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We consider representations of bounded, compact and weakly compact
linear operators from a Banach space to a space BC(S), where S is an arbitrary
topological space and BC(S) is the space of bounded continuous scalar-valued
functions on S with the sup norm. With the use of our theorems, one can
quickly and easily deduce numerous operator representation theorems, many
of which are new. For example, taking as domain space a space with a well-
known conjugate space and range space as either co or m, one fills in quite a
few blanks in Tables VI A, B and C in [4]. Our proofs for range BC(S), S
arbitrary, are appreciably simpler than those found in the literature for range
C(S), S a compact Hausdorff space.
The spaces of bounded, compact and weakly compact linear maps from a

B-space X to a B-space Y will be denoted, respectively, by B[X, Y], K[X, Y]
and W[X, Y]. Unexplained terminology and notation will be found in [4].

Phillips [9] represented the general bounded operator from X to B(S).
Gelfand [5] represented the general bounded and compact operator from a
B-space X to C[0, 1] while Sirvint [11], [12] represented the general weakly
compact operator. More recently, Bartle [1, Theorem 10.2] represented
these three types of operators mapping X into the space C(S) of continuous
functions on a compact Hausdor space S. However, Bartle’s theorem is
stated for BC(S) with S an arbitrary topological space and it is wrong in
this generality for compact and weakly compact maps. A counter-example
is found by taking S to be an infinite set with the discrete topology (thus
metrizable and locally compact), that is by taking the range to be B(S).
The compactness of S seems to be needed in the last part of the second sen-
tence of the proof in [1].
A representation theorem for bounded operators from X into certain sub-

spaces of B (S) is given in [7]. Taylor [14] gives still more general representa-
tion theorems for bounded operators. In particular, he shows [13, Theorem
4.51-B] that Phillips’ representation theorem is valid for the general bounded
operator from X to B(S, Z), where X and Z are Banach spaces and B(S, Z)
is the Banach space of bounded functions from the set S to Z with the sup
norm. Wada [16] extended theorem 10.2 of [1] to the case where X is a bar-
relled locally convex space and BC(S) is replaced by C(S), where S is a
completely regular Hausdorff space, K is a collection of compact sets which
cover S, and C(S) is the locally convex topological linear space of all real-
valued continuous functions on S, equipped with the topology of uniform con-
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vergence on sets in K. In the weakly compact case, it is further assumed that
S is a k0-space.
We begin with the following lemma, which is given in [3, page 368]. It is

given there as a corollary to a result obtained using integration with respect to
a vector-valued measure. The proof given here is much more elementary and
direct. For an arbitrary nonvoid set S, l(S) is the B-space of scalar-valued
functions x on S, having countable support, and such that the norm of x, given
by[xl {Ix(s)[ "sS,x(s) 0},isfinite.

LEMMA 1. For an arbitrary nonvoid set S, let T l(S) ---. Y be a linearmap
and let {e, s e S} be the collection of characteristic functions of one-point sets.
Then

a) If T is bounded, then Te s e S} is bounded and

ITI sup{ITem]" seS}.

Conversely, given any bounded subset Te, s e S} Y, a unique bounded linear
operator T is defined by T( x(s)e,) x(s)Te, and the norm of T is as
above.

(b) The operator T is weakly compact if and only if Te s e S} is weakly
conditionally compact.

(c) The operator T is compact if and only if Te," s e S} is conditionally
compact.

Proof. Part (a) is clear, using the completeness of Y. To establish (b),
note that the closed unit sphere K in l(S) is the weakly closed convex balanced
hull [13, page 132]) c({e s e S} of the set {e s S}. Thus

T(K) T(cc’-({e s S} ))

_
T(ccb({e s e S}) ccb({ Te s e S}).

Now if {Te, s e S} is weakly conditionally compact, it follows that T(K) is
weakly conditionally compact by using [4, V.6.4], the fact that the balanced
hull of a weakly conditionally compact set is weakly conditionally compact,
and by using the preceding relation. Hence, T is weakly compact. Con-
versely, if T is weakly compact, then {Te," s S}

_
T(K) is weakly con-

ditionally compact. This establishes part (b) of the lemma.
To establish (c), note that K is the closed convex balanced hull

of{e,’seS}. Thus
T(K) Ccb( Te, s e S} ).

If {Te, "s e S} is conditionall-y compact, so is its closed convex balanced
hull, and hence T(K). Thus T is compact. Clearly, if T is compact,
{Te, s e S}

_
T(K) is conditionally compact. This completes the proof of

the lemma.
We will now establish the representation for the special case where the range
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is B(S). It is interesting that the general result follows immediately from
this special case.

THEOREM 2. (a) If T is a bounded linear operator from a B-space X into
B(S), then there exists a unique bounded map p of S into X* such that

(1) [Tx](s) [p(s)](x),xinZandsinS;
(2) ITI sup{ip(s)l :sinS}.

Conversely, given any such p and defining T X ---> B (S) by (1), one obtains a
linear operator with norm given by (2).

(b) The operator T is compact if and only if p(S) is conditionally compact.
(c) The opera$or T is weakly compac if and only if p(S) is conditionally

compact in the weatc topology.

Proof. The proof of (a) is clear. To establish (b), suppose T is compact.
We define the map v from S into B(S) * by ’(s)f f(s). Since T is compact,
T* is compact and thus T*r(S) p(S) is conditionally compact. Con-
versely, we suppose that p(S) is conditionally compact and therefore it is
totally bounded. Hence given > 0 there exists {y*, y*}

___
X* such

that
min {I p(s) -yl’l <-j <= n} < , sS.

* y*} be such that p(s) *For each s eS, let y-() e {y YI < e. De-
fine T Z ---, B(S) by [T(X)](s) *y.() (x). Note that T T < s and
that T has a null manifold of finite co-dimension, hence is compact. Thus T
is in the uniform closure of the compact operators, so it is compact.

For part (c), suppose that T is weakly compact. Then T* is weakly com-
pact and so T*r(S) p(S) is conditionally compact in the weak topology.
On the other hand, suppose that p(S) is weakly conditionally compact. We
will now take advantage of the natural correspondence between B[X, Y*] and
B[Y, X*] given by T ,--, T’Jr, where Jr is the canonical embedding of Y into
Y**. Define L: X** --, B(S) by [L(x**)](s) x**(p(s)). Denote the
canonical map of X to X** by Jx. Then

[L(Jx(x) )](s) [Jx(x)](p(s) [p(s)](x) [T(x)](s),

xinXandsinS, soLJx T. Now L is the coniugate M* of the map
M l(S) -- X* defined by M(e) p(s), for s in S, because

[L(x**)](s) z**(Me) [M*(x**)](e) [M*x**)](s)
for s in S and x** in X**. But M is weakly compact by Lemma 1 and the
weak conditional compactness of p(S). Thus T LJ M*Jx is weakly
compact.

COROLLARY 3. (a) [1] If T is a bounded linear operatorfrom a B-space X to
BC(S), then there exists a unique bounded continuous map p of S into X* with
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the X-topology such that

(1)
(2)

[Tx](s) [p(s)](x), x in X and s in S;
T sup {I p(s)[ s in S}.

Conversely, given any such p and defining T X --> BC(S) by (1), one obtains
a linear operator with norm given by (2).

(b) The operator T is compact if and only if in addition p(S) is conditionally
compact.

(c) The operator T is weakly compact if and only if in addition p(S) is
weakly conditionally compact.

Proof. Let T" X BC(S) be continuous. Note that r S ---. BC(S)*
is continuous, where BC(S)* has the weak* (or BC(S) topology and v is de-
fined by [(s)]f f(s), f in BC(S), s in S. Now T* BC(S)* ---. X* is con-
tinuous with respect to the weak* topologies since it is a coniugate map and so
the map p S -. X* (p T*) is continuous with the X-topology on X*.
Conversely, we note that if p" S -- X* is continuous with respect to the
X-topology on X* then T defined as in (1) does indeed have range in BC(S)
and is continuous.

If T is (weakly) compact, then p(S) is (weakly) conditionally compact.
If p S -- X* is continuous with the X-topology on X and is such that p(S)
is (weakly) conditionally compact, then T considered as a map into B(S) is
(weakly) compact by Theorem 2. But BC(S) is a (weakly) closed subspace
of B(S) whence T is (weakly) compact as a map into BC(S).

Remark. If T X -- Y Z and T X --* Z is compact, T X --* Y need
not be compact if Y is not closed. See [6], [15].

It is evident that the effect of the requirement that p be weak* continuous
is precisely to guarantee that T maps into BC(S); the theorem for B(S) is
obtained by omitting this condition. We can in fact generalize Theorem 2 to
the case where BC(S) is replaced by any B-space Y

_
B(S) and where we

add a restriction on p which is necessary and sufficient to guarantee that the
range of T is contained in Y. Conversely, we could determine which sub-
spaces Y B(S) correspond to various "natural" restrictions on p (for
example, continuity of p with respect to various standard topologies on X*).
More generally, we might determine which subspaces of B[X, B(S)] cor-

respond to various "natural" restrictions on p. For example, if W is a sub-
space of X, a bounded operator T" X -- B(S) maps W into BC(S) if and
only if the associated map p" S -- X* is continuous with the W-topology
on X*.

Proof. Suppose we have T(W)_ BC(S). Then for each w eW,
[T(w)](s) [p(s)]w is a continuous function of s, hence p is continuous with
respect to the W-topology. Conversely, if p is continuous with respect to the
W-topology, then for each w, [p(. )]w IT(w)](. is an element of BC(S).

Analogously, it follows that a bounded operator T X -- B(S, Z) maps W
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into BC(S, Z) if and only if the associated map p S -- B[X, Z] is continuous
with the W-strong operator topology on B[X, Z], where the W-strong operator
topology on B[X, Z] is defined for W X by the basic set of neighborhoods

N(T;A,) {R" RB[X,Z],I(T-- R)(w) < ,wA}
where A is an arbitrary finite subset of W and > 0 is arbitrary (compare
[4, VI.1.2]).
From Lemma 1 and Theorem 2 we obtain

COROLLARY 4. If S is an infinite set,
(a) B[I(S), Y] K[I(S), Y] iff Y is finite-dimensional;
(b) B[I(S), Y] W[I(S), Y] iff Y is reflexive;
(c) B[X,B(S)] K[X, B(S)] iff X is finite-dimensional;
(d) B[X, B(S)] W[X, B(S)] iff X is reflexive.
From the special case of Corollary 3 in which the range space is c, we can

find the representation for maps into co by exploiting the natural isomorphism
between c and Co a direct proof is also easy. The result is

COROLAR 5. Let T" X - co be a linear map. Then T(x) {x(x)/
where the x are linear functionals which are not necessarily continuous but which
have the property that x(x) converges to zero for each x in X. Then

X(a) The map T is continuous iff x e and in this case the x converge to
zero in the weak* topology. Note T sup

(b) The map T is compact iff the x converge to zero in norm.
(c) The map T is weakly compact iff the x converge to zero in the weak

topology.

COROLLARY 6. (a) All the bounded linear maps from X to Co (or c) are
compact iff weal* and norm sequential convergence are equivalent in X’.

(b) All the bounded linear maps from X to co (or c) ave wealcly compact iff
weak* and weak sequential convergence are equivalent in X.
The condition in part (b) of the above corollary is satisfied by reflexive

spaces and the space B(S) [2, page 109]. We know of no space which is in-
finite dimensional and satisfies condition (a). Elton Lacey has pointed out
that if X satisfies condition (a) then any map from X with separable range is
compact, and so X cannot contain an infinite dimensional reflexive subspace.
To derive the usual form of Corollary 3 in the special case where S is com-

pact, we will use the following lemma.

LEMMA 7. Let S and X be nonvoid topological spaces. Let X have Hausdorff
topologies t and t. with t stronger than t. Suppose that p S --> X is t-con-
tinuous and p(S) is t-conditionally compact. Then p is t-continuous.

Proof. The proof follows from standard topological arguments.

COROLARY 8. If S is a nonvoid compact topological space, then the condition
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for boundedness of T in Corollary 3(a) may be reduced to "p is weak*continuous",
the condition for compactness in Corollary 3(b) may be replaced by "p is con-
tinuous", and the condition for weak compactness in Corollary 3(c) may be re-
placed by "p is weakly continuous".

Lemma 7 is closely related to Lemma VI, page 27 in [8]. In fact, each of
these lemmas is readily deducible from the other. However, the utility of
Lemma 7 seems to have been generally unnoticed. It can be used to give
quicker simpler proofs of a number of well-known theorems, as we now show.
The next corollary appears as [4, VI.5.6], at which point we know an operator
is compact if and only if its adjoint is compact [4, VI.5.2].

COROLLARY 9. An operator in B[X, Y] is compact if and only if its adjoint
sends bounded generalized sequences which converge in the Y-topology of Y* into
generalized sequences which converge in the metric of X*.

Proof. Suppose T, and hence T*, is compact. Let {y,*} be a bounded
weak* generalized sequence converging to y. Since T* is weak* continuous
[4, VI.2.3], and {T’y*,} is norm conditionally compact, Lemma 7 shows at
once that Ty*, is norm-convergent to Ty. Conversely, if T* has the given
property, and S* is the unit sphere in Y*, then since S* is weak* compact,
T’S* is norm conditionally compact.
The next corollary resembles [4, VI.4.7].

COROLLARY 10. An operator in B[X, Y] is weakly compact if and only if its
adjoint is continuous with respect to the BY-topology on Y* and the X**-topology
on X*o
The next corollary is a theorem of Ringrose’s [10, Theorem 3.5].

COROLLARY 11. Let X and Y be Banach spaces and T B[X, Y]. Then T
is compact if and only if it is continuous as a mapping from the unit sphere of X
with the *X -topology, into Y.

property.
If T is compact, Lemma 7 shows that it has the stated continuity
Conversely suppose T has this property. Now

Jx X-- Jx(X) X**
is a homeomorphism, where X and X** both have the X* topology. If S is
the unit sphere in X, Jx(S) is a weak* conditionally compact subset ofJ(X),
hence is weak* totally bounded. Therefore S is weakly totally bounded. It
follows that T(S) is norm totally bounded and hence that T is compact.
Note that T in B[X, Y] continuous as a map from the unit sphere of X with

the weak topology into Y is equivalent to being continuous as a map from X
with the BX* topology to Y [2, page 41] which is equivalent to T mapping
bounded weakly convergent generalized sequences into norm-convergent
generalized sequences.
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