists x e F such that x belongs to no more faces
than any other point of F. From Lemma 2.2, x is an interior point of the
edge F with respect to the relative topology imposed on
Thus x is a relative internal point [4, p. 413] of F (with respect to itself).
Therefore, if H supports P at x it follows that H supports P at each point of
the edge F. For if this were not the case we could find y, z e F such that
H separated y from z. Therefore F F.

Conversely suppose y e F such that y x. Let z e (x, y). If z e Ha then

Hence

But then the definition of x implies that {Halz Ha}
But since z e Ha also implies y e Ha we see that

{Ha y e Ha} {Ha x ella}.

y e [’l {Hal y Ha} c [’l {HI x e Ha} F
or F F. Thus statement 1 implies statement 2.

(ii) To prove that statement 2 implies statement 3, we will represent the
edge F as F where x determines F in the sense of the definition of an edge.
From the lemma and the remarks of (i), it is apparent that x is a relative
internal point of F (with respect to itself). Thus the facet K of P deter-
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mined by x must contain F. To see that K c F we observe (as we did
in (i)) that since x is a relative internal point of K, if H supports P at x,
then H must support P at each point of K.

(iii) To show that statement 3 implies statement 1, suppose x is a rela-
tive internal point of F. From Property 2.3, the collection

{Ha, ]i 1, 2, k}
of all smooth supports which support P at x is finite. Let

2, ...,
p0be the associated support functionals. Since t e we will assume, without

loss of generality, that fa (x) 1 for each index i. Let f be any convex sum
of the form -1 afa, where as > 0 for each index i. If H y e X f(x) 1
then clearly H supports P at x. But since x is a relative internal
point of F, H must support P at each point of F. Thus the exposed set
H n P contains F. Now if the containment were proper we could find
y e H n P such that f(y) < 1 for some index i. But then the definition of f
would imply the contradiction that f(y) < 1.

(iv) Since we have already shown the equivalence of 1 through 3 and
since every exposed set is obviously extremal we can complete the proof by
showing that 4 implies 2. For this let x belong to the extremal set F such
that every y e F belongs to at least as many smooth supports of P as x. Then
from 3, the edge F determined by x, is a subset of F. On the other hand
suppose y e F (y x). Then if H is a smooth support which supports P
at z e (x, y), it follows that H must support P at both endpoints x and y.
But then the definition of x implies that the smooth supports which support
P at x are precisely those which support P at z and therefore are contained
in those which support P at y. Thus y e F so that F F.

Since a face is merely a special type of edge, Theorem 1 implies

COROLLARY 2.1.1. A set F is a face of P if and only if it is a maximal con-
vex subset of its boundary.

Proof. Since P has a nonvoid interior, it is well known that every maximal
convex subset F of the boundary of P is an exposed set of P. Thus Theorem
2.1 implies that F is an edge of P, and therefore is a subset of some face F’.
However if F properly contains F then we see that F is not a maximal con-
vex subset of b(P). Therefore F F’.
To prove the converse we note that Zorn’s lemma implies that every face

F is contained in a maximal convex subset F. But as noted above, Property
2.7 implies that F must contain a smooth point x. Thus if H supports P
at each point of F then H must be the defining hyperplane for F, so that
F F’.
COROLLARY 2.1.2. A point x b(P) is a smooth point of P if and only if

it belongs to no more than one face F.
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Proof. It is clear that no smooth point can belong to more than one face.
The converse is a corollary to (i) in the proof of the theorem. For there
we saw that whenever x is a member of an exposed set F which is contained
in no more faces than any other member of F, then x is a relative internal
point of F. Thus if H supports P at x, H must support P at each point in
F. But since the exposed set F in this case is a face, by definition there is
only one support which supports each point of F. Therefore x is a smooth
point of P.

THEOREM 2.2. A closed bounded convex set P which has a nonvoid interior in
a finite dimensional space E is a convex polyhedron if and only if it is a convex
polytope.

Proof. Since a closed bounded nondegenerate convex set in a finite dimen-
sional space X is a convex polyhedron if and only if it can be expressed as the
intersection of a finite number of half spaces, we need only prove that each
bounded convex polytope P in E has at most a finite number of faces.

Let x be a smooth point of P which lies in the face Fa. Since P is bounded
and E is finite dimensional, P is compact. Therefore if the set
is infinite then the set {xa f e BI has a limit point, say Xo b(P). But from
Property 2.3, x0 is a member of at most finitely many smooth (hyperplane)
supports HI H., H. Therefore we reach a contradiction to Prop-
erty 2.5 since the set (J {He f e B, f 1, ., fk} is not closed.
An elementary consideration of convex sets in the plane reveals that

Theorem 2.2 is not valid if the boundedness restriction is removed. How-
ever, as a corollary to the following theorem it is evident that convex polytopes
of finite dimensional spaces can have at most a countable number of faces.

THEOREM 2.3. If P is a convex polytope in a separable space X then P
has at most a countable number of faces.

Proof. Let A be a countably dense subset of X and {E] e B} be the
minimum representation of P. We will prove the assertion by showing that
the indexing set B is countable. From the definition of P it is clear that
there exists a countable subcollection B’ of B such that A c l {Eal e BB’}.
If B’ B then there exists ’ e BB’ such that A E,. But this is a con-
tradiction since XE, is a nonvoid open set and A is dense in X. Thus
B B’ so that B must be countable.

In the foregoing we have emphasized several of those geometric properties
which are shared by both the finite dimensional convex polyhedron and its
infinite dimensional counterpart. As indicated by the following theorem
and corollaries however, not all of these properties seem to have a con-
venient generalization.

THEOREM 2.4. If P is a convex polytope in an infinite dimensional space
then P has no extremal points.
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Proof. The assertion follows easily from Theorem 2.1, Lemma 2.2 and the
fact that the intersection of a finite set of hyperplanes is never a single point
in an infinite dimensional space.

COROLLARY 2.4.1. If X is infinite dimensional, P is a convex polytope and
r is any locally convex Hausdorff topology which is coarser than the initial to-
pology on X, then P is not r-compact.

Proof. The proof is an elementary consequence of the theorem and the
Krien Milman theorem.

COROLLARY 2.4.2. If X is an infinite dimensional space which is either

semi-reflexive or the adjoint of a barrelled space then X does not contain any
bounded convex polytopes.

Proof. Since the adjoint of a semi-reflexive space is barrelled [2], the defi-
nition of semi-reflexive [2] implies that we need only consider the case where
X is the adjoint of a barrelled space Y. If we denote the weakest locally
convex linear topology which can be imposed on X such that every member
of Y is a continuous linear functional by w* then clearly every bounded sub-
set of X is also w*-bounded. But since every w*-bounded subset of X is
also w*-compact [2], the assertion follows from the preceding corollary.
COROLLARY 2.4.3. No infinite dimensional space which is the adjoint of a

Banach space (or which is itself a reflexive B-space) can contain any bounded
convex polytopes.

3. The convex polytope of A. Bastiani

If K is an arbitrary convex set in a real locally convex space Y, then for
each y e K the cone of support C(K, y) is defined as the union of all half rays
originating at y and passing through a point of K. If r represents the linear
topology on Y, Bastiani [1] defines a convex cone P to be a r-convex pyramid
if its cone C(K, y) of support is closed for each y e P’. She then defines a
r-convex polytope as the intersection P’r H of a r-convex pyramid with a
hyperplane H. Since the convex polytopes we have been considering have
nonvoid interiors and a r-convex polytope does not, a direct comparison of
these definitions is impossible. However, it is natural to ask if a convex
polytope P can be imbedded into a space by an imbedding map such that
(P) is a r-convex polytope. In Theorem 3.1 we answer this question in the
affirmative for bounded convex polytopes. In this section as before, X will
denote a locally convex linear space which is Hausdorff and P will denote a
convex polytope of X such that 0 e p0. The symbol will denote the rel
numbers and X X will symbolize the product space of all pairs (x. r)
where x e X and r e . Then X (R is a locally convex space with respect to
the product topology r, and coordinate-wise scalar multiplication and addi-
tion. In Theorem 3.1, we will be concerned primarily with the linear homeo-
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morphism as defined by ),(x) (x. 0) which imbeds the space X into
the space X X
THEOREM 3.1. If P is a bounded convex polytope in X then its image

h(P) is a r-convex polytope in X X
Proof. We first observe that H’ k(X) is a closed hyperplane of X

Let {ft e B} be the collection of all smooth (functional) supports of P.
For each e B define the continuous linear functional f on X X (R by

f(x , r) f(x) + r.

Recall that P l,B {x e X If(x) <_ 1}. Define P’ by

P’ [,B {(x,r)If’(x,r) <_ 1}
and note that P’ is a convex cone with vertex (0 1 such that h(P) P’ n H’.
We will complete the proof by showing that P’ is a r-convex pyramid.

Let (Xo to) P’ and C(Pr, (x0 r0) be its corresponding cone of support.
Let Bo { e B 1% (x0 r0) 1/ (B0 possibly void). Since each half space
is a closed set we may prove the cone is closed by showing that

C(P’, (x0 r0)) 10 {(x r) ]f’(x r) <_ 1}.

In the event that B0 l this intersection is by definition the entire space.
In any case it is clear that the intersection contains the cone. To show the
converse, suppose (x r) is in the intersection but not in the cone. Thus for
each (y t) in the open line segment (x r), (x0 r0)) there is t B.B0
such that f(y t) > 1. But since f(x0 r0) < 1 we can find a sequence
(x r) of points on the line which converges to (x0 r0) and a sequence of
functionals f, t e BB0 such that f’(xn rn) 1. Thus f(xn) 1 r.
for each n. Now if r0 1 then we can assume without loss of generality
that r 1 for each n so that f(x,/(1 r)) 1 for each index n. But
since the sequence {x,/(1 r.) n 1, 2, converges to Xo/(1 ro)
and this point is not a member of [J {x e X If,(x) 1/, we see that the
latter set is not closed which contradicts Property 2.5.

If however r0 1, then since (x0.1) e P’, we see that

1 >_ f’(Xo 1) f(xo) - 1

so thatf(x0) <_ 0 for all e B. But since P is bounded this implies f(xo) 0
and hence f(x0 1) 1 for all e B so that B0 B. Thus the cone of sup-
port at (x0 1) is P’ and is therefore closed.
As a corollary to the proof of the previous theorem, we may state

COROLLARY 3.1. If P is a convex polytope then the cone of support at each
of its points is closed.

From Bastiani’s work it seems reasonable to define a nondegenerate r-convex
polytopeas closed convex set with a nonvoid interior such that the cone of



632

support at each of its points is closed. The above corollary then implies that
every convex polytope is a nondegenerate r-convex polytope. As seen by the
following example, however, the converse is false.

Example 3.1. Not every nondegenerate r-convex polytope is a convex
polytope.

Consider the set P’ as defined in the proof of the previous theorem. For
simplicity we will assume X is normed, each smooth (functional) support,
f has norm 1 and the collection B is infinite. It will be seen in Section 4
that the unit ball of the B-space (co) has this property. We will norm the
spaceX X (Rby IIx*rll Ilxll + rl and note that this norm is indeed
compatible with the product topology
To see that (0 0) is an interior point of P’, suppose (x r) < 1. Then

using the notation of the proof of the theorem,

f(x r) f(x) - r

<_

so that (x, r)e pr. Since we have already observed pr to be a r-convex
pyramid, the above shows that P’ is a nondegenerate r-convex polytope.
We will now show that each ] is a smooth (functional) support of P.

Indeed for each e B there exists a smooth point x e P such that fa(x) 1.
P 0). Then clearly g agrees with f onLet g support at (x,

Moreoverg(0,1) 1. For supposeg(0,1) < 1. Then for anya > 1
we have

g[a(x,O) + (1 a)(O,1)] > 1.

But since P’ is a cone with vertex (0,1) we reach the contradiction that
ga does not support P. Therefore g agrees with f on the set (x 0) x e X}
and on the point (0,1). Since the point and set generate all of X X
we see that ga f or that f is the only continuous linear functional which
supports P at (xa 0). Thus, if Pr is a convex polytope each f is a facial
functional. This of course contradicts Property 2.3 since the point (0,1)
is in infinitely many faces.

4. Convex polytopes and (co)
In this section we will characterize the class of all separable B-spaces which

contain bounded nondegenerate convex polytopes, as closed subspaces of the
B-space (c0) of all sequences which converge to zero.

THEOnEM 4.1. The unit ball S of the separable B-space (Co) is a convex
polytope.

Proof. IfE {(xl,x, ...)e(c0) Ix-< 1} for eachi 1, 2, then



CONVEX POLYTOPES IN LINEAR SPACES

The collection {+/-Eli 1, 2, can easily be seen to satisfy the defini-
tion of a convex polytope. Moreover each half space +/-E is a smooth sup-
port of P.

COnOLLAY 4.1.1.
convex polytope in M.

The unit sphere S n M of every subspace M of (Co) is a

In his paper Polyhedral sections of convex bodies [6], V. L. Klee, Jr., defines
a B-space X to be polyhedral provided that the unit ball of every finite dimen-
sional subspace of X is a convex polyhedron. He then proves the corollary
stated below by an altogether different technique than that presented here.

COOLLAnY 4.1.2. If M is a closed subspace of (Co) whose unit ball S M
has an extremal point, then M is finite dimensional and S M is a convex
polyhedron. Thus a finite dimensional B-space X is isometric to a closed linear
subspace of (Co) if and only if X is polyhedral.

Proof. It follows immediately from Theorem 2.4 that M is finite dimen-
sional and M is polyhedral. The "if" part of the second assertion is a con-
sequence of the following theorem and Theorem 2.2.

THEOREM 4.2. If the unit ball S of a normed linear space X is a convex
polytope with a countable number of faces, then X is isometric to a closed sub-
space of (Co).

Proof. Let {+/-E[i 1, 2, be the class of smooth (half space) sup-
ports of S, and for each i let f be the continuous linear functional defined by
E {x e X f(x) <_ 1}. If the indexing set is finite, say k in number, de-
fine a map from X into the B-space l of all bounded sequences by

x(x) (f(z), f.(x), ..., f(z), 0, 0, ).

If this collection is infinite, define k by (x) (fl(x), fl(x), ). In either
case k is linear.
To show that the range of ), is a subset of (c0), assume the contrary. Then

there exists y e X and e > 0 such that f(Y) > e for infinitely many indices i.
But since S is a convex polytope there exists an integer k such that

e { X llf(x) -< 1},

and therefore we reach the contradiction that f(y) _< e/2 for all but finitely
many indices i.
To prove that k is an isometry, suppose x e X. The point x/[[ x is in some

face of P. Thus f(x/ll x II) 1 for some integer j and lf(x/I x I[) <- 1
for all indices i. Therefore

(/!1 I!) sup lS,(x/ll x I1) 1

so that II X(x) II I! ii.
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COnOLLAnY 4.2.1. A separable normed linear space X contains a bounded
convex polytope P such that 0 pO if and only if it is linearly homeomorphic to
a subspace of (Co).

Proof. The set P n (--P) can easily be seen to be a symmetric non-
degenerate bounded convex polytope. The space X can be renormed with
an equivalent norm in such a way that P n (-P) is its unit ball. This
renormed space is then, by Theorem 4.2, isometric to a subspace of (Co).
The converse is a consequence of Corollary 4.1.1.

COnOLLARV 4.2.2. If P is a convex polytope which is symmetric about the
origin in a separable normed linear space, then it can be realized as a central
section of the unit ball in (Co). If P is a symmetric convex polyhedron with
2k faces then it can be realized as the central section of a k-dimensional cube.

Proof. If we define a central section of the unit ball S of (c0) as the inter-
section S a Y of S and a subspace Y of (c0), then the first part of the asser-
tion is an elementary consequence of Theorems 4.2 and 2.3.
The second assertion has already been proved by Klee [6]. Here we prove

it by noting that the map defined in the proof of Theorem 4.2 maps X into
k-dimensional space such that k(P) is the central section of the unit cube.
We have characterized subspaces (Co) in terms of convex polytopes to

within an isometry (Corollary 4.1.1) and (Theorem 4.2) and to within an
isomorphism (Corollary 4.2.1). We will now characterize (Co) itself by
generalizing the definition of a cube to an infinite dimensional space and making
the characterization in terms of it.

Let {Ha] e B} be a collection of all smooth (hyperplane) supports of a
bounded convex polytope P which is symmetric about the origin. For each
1 let N be a translate of the hyperplane Ha such that O e Na. The polytope
P will be called a paralleletope if for each f0 e B, rl {Na e B, # 0} # {O}.
The following three properties are sufficient to convince the reader that if
the indexing set B is finite, say k in number, then P is a k-dimensional cube
(or parallelepiped, since the concepts are indistinguishable in an arbitrary
linear space) centered about the origin.

PROPERTY 4.1. The intersection {N e B} {O}

Proof. If the assertion were false, P would not be bounded.

PnOnTY 4.2. If for each B, +/-E denotes the pair of corresponding
smooth (half space) supports of P, then for each o B the intersections

[N0 E] n [N E] and [n. E] n [n0 E]
are not bounded.

PROPERTY 4.3. If for each e B, f is defined by H {x e X f(x) 1
then the collection {f[l e B} is a linearly independent class of continuous
linear functionals.
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Proof. If this collection were not linearly independent then one of the
null spaces N0 would contain the intersection n {NI e B, f 0} of the
remaining null spaces. But then by Property 4.1 we would have

N {Y I/e B, 0} n {Yle B} {o}

which contradicts the definition of a paralleletope.

THEOREM 4.3. A necessary and sufficient condition that a B-space X be
linearly isometric to (Co) is that the closed unit sphere S of X be a paralleletope
with a countably infinite number of faces.

Proof. For each integer i, let Hi {(xl, x., ...) e (Co) Ix, 1}. The
collection {-+-H,[i 1, 2, .-.} is then the minimal representation of the
unit sphere S (which has previously been seen to be a convex polytope)
and it can easily be verified that S is a paralleletope.
To prove the converse let ), be the map from X into (c0) defined in the proof

of Theorem 4.2. If P is a paralleletope with a countably infinite number of
faces, then for each integer i there exists ui e X such that (ui) (1,, ti2,,
where ,s 1 if i j and i" 0 otherwise. But since the closed linear span
of the "unit vectors" ),(ui) is dense in (Co), we have (X) D (Co). The
assertion then follows from the proof of Theorem 4.2.
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