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Introduction

Let K be n lgebrMc number field of degree n over the field of rtionl
numbers Q. Let p be rtionl prime nd denote the p-dic completion of
Q by Q. Let A denote the completion of the lgebrMc closure of Q equipped
with its vlution I normed so that P I lip. Let T be the set of n
distinct monomorphisms of K into A.
The p-dic rnk r r, of the units U of K is defined s the rnk of the

p-dic regulator mtrix
6t (log

where v, v is a basis for a free direc summand of U of maximal rank
(r r dirichlet number of K) and where the p-adic logarithm is defined by
the usual series for principul units and extended o all units of A by means of
the functional equation. Thus if vA is such tha Iv 1 I < 1 hen
loggy --k%1(1 v)k/keAandifJvJ lthen

log v (log v)/m

for any positive integer m such that Iv 1 I < 1.
We have r <_ r. In the abelian case Leopoldt in [6] has raised the question

of determining r and in particular asked if rK, rK for all abelian K and
rational primes p. In 1 we prove the following partial result on Leopoldt’s
problem.

THEOREM 1. If K/Q is an abelian extension with galois group G of exponent
m such that m <_ 4 or m 6, then r r.

The proof uses Mahler’s p-adic analogue [7], [8] of Hilbert’s seventh problem
(as is transcendental if a and f are algebraic numbers such that a # 0, 1 and B
is irrational). The same proof actually proves a slightly stronger result
(Theorem 1’) as well as the following fact.

TREOREM 2. If K/Q is normal and r >_ 2 then r, >_ 2.

In 2 an algebraic method is employed to solve the following special cases
of Leopoldt’s problem.

THEOREM 3. Let p be a regular prime, let a be a positive integer, let be a
primitive p%th root of unity and let K Q(). We then have r r.
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The proof is an application of the main properties of the (absolute) Hilbert
Class Field of K.
We remark that these results provide some instances for which Leopoldt’s

p-adic class formula (3.2) of [6] does not reduce to 0 0. At the close of 1,
a conjecture generalizing Hilbert’s seventh problem, which would completely
solve Leopoldt’s problem is noted.
We shall retain the above notation. In addition, Z rational integers,
Z closure of Z in Q. We shall also find it convenient to introduce the
(usually infinite) matrix.

R, (log, (u)),.,
where U the group of units u such that r(u) 1 ] < 1 for all r e T.
indeed for the relatively crude question of rank we are considering we can re-
place 6t byR since there exists a positive integer m such that U __. U which
entails

r rank R.
1. A transcendental method

LEMMA. Let H be an abelian group of automorphisms of an algebraic number
field K, Ho its character group (x e Ho may be assumed to take values in A). Let
S be a subset of H and T. If the a8 for s e S are such that

hs ah log O(hu) 0 for all u U
then (ah) is an A-linear combination of the (x(h) s for those x e Ho such
that ,x(h) log O(hu) 0 for all u U

Proof. If r e T we define L: U A by L(u) log ru for all u e U.
We define W to be the A-vector space of functions from U to A. W has the
structure of a (left) A[H]-module if we let hF for h e H and F e W be defined
by

(hE) (u) F(hu) for all u U,

since H is abelian. Now suppose a e A for h e H are such that

(1) h ah log O(hu) 0 for u U,

which may be rewritten as

a h.Lo 0 in W.

Since H is abelian we have for all g e H,

(2) 0 g

_
a h.L a h. gL

Now A[H]L is a cyclic A[H]-submodule of W and so there exists a unique ideal
B of A[H] which is A[H]-isomorphic to A[H]L (as left A[H]-modules).
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Equation (2) shows .a h.B O.

Let V be the ideal of A[H] such that A[H] V B as rings. We see that
for vectors (ah)h with entries in A, (1) is equivalent to ha h e V.

Since V has an A-basis consisting of x(h)h for certain x e H0 as follows
from (33.8) of [3], the lemma follows upon restriction to S.
Theorem 1 is contained in the following result.

THEOREM 1’. /f the maximal real subfield of a normal extension K/Q is an
abelian extension of Q with galois group G of exponent m such that m <_4 or
m 6, thenrv r.

Proof. It suffices to consider the case where K/Q is a real abelian extension.
Assumem _< 4orm 6andthatrv < r n- 1. Thus the A-space of
(ag)o with ag A such that

aa logv O(gu) 0 for all u e Uv
where 0 is some element of T has dimension > 2 since the matrix

R (logv O(gu))o,o.,,%
has rank r _< n 2. It follows from the lemma with H G that there are
at least 2 different x e Go, the character group of G, such that

(3) ,ox(g) logvO(gu) 0 for u e Uv.
Let x be a non-principal character satisfying (3) and let E be the subfield of A
generated over Q by the values x(g), g G. By our assumptions on m, E Q
or E quadratic extension of Q. In any case we may assume x takes its
values in a quadratic extension F/Q. Let 1, i be an integral basis of F. Then
we may write

(4) x(g) 1 a(g) + b(g)6

where a(g), b(g) e Z for g e G. This yields the relation

_,g,a-1 (a(g) -4- b(g)) logvO(gu) 0 for u e Uv
which we may rewrite as

(5) logv 0(HO,O_I gUa(O)) --6 logv O(X-Io,o-1 gu()).
By a theorem of Minkowski [9] (or [1]) there exists a unit v in U such that

Ige- gvc(") root of unity with each c(g) Z implies c(g) 0 for g e G 1.
If w vN-1 where N is the number of elements in the residue class field of the
prime of K above p, then w has the same property as v and w e Uv. Since x
is not principal, it follows from (4) that some a(g) or some b(g) is not zero
for some g e G 1. It follows that at least one side, and hence both sides, of
(5) are non-zero for u w because the p-adic logarithm is zero only for roots
of unity (page 200 of [4]). (5) then implies that there exist two algebraic
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numbers in A such that the ratio of their p-adic logarithms is algebraic but
irrational. This contradiction to the Mahler’s theorem [7], [8] establishes
Theorem 1’. A proof of Theorem 2 differs from this proof by a transposition.
We first use Minkowski’s theorem to find a w e U and an automorphism g of
K such that if voCgw is a root of unity with c, d e Z, then c d 0. We then
apply the lemma with H group of auomorphisms generated by g and with
S {1, g}. If r < 2 then the lemma yields a non-principal character x of H
such that

log 0(u) + x(g) log O(gu) 0 for u e U
For u w this gives a contradiction to Mahler’s theorem as before since x(g)
must be irrational by our choice of w.

Conjecture. Let B be either the field A as above or the field C of complex
numbers. Let Q’ be the algebraic closure of Q in B. If a Q’ is such that
log a is defined for i 1, n and if the log a are linearly dependent over
Q’, then they are linearly dependent over Q. If B A, then log log. If
B C, then log is the usual "multivalued function" for non-zero argument;
we assume a fixed determination of log a, i .1, n.

If n 2, B C, this is Hilbert’s 7th problem; if n 2, B A, this is
Mahler’s theorem. No other cases are known. By the method of Theorem
1, the conjecture implies r r for all abelian K/Q and all rational primes p.
It would also give information even when the galois group G of K/Q is not
abelian.

2. Algebraic method

Proof of Theorem 3. We assume r < r and derive a contradiction. Let
vl, v be a basis for a free direct summand of rank r of U. If
then u e U for e 1, r. Since r < r, it follows from the definition of
r that there exist a e A not all zero such that

(6) -_1 as log (us) 0 for all T.

Let O e T and L topological closure of O(K) in A. L is a galois extension
of Q with galois group G isomorphic to the galois group of K/Q. In particular
we have

T {g o

and we may assume each aie L in (6). Thus there exists a minimal non-
empty set R 1, r} such that there exist a e L 0 with

(7) s, ai log, (g o O(u,) 0 for g e G,

Thus
O h( s. as log (g o O(u,) ,. h(a,) log (hg o

for all h, g e G which yields

(8) 0 ,, h(as) logv (g o O(u,)) for all h, g e G.
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We may combine (7) and (8) to contradict the minimality of R unless
h(ai) ai for all i e R and h e G, i.e. unless as e Qv for i e R. Thus by chang-
ing notation we may there exists fl e Zv such that

(9) logvO(u) =
We now choose b e Z so that

I(/ A- b) log0(u)l < p- for i 2, ..., n.
From (9) we obtain

log O(Ul II=2 u’) log O(ul) -+- _,= b logv O(w)

= (/i -t- b) log, O(u) px
where x e L is such that Ix [ < 1. Let

( z

Thus
log0(z) px log (exp (px)V).

Herey= exp(px) eLandly- 11< 1.
Since log O(z) log (y), there exists a root of unity v in L of order a

power of p such that vO(z) y. Since the roots of unity of order a power of
p in L are already in 0(K), there exists i e Z such that 0(’z) yr.

Let M be the splitting field of f(x) x ’z over K. Clearly M K or
[M:K] p. Assume [M:K] p and let a e M be a root of f(x). Hence a

is a unit and the different of a is f’(a) pa-1. It follows that the only finite
prime of K which can ramify in M is the prime above p; no infinite prime of K
Can ramify since they must all be complex. But the prime of K above p. splits
completely in M sincef(x) splits completely in L:

f(x) xv- z 1"It (x- y)

where ranges over the p-th roots of unity (which are in L). It follows that
M is an unramified abelian extension of K. By class field theory [2, Ch. 8,
Th. 7], p [M:K] divides the class number h of K. For a 1, this contra-
dicts the definition of regular prime; for a > 1, this contradicts a theorem of
Iwasawa [5]. Thus M K, i.e. ’z is a p-th power of an element of K. From

--1(10) u =vi ,weget

v
Let C be the torsion of subgroup of U and denote the residue class of v

modulo C by v (and U/C by U). We have

u
which implies

u
which contradicts the fact that vl, vr is a Z-basis for U (since, by deft-
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nition, vl, v, is a Z-basis for a free direct summand of rank r of U).
establishes Theorem 3.

This
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