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Introduction

In a series of recent papers, the writer [1]-[13] and G. J. Minty [15]-[17]
have studied nonlinear functional equations in Banach spaces involving
monotone operators, i.e. operators T from a Banach space X to its dual X*
for which

(1) Re (Tu- Tv, u v) >_ 0

for all u and v in X. A recent theorem of Zarantonello [18] for continuous
bounded operators in Hilbert space obtains similar results for operators T
satisfying the condition

(2) (Tu-- Tv, u- v) >_ cllu- vii.
In a preceding paper under the same title [14], the writer generalized and

sharpened Zarantonello’s result to obtain the following theorem:

THEOREM [14]. Let X be a reflexive complex Banach space, X* its dual,
(w, u) the pairing between w in X* and u in X. Let T be a mapping from
X to X* which is demicontinuous [2] (i.e. T is continuous from the strong to-
pology of X to the weak topology of X*). Suppose that T satisfies both of the
following conditions"

There exists a continuous real-valuedfunction c r on R with c r ---+ "4- o
as r ---+ such that

(3) Tu, u) - c( u II)11

for all u in X.
(ii) For each N > O, there exists a continuous increasing real-valued func-

tion k(r) on R with kv(O) 0 such that

(4) J(Tu Tv, u v) >_ k(ll u v l[)ll u v

for all u and v in X with lull - N, v - N.
Then T is a one-to-one mapping of X onto X* and has a continuous inverse.

The serious part of the conclusion of this theorem, is of course, that the
runge of T is all of X*.

In the present paper, it is our obiect to extend this result in two significant
directions already considered by the writer in [1]-[13] for monotone operators.
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These directions of extensions consist of the following: First, to admit com-
pletely continuous perturbations of Condition (ii); Second, to allow the
addition to T of a suitably restricted densely defined closed linear operator.
These extensions are based on the following result in finite-dimensional spaces
which is interesting in its own right"

THEOREM 1. Let F be a finite-dimensional complex Banach space of dimen-
sion > 1, F* its dual space. Suppose T is a continuous mapping of F into F*
such that for a given R > O, Tu, u) 0 for all u in F with u R.

Then there exists Uo with Uo < R such that Tuo O.

A mapping C of X into X* is said to be completely continuous if C is con-
tinuous from the weak topology of X to the strong topology of X*. The
first of our basic results is the following:

TEOREM 2. Let X be a reflexive complex Banach space of dimension > 1, X*
its dual space, T a demicontinuous mapping of X into X*. Suppose that both
of the following conditions are satisfied:

(i) There exists a continuous real-valuedfunction c(r) on R with c(r) -- +as r - - such that

(3) I(Tu, u)[ >_ c([[ u I[)li u

for all u in X.
(ii) For each N > O, there exist a continuous increasing real-valued function

k(r) on R with ](0) 0 and a completely continuous mapping C of X into
X* such that for all u, v in X with u

_
N, v - N,

(4) [(Tu- Tv, u-v)] >_k([[u-v]])llu-vl[- [(Cu-Cv,u-v)l.
Then T maps X onto X*.
ADDENDUM TO THEOnEMS 1 AND 2. If X or F are of dimension 1, Theorems 1

and 2 are no longer true.

For our second generul theorem on mappings in Banach spaces, we shal
consider mappings T (possibly nonlinear) whose domain D(T) is a dense
lineur subset of X and with range R(T) in X*.
TEOREM 3. Let X be a reflexive complex Banach space of dimension > 1, T

a densely defined mapping from X to X* such that T L - G, where
a G is a demicontinuous function from X to X* which carries bounded sets

of X into bounded sets of X*;
(b) L is a closed densely defined linear mapping from X to X * such that if

L* is its adjoint (which is also a closed densely defined linear map from X to
X* ), then L* is the closure of its restriction to D(L) D(L*).

Suppose that both of the following conditions hold:
There exists a continuous real-valuedfunction c(r on R with c(r -- +as r --> - such that
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(fi)

for D( T).
(ii) For each N > 0, there exist a continuous increasing function N(r) on

R with teN(O) 0 and a completely continuous mapping C of X into X* such
that

(6) ](Tu Tv, u

for all u and v in D( T) with u _< N, v -< N.
Then if R( T) is the range of T, R(T) X*.
Section i is devoted to the proof of Theorem 1, Section 2 contains the proof

of Theorem 2, and Section 3 gives the proof of Theorem 3.

1. Proof of Theorem

Let F be a Banach space of finite dimension m >_ 1. For R > 0, let

S. is homeomorphic to
homeomorphic to real ball of dimension 2m.

LEMMA 1. Let S be the unit circle in C, i.e. S {X h e C, k 1}. Let
s be a continuous mapping of S, into S where R > O. If m > 1, s is homotopic
to the constant map So (So(U) 1 for all u in S).

Proof of Lemma 1. If m > 1, S, is homeomorphic to S-1 where
2m 1 >_ 3. The lemmu follows from the well-known fact that .(S1) 0
for j > 1. (Indeed, (S1) .(R) where R, the universal covering space
of S, is contractible.)

DEFINITION. Let f be a continuous mapping of S, into F such that
f u 0 for all u in S, Let fa be the mapping of S, into S given by

f(u)
The degree of f on S over 0 is defined to be the degree off as a mapping of the
2m 1)-dimensional sphere S, into itself.
LEMMA 2. (a) Iff is the restriction to S of a mapping fo of F into F and if

the degree off on S, over 0 is different from zero, then there exists a point Uo in B
such that f uo O.

(b) If f is homotopic to g as mappings of S, into F {0}, then the degree
off on S, over 0 is equal to the degree of g on S over O.

Proof of Lemma 2. Proof of (b). f is homotopic to g as maps of
into S..

Proof of (). If fo(u) 0 for all u in B., define

ft(u) fo(tu), 0

_ _
1.
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Then fl f, f0 is the constant map and f is homotopic to f0. Hence the
degree of f on SR over 0 is zero, contradicting the assumption of (a), Q.E.D.

Proof of Theorem 1. We may assume without loss of generality that F is a
Hilbert space and that F* F. Hence T is a mapping of F into F such that
(Tu, u) OforueSR.
Let s be the mapping of S into S given by

s(u) (Tu, u)* I(Tu, u)l-(X* the coniugate of X). Since rn > 1, it follows from Lemma 1 that there
exists a homotopy

:S X I---S

whereI {tl0_< <_ 1},suchthat(u, 0) 1, ueS;(u, 1) s(u).
We define the homotopy

f’S X I--F- {01

by (u, t) z(u, t)Tu. Then (u, O) Tu, (u, 1) s(u)Tu.
By Lemma 2(b), the degree of T on SR over 0 is equal to the degree of T on
S over 0 where T u s(u)Tu. For T1, we know that

(TlU, u) s(u)(Tu, u) I(Tu, u)l >__ Co > 0
for u e S.
We now define the homotopy a of T1 with the iniection map J of S into

F by
a:SX I--.F- {0}

a(u, t) (1 t)Tu - tu.
Indeed for u e SR,

(a(u, t), u) (1 t)(Tu, u) -- u >_ c0(1 t) -- tR > 0

so that a(u, t) 0.
Hence the degree of T on S over 0 equals the degree of J on S over 0, and

the latter degree equals 1. Hence the degree of T on S over 0 equals 1. By
Lemma 2(a), there exists u0 in B such that Tuo O.

Proof of the Addendum. Ifm 1,1etF Cand(w,v) wv*. If lisa
continuous map of C into C1, then

I(f(x), x)l If(x)x* If(x)l.R
for lXl R. Hence

I(f(x), x)l 0

if and only if f(X) O, X e SR.
We can easily construct an f of this sort violating both Theorems 1 and 2,

namely
f(X) 1, Ixl <_ 1
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2. Proof of Theorem 2

If A is a directed set, {u F e A} a function from to X or X*, we shall de-
note strong convergence of this function on A to u0 by

r "-> 7./,0

and weak convergence on A to u0 by

F 0

Proof of Theorem 2. It suffices to show that 0 R(T).
We assume that dim (X) _> 2. Let A be the directed set of finite-dimen-

sional subspaces F of X of dimension _> 2, with A ordered by inclusion.
For each F e A, let j be the injection mapping of F into X, j* the dual

mapping of X* onto F*. We define the continuous mapping T of F into
F* by

T, j* Tj,.
For u e F,

T u, u) (j* T u, u) Tu, u).

Hence, for all u in F

(2.1) I(TFu, u)l >- c(l[ull)llul[ > 0

for Ii u R with R sufficiently large but independent of F in h.
Applying Theorem 1, there exists uF in F with u < R such that

Tu 0.

We choose one such u for each F in A. Since X is reflexive, each closed ball
in X is weakly compact. Therefore the function {uF F e A} on the directed
set A has at least one limit point u0 in X in the weak topology. We shall show
that Tuo O.

Let u be an arbitrary element of X. Since dim X _> 2, there exists an
element F0 of A such that u e F0. Let F be any element of A such that F0 c F.
Then"

(Tu, u) (Tu,j.u) (T,u, u) O.
Thus

Tu, O.

Let F be an arbitrary element of A. For any F in A such tha F c F, we
have

k(ll u ul II)11 u u, -< ](Tu Tun, u u,)l
(2.2)

+ I(Cu Cu, u

For the first term on the right side of (2.2),

Tu, Tu,, u, u,,) Tu,, u, u,,) -5 Turl u,) Tu,, u,)
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where

and

Hence

(2.3)

Tu, u u, ) T, u, u u,, O,

Tul u) (T, un u) O.

Cur Cub,l,

Let q(r) be the continuous increasing function of r on R which is the inverse
function of k,(r)r. Then the inequality (2.3) may be written

(2.4)

Consider the function s on X given by

(2.5) s(v) v u, q,(](Tu, v)] + [(Cv Cu,, v un)).
We consider s restricted to B, the closed ball {u u R} in X taken in the
weaktopology. Weknowthat ](Tun v) iscontinuousinvonB, themapping

v Cv Curt
is continuous from B to the strong topology on X*, and since B is bounded,

 (Cv Cu , v

is continuous on B. Since q, is continuous on R, it follows that

q(l(Tun v)]

is continuous in v on B. On the other hand, the function v uy is lower
semicontinuous in v on B. Hence s(v) is lower semicontinuous in v on B.
On the set {u F e A, F F}, s(v) O. Hence s(v) 0 on the closure of
this set in B. Since u0 lies in this closure, s(u0) 0, i.e.

(2.6)

Givens > 0, there exists > 0suchthatq(r) < sforr < . Wemay
choose F e A so that for F D F we have

](Tu,,, Uo)] < /2.

We may choose such an F with

Cuo Cu,, uo u,, <
Then

Thus u0 lies in the strong closure of the set {u F e A, F2 F} for every F2 in
A. Since T is demicontinuous, Tuo lies in the closure of the set

{Tu ;F



614 FELIX E. BROWDER

for every F2 in A. Since Tu,----" O, the only point in the intersection of these
closures for all F2 in A is 0. Hence Tuo O, Q.E.D.

3. Proof of Theorem 3
It suffices to show that 0 R(T).
By assumption, dim X >_ 2. Hence dim (D(L)) >_ 2.
Let A be the directed set consisting of the finite-dimensional subspaces F of

D(L) with dim F >_ 2, A being ordered by inclusion. As in Section 2, we
define

T, j* TjF,

mapping F into F* for each F in A. There exists R > 0 independent of F in A
such that there exists uF in F with u -< R and

Tu 0.

We again let u0 be a weak limit point of the directed set {u F e h}, i.e.

u0 cl {u" F h, F c F}.

Let F1 c F; F, F1 e A. Then as in Section 2,

(3.1) Ilu-
and by the same argument as before

(3.2)

We wish to show that for every F in A, u0 lies in the strong closure of the
set

K {u IF e A, F c F}.

We may find F in KF such that

I(Cu0- Cu,, uo- u)l < /2.

Hence i suffices bo show ha for a suitable F, for every F in A wih F2 c F1
we have

I(-, 0I < /2.

This will be rue if o e D(L) since hen o e Fs for some F. in A and hen for
F c F

Tu Uo) (T un Uo) O.

Thus we must show that Uo D(L).
For every v in D(L*) n D(L), we have v e F for some F2 in A and for F in A

with F c F, we have

0 (Tu, v) (Lug,, v) -t- (Gu, v)
while

(Lug,, v) (u, L’v).
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Thus
[(u, L*v)l I(Gu, v)] <_ cl v

Since L* is the closure of its restriction to D(L) n D(L*), it follows that

(3.3) I(u, L*v)] <_ cl v

for all v e D(L*). Since

is weakly continuous in w, it follows from the inequality (3.3) that

(3.4) ](u0, n*v)[ <_ c v II, v eD(n*).
Since L is a closed linear operator from X to X*, Uo e D(L). Hence we have
shown that for every F2 in A, u0 lies in the strong closure of the set

{u IF h, F F}.

Let v be any element of D(L) a D(L*), F2 an element of A containing v.
For F in A with F: F,

(u, L’v) -(Gu, v)

as above. Given > 0, we may choose F in A with F: F such that

u 011 <
and by the demi-continuity of G,

I(Gu Guo, v)l < .
Hence

l(u0, L’v) + (Guo, ,)1 < (1 + L*,

Since is arbitrary, it follows that

(3.5) (u0, L’v) -(Gu0, v)

for all v in D(L) n D(L*). Since L* is the closure of its restriction to
D(L) n D(L*) it follows that (3.5) holds for all v in D (L*), and Luo GUo,
i.e. Tuo O, Q.E.D.
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