ALMOST-GAUSSIAN DOMAINS

BY
Gerald L. Kerr ${ }^{1}$

1. Let \mathfrak{o} be a Krull domain with quotient field K. Let I be the collection of all rank 1 prime ideals of \mathfrak{o} and for each $p \in I$, let v_{p} be the corresponding p-adic valuation on K. Finally, let \mathcal{S} be the set of all group homomorphisms g from the multiplicative group K^{*} of non-zero elements of K into the additive group of real numbers and such that g is non-negative on $K^{*} \cap \mathfrak{o}$. The first part of this paper is devoted to proving the following three theorems which are basic to the statement of our main result:

Theorem (A). Given an element g of s, there exists a real-valued function \bar{G} defined on I such that
(i) $\bar{G}(p) \geq 0$ for each $p \in I$.
(ii) $g(x)=\sum_{p \in I} \bar{G}(p) v_{p}(x)$ for each $x \in K^{*}$.
(Note that the choice of \bar{G} depends on the choice of g.)
Theorem (B). Let $g \in \mathcal{S}$ and let \bar{G} be a function satisfying conditions (i) and (ii) of Theorem (A) relative to g. For each element $p \in I$, let

$$
G^{\prime}(p)=\inf \left\{g(x) / v_{p}(x) ; x \in p, x \neq 0\right\}
$$

Then $\bar{G}(p) \leq G^{\prime}(p)$ for each $p \epsilon I$. Moreover, given one element $q \in I$, the function \bar{G} can be selected so that $\bar{G}(q)=G^{\prime}(q)$.

Theorem (C). Let g be an element of S . The following statements are equivalent:
(i) $g(x)=\sum_{p \in I} G^{\prime}(p) v_{p}(x)$ for each $x \in K^{*}$.
(ii) There is but one function \bar{G}, corresponding to g, which satisfies conditions (i) and (ii) of Theorem (A).
(iii) Given $q \in I$ and $\varepsilon>0$, there exists an element $x \in q$ such that

$$
\sum_{p \in I, p \neq q} G^{\prime}(p) v_{p}(x) \leq \varepsilon v_{q}(x)
$$

The above results were originally obtained by Samuel [5] for the class of all integer-valued valuations w on K whose corresponding valuation ring R_{w} dominates $\mathfrak{0}$, where \mathfrak{D} was assumed to be a normal local domain. We have obtained these more general results by making use of a different ex-

[^0]tension theorem for linear functionals than that employed by Samuel. Otherwise, our methods parallel those of Samuel.

In this paper, an element g of S is said to be perfect in case the three equivalent conditions of Theorem (C) are satisfied. Thus, if \mathfrak{o} is a normal local domain and w is an integer-valued valuation whose corresponding valuation ring dominates o , then o is almost-gaussian (presque-factoriel) relative to w, as defined by Samuel [5], if and only if w is perfect. The change in language is due to the fact that S always contains many perfect elements (for example, each v_{p} is perfect) so that, in general, the fact that a given element f of s is perfect may give no additional information about the domain o itself. We now state our main result.

Theorem (D). Let f and g be elements of \mathcal{S} and assume f is perfect. Let

$$
l(f, g)=\inf \left\{f(x) / g(x) ; x \in K^{*} \cap \mathfrak{D}, g(x)>0\right\}
$$

where g is assumed not to be the zero homomorphism. If $l(f, g) \neq 0$, then also g is perfect.

Let \mathfrak{o} be a normal local domain and assume that for any two divisors v, w of second kind relative to \mathfrak{o} the relation $l(v, w) \neq 0$ holds. In view of Theorem (D), it would be proper to call such a domain "almost-gaussian" (without reference to any particular divisor of second kind) in case there exists a divisor w of second kind relative o which is perfect. A class of twodimensional normal local domains which are, in fact, "almost-gaussian" in the above sense of the word, has been described in [2].

The number $l(f, g)$ (see Theorem (D)) is called the linking number of f over g on $K^{*} \cap \mathfrak{0}$. In Section 3 such linking numbers are studied briefly in a purely abstract setting. That is, let T be an arbitrary non-empty set and let f, g be non-negative functions defined on T into the set of real numbers with ∞ adjoined. A number $l_{T}(f, g)$ (possibly infinite) is defined such that if f and g are as in Theorem (D), then

$$
l_{\mathbf{K}^{*} \cap_{0}}(f, g)=\inf \left\{f(x) / g(x) ; x \in K^{*} \cap \mathfrak{D}, g(x)>0\right\}
$$

and if g is trivial, then $l_{K^{*} \cap_{0}}(f, g)=\infty$. Throughout this paper the number $l_{K^{*} \cap_{0}}(f, g)$ will be denoted simply by $l(f, g)$. More importantly, suppose T is a noetherian ring, A and B proper ideals of T such that $\operatorname{Rad} A=\operatorname{Rad} B$ and the intersection of all positive integral powers of A is the zero ideal. Let $l_{A}(B)$ be the number obtained by comparing high powers of A and B introduced earlier by Samuel [4]. Let \bar{v}_{A} and \bar{v}_{B} be the homogeneous pseudovaluations defined by A and B, respectively [3]. We show here that $l_{A}(B)=$ $l_{T}\left(\bar{v}_{A}, \bar{v}_{B}\right)$.

Finally, in Section 4 we show that if f and g are perfect elements of \mathfrak{s} such that $l(f, g) \neq 0$ or $l(g, f) \neq 0$, then $f+g$ is perfect. Moreover, a partial ordering is defined on \mathcal{S} which is such that each non-trivial perfect element of \mathcal{S}
can be embedded in a natural way in a distributive lattice of non-trivial perfect elements.

We express our appreciation to Professor H. T. Muhly for his generous assistance and encouragement during the preparation of this paper.
2. Throughout this paper, R will denote the set of real numbers. The following lemma is a modification of a well-known extension theorem for linear functionals on a partially ordered vector space and is probably also known. However, since no specific reference could be located, we give a proof here.

Lemma 2.1. Let \& be a vector space over R, C a convex cone in \mathcal{E} whose vertex is the neutral element of ε relative to vector addition. Let \mathfrak{F} be a vector subspace of \mathcal{E} and let G be a linear functional defined on \mathfrak{F} which takes non-negative values on $C \cap \mathfrak{F}$. Assume further that for each $Y \in \mathcal{E}$ there exist elements $x, x^{\prime} \in \mathcal{F}$ such that $x^{\prime}-y \in C$ and $y-x \in C$. Then there exists a linear functional \bar{G} defined on $\&$ which takes non-negative values on C and which extends G. Moreover, if $x_{0} \in \mathcal{E}$ and $x_{0} \notin \mathcal{F}$, let

$$
\begin{aligned}
S\left(\mathcal{F}, x_{0}\right) & =\left\{x \in \mathcal{F} ; x_{0}-x \in C\right\} \\
T\left(\mathcal{F}, x_{0}\right) & =\left\{x^{\prime} \in \mathcal{F} ; x^{\prime}-x_{0} \in C\right\}
\end{aligned}
$$

Then the numbers

$$
\alpha=\sup \left\{G(x) ; x \in S\left(\mathcal{F}, x_{0}\right)\right\}
$$

and

$$
\beta=\inf \left\{G\left(x^{\prime}\right) ; x^{\prime} \in T\left(\mathscr{F}, x_{0}\right)\right\}
$$

are defined and $\alpha \leq \beta$. For any γ such that $\alpha \leq \gamma \leq \beta, \bar{G}$ can be chosen so that $\bar{G}\left(x_{0}\right)=\gamma$.

Proof. Let $\mathfrak{F}_{1}=\mathfrak{F}+R x_{0}$. If $x \in S\left(\mathcal{F}, x_{0}\right)$ and $\left.x^{\prime} \in T(F) x_{0}\right)$, then

$$
\left(x^{\prime}-x_{0}\right)+\left(x_{0}-x\right)=x^{\prime}-x \in C .
$$

Hence, $G(x) \leq G\left(x^{\prime}\right)$, so α and β are defined, $\alpha \leq \beta$. Let γ be any real number such that $\alpha \leq \gamma \leq \beta$. For each element $x+t x_{0}(x \in \mathcal{F}, t \in R)$ of \mathcal{F}_{1}, define $G_{1}\left(x+t x_{0}\right)$ to be $G(x)+t \gamma$. It is easy to verify that G_{1} is a linear functional on \mathfrak{F}_{1} which is non-negative on $C \cap \mathfrak{F}_{1}$ and which extends G. Let N be the collection of all ordered pairs of the form (\mathfrak{N}, H) where $\mathfrak{T r}$ is a vector subspace of ε which contains \mathfrak{F}_{1} and H is a linear functional on $\mathfrak{T C}$ which is non-negative on $C \cap \mathscr{T}$ and which extends G_{1}. A partial ordering, under which N is inductive, will be defined as follows: ($\mathfrak{H}, H) \prec\left(\mathscr{T} \mathcal{K}^{\prime}, H^{\prime}\right)$ in case \mathscr{H}^{\prime} contains \mathfrak{T} and H^{\prime} extends H. Let $\left(\mathscr{T}_{0}, H_{0}\right)$ be a maximal element of N. If $\mathfrak{N}_{0} \neq \mathcal{E}$, then there exists $y_{0} \in \mathcal{E}, y_{0} \notin \mathscr{N}_{0}$ and a linear functional H_{1} defined on $\mathfrak{N}_{1}=\mathfrak{N}_{0}+R y_{0}$ such that $\left(\mathscr{H}_{1}, H_{1}\right) \in N$ and

$$
\left(\mathscr{N}_{0}, H_{0}\right) \prec\left(\mathscr{N}_{1}, H_{1}\right) .
$$

This contradicts the maximality of $\left(\mathscr{T}_{0}, H_{0}\right)$, so $\mathscr{T}_{0}=\mathcal{E}$ and H_{0} is the required linear functional, Q.E.D.

In order to prove Theorem (A) and Theorem (B) we proceed initially as did Samuel [5]. Let \mathcal{E} be the vector space over R with base I. For each $x \in K^{*}$, let $(x)=\sum_{p \in I} v_{p(x)} \cdot p$ and let $\mathfrak{H}=\left\{(x) ; x \in K^{*}\right\}$. Clearly, \mathfrak{H} is a subgroup of \mathcal{E} under vector addition. For each $(x) \in \mathfrak{H}$, let $G_{0}((x))$ be defined to be $g(x)$. Since g assumes the value zero at each unit of \mathfrak{p}, G_{0} is well defined and is, moreover, a group homomorphism from \mathfrak{H} into the group of real numbers under addition. Let \mathfrak{F} be the vector subspace of \mathcal{E} generated by \mathfrak{H}. The function G_{0} can be extended uniquely by linearity to a linear functional G on \mathfrak{F}. Let $\mathfrak{F}^{+}=\{X \in \mathfrak{F} ; G(X) \geq 0\}$, let

$$
P=\left\{\left(\sum_{p \in I} \alpha_{p} \cdot p\right) \in \mathcal{E} ; \alpha_{p} \geq 0, p \in I\right\}
$$

and let $C=P+\mathfrak{F}^{+}$. Then C is a convex cone in \mathcal{E} whose vertex is the neutral element of ε. Since $I \subseteq C$, Theorem (A) and Theorem (B), (ii) will be proved once it has been shown that G can be extended to a linear functional \bar{G} defined on \mathcal{E} which is nonnegative on C and that, given $q \in I, \bar{G}$ can be chosen so that $\bar{G}(q)=G^{\prime}(q)$.

Suppose first that \bar{G} is any function satisfying conditions (i) and (ii) of Theorem (A). It is easy to verify that condition (i) of Theorem (B) holds. Let $q \epsilon I$ and assume that $q \in \mathcal{F}$. Then by [5], Theorem 2, (a), there exists $y \in K^{*} \quad$ such that $(y)=v_{q}(y) \cdot q$. Thus, $G^{\prime}(q) \leq g(y) / v_{q}(y)=\bar{G}(q)$. But already (Theorem (B), (i)) $\bar{G}(q) \leq G^{\prime}(q)$, so $\bar{G}(q)=G^{\prime}(q)$. The problem of proving that \bar{G} exists has thus been reduced to the problem of verifying the hypotheses of Lemma 2.1. It will first be shown that

$$
C \cap \mathfrak{F} \subseteq \mathfrak{F}^{+}
$$

In order to do this, it is enough to show that $P \cap \mathfrak{F} \subseteq \mathfrak{F}^{+}$, so let $Y \in P \cap \mathfrak{F}$ be given. Let ε be an arbitrary positive real number. By using directly the techniques employed by Samuel [6] in the proof of §1, Lemma 1, (2), it can be shown that there exists $x \in \mathcal{D}$ and a positive integer n such that $\left|G(Y)-n^{-1} g(x)\right| \leq \varepsilon n^{-1}$. Since $g(x) \geq 0$ and ε was chosen arbitrarily, it follows that $G(Y) \geq 0$. Now let $Y=\sum_{p \in I} \alpha_{p} \cdot p$ be an arbitrary element of \mathcal{E}. Elements $X, X^{\prime} \in \mathcal{F}$ must be constructed such that $X^{\prime}-Y \in C$ and $Y-X \in C$. Let $J=\left\{p \in I ; \alpha_{p} \neq 0\right\}$. If J is empty, there is nothing to prove, so assume this is not the case. For each $p \in J$, select $x_{p} \in p$ such that $v_{p}\left(x_{p}\right) \geq\left|\alpha_{p}\right|$ and let $x=\prod_{p \epsilon J} x_{p}$. Clearly, $(x)-Y \in P \subseteq C$ and $Y-\left(x^{-1}\right) \in P \subseteq C$. We have shown that there exists a linear function \bar{G} which is non-negative on C and which extends G (Lemma 2.1). Finally, suppose $q \in I$ and $q \notin \mathcal{F}$. Let

$$
S(\mathfrak{F}, q)=\{X \in \mathscr{F} ; q-X \in C\}
$$

and let

$$
T(\mathfrak{F}, q)=\left\{X^{\prime} \in \mathfrak{F} ; X^{\prime}-q \in \mathbb{C}\right\}
$$

If $X \in S(\mathcal{F}, q)$, let \bar{G} be any linear functional on \mathcal{E}, non-negative on C, which extends $\quad G$. Then $G(X)=\bar{G}(X) \leqq \bar{G}(q) \leqq G^{\prime}(q)$. Thus, $\alpha \leq G^{\prime}(q)$, where $\alpha=\sup \{G(X) ; X \in S(\mathcal{F}, q)\}$. On the other hand, let

$$
X^{\prime}=\sum_{i \epsilon J} \alpha_{i}\left(x_{i}\right)
$$

(J is a finite set) be an element of $T(\mathcal{F}, q)$. Then $X^{\prime}-q=Y_{1}+Y_{2}$ where $Y_{1} \in \mathfrak{F}^{+}$and $Y_{2} \in P$. Let $Y_{1}=\sum_{j \epsilon J^{\prime}} \beta_{j}\left(Y_{j}\right)$ and let $Y_{2}=\sum_{p \in I} \gamma_{p} \cdot p\left(J^{\prime}\right.$ is a finite set and $\gamma_{p}=0$ for almost all $p \in I$). Thus, for $p \neq q$,

$$
\sum_{i \epsilon J} \alpha_{i} v_{p}\left(x_{i}\right)=\sum_{j \epsilon J^{\prime}} \beta_{j} v_{p}\left(y_{j}\right)+\gamma_{p}
$$

and

$$
\sum_{i \epsilon J} \alpha_{i} v_{q}\left(x_{i}\right)=\sum_{j \epsilon J^{\prime}} \beta_{j} v_{q}\left(y_{j}\right)+\gamma_{q}+1
$$

Let $\varepsilon>0$ be given. A positive integer n and $x, y \in K^{*}$ will be constructed so that $x / y \in q, g(x / y) / v_{q}(x / y) \leq g(x / y) / n$ and, moreover, such that

$$
\left|(g(x / y) / n)-\left(\sum_{i \epsilon J} \alpha_{i} g\left(x_{i}\right)-\sum_{j \in J^{\prime}} \beta_{j} g\left(y_{j}\right)\right)\right| \leq 2 \varepsilon
$$

Since by hypothesis $\sum_{j \in J^{\prime}} \beta_{j} g\left(y_{i}\right) \geq 0$, this will show that $G\left(X^{\prime}\right) \geq G^{\prime}(q)$ and, hence, that the number

$$
\beta=\inf \left\{G\left(X^{\prime}\right) ; X^{\prime} \in T\left(\mathcal{F}, x_{0}\right)\right\}
$$

is not less than $G^{\prime}(q)$. Corresponding to the choice of ε, choose $\delta>0$ such that whenever $\left|\alpha_{i}^{\prime}-\alpha_{i}\right| \leq \delta, i \in J$, and $\left|\beta_{j}^{\prime}-\beta_{j}\right| \leq \delta, j \in J^{\prime}$, then

$$
\left|\sum_{i \epsilon J} \alpha_{i}^{\prime} g\left(x_{i}\right)-\sum_{i \epsilon J} \alpha_{i} g\left(x_{i}\right)\right| \leq \varepsilon
$$

and

$$
\left|\sum_{j \epsilon J} \beta_{j}^{\prime} g\left(y_{j}\right)-\sum_{j \epsilon J} \beta_{j} g\left(y_{j}\right)\right| \leq \varepsilon .
$$

There exist integers $n>0, a_{i}, b_{j}$ and $d_{p} \geq 0$ such that for all $i \in J, j \in J^{\prime}$, and $p \in I$ the relations

$$
\begin{aligned}
& \left|a_{i} n^{-1}-\alpha_{i}\right| \leq \delta n^{-1} \\
& \left|b_{j} n^{-1}-\beta_{j}\right| \leq \delta n^{-1} \\
& \left|d_{p} n^{-1}-\gamma_{p}\right| \leq 3^{-1} n^{-1}
\end{aligned}
$$

hold (see [1, VII, §1, $\mathrm{n}^{\circ} 1$, Prop. 2]). Without loss of generality it can be assumed that δ satisfies the following additional conditions:
(a) $\delta \sum_{i \epsilon J}\left|v_{p}\left(x_{i}\right)\right|<3^{-1}$ for all $p \in I$.
(b) $\delta \sum_{j \in J^{\prime}} \mid v_{p}\left(y_{j}\right)<3^{-1}$ for all $p \in I$.

If $p \neq q$, then

$$
n^{-1}\left|\sum_{i \epsilon J} a_{i} v_{p}\left(x_{i}\right)-\sum_{j \epsilon J^{\prime}} b_{j} v_{p}\left(y_{j}\right)-d_{p}\right|<n^{-1}
$$

Since the number inside the absolute-value signs is an integer, it follows that

$$
\sum_{i \in J} a_{i} v_{p}\left(x_{i}\right)=\sum_{j \in J^{\prime}} b_{j} v_{p}\left(y_{j}\right)+d_{p}
$$

In a similar fashion it can be shown that

$$
\sum_{i \epsilon J} a_{i} v_{q}\left(x_{i}\right)=\sum_{j \in J^{\prime}} b_{j} v_{q}\left(y_{j}\right)+d_{q}+n
$$

Let $x=\prod_{i \epsilon J} x_{i}^{a_{i}}$ and let $y=\prod_{j \epsilon J} y_{j}^{b_{j}}$. It is easy to verify that n, x and y have all the desired properties, Q.E.D.

In view of Theorem (B), the arguments previously used by Samuel [5] now apply directly to prove Theorem (C).
3. Throughout this section, R^{*} will denote the set $R \cup\{\infty\}$ and the following conventions will be adopted.
(1) If $a \epsilon R$, then $a<\infty$.
(2) If $a \in R^{*}$, then $a+\infty=\infty+a=\infty$.
(3) If $a \in R^{*}$ and $a>0$, then $a \cdot \infty=\infty \cdot a=\infty$.
(4) $0 \cdot \infty=\infty \cdot 0=0$.

Let T be an arbitrary non-empty set. Let \mathcal{F} be the collection of all nonnegative R^{*}-valued functions on T. An element $f \in \mathcal{F}$ is said to be trivial in case for each $x \in T, f(x)=0$ or $f(x)=\infty$. Let f, g be arbitrary elements of \mathfrak{F}. Let

$$
L_{T}(f, g)=\left\{r \in R^{*} ; f(x) \geq r g(x) \text { for all } x \in T\right\} .
$$

If $L_{T}(f, g)$ is bounded in R, let $l_{T}(f, g)=\sup L_{T}(f, g)$. Otherwise, let $l_{T}(f, g)=\infty$. It is easy to verify that $f(x) \geq l_{T}(f, g) g(x)$ for all $x \in T$.
Definition 3.1. The number $l_{\boldsymbol{T}}(f, g)$ is called the linking number of f over g on T. (Note that when $f, g \in \mathcal{S}$,

$$
\left.l_{\mathrm{K} * \cap_{\mathfrak{0}}}(f, g)=\inf \left\{f(x) / g(x) ; x \in K^{*} \cap \mathfrak{D}, g(x)>0\right\}\right)
$$

Proposition 3.1 Let f, g and h be elements of \mathcal{F}.
(i) If f is trivial, then $l_{T}(f, f)=\infty$. Iff is non-trivial, then $l_{T}(f, f)=1$.
(ii) $l_{T}(f, g) l_{T}(g, h) \leq l_{T}(f, h)$.
(iii) Iff is non-trivial or g is non-trivial, then

$$
l_{\boldsymbol{T}}(f, g) l_{T}(g, f) \leq 1
$$

(iv) Let $f+g$ denote the point-wise sum of f and g. Then

$$
l_{T}(f, h)+l_{T}(g, h) \leq l_{T}(f+g, h)
$$

(A case when equality holds will be given in the next section in Theorem 4.2.)
(v) Letf and g be non-trivial. There exists a real number $\alpha(\alpha \neq 0, \alpha \neq \infty)$ such that $f(x)=\alpha g(x)$ for all $x \in T$ if and only if $l_{T}(f, g) l_{T}(g, f)=1$.

Proof. Clear.

Let S be a commutative ring with identity. By a pseudo-valuation on S we shall mean an R^{*}-valued non-negative function v, defined on S, which has the following properties:
(1) $\quad v(1)=0, v(0)=\infty$.
(2) $v(x \cdot y) \geq v(x)+v(y)$.
(3) $v(x-y) \geq \min \{v(x), v(y)\}$.

A pseudo-valuation v is said to be homogeneous in case for each $x \epsilon S$ and each positive integer $n, v\left(x^{n}\right)=n v(x)$.

Let v be an arbitrary pseudo-valuation on S. Rees [3] has shown that $\lim _{\omega \rightarrow \infty} v\left(x^{n}\right) / n=\bar{v}(x)$ exists for each $x \in S$ and that \bar{v} is a homogeneous pseudo-valuation on S. Moreover, $\bar{v}(x) \geq v(x)$ for each $x \in S$.

Proposition 3.2. If v, w are pseudo-valuations on S, then

$$
l_{s}(v, w) \leq l_{s}(\bar{v}, w)=l_{s}(\bar{v}, \bar{w})
$$

Proof. Since $v(x) \leq \bar{v}(x)$ for each $x \in S, l_{S}(v, w) \leq l_{S}(\bar{v}, w)$. On the other hand, since $w(x) \leq \bar{w}(x)$ for each $x \in S, l_{S}(\bar{v}, \bar{w}) \leq l_{s}(\bar{v}, w)$. If $x \in S$,

$$
\bar{v}(x)=\bar{v}\left(x^{n}\right) / n \geq l_{S}(\bar{v}, w) w\left(x^{n}\right) / n
$$

Consequently, $\bar{v}(x) \geq l_{s}(\bar{v}, w) \bar{w}(x)$ so that $l_{s}(\bar{v}, w) \leq l_{s}(\bar{v}, \bar{w})$, Q.E.D.
Let A be an ideal of S and let v be a pseudo-valuation on S. The number $\inf \{v(\mathrm{a}) ; x \in A\}$ will be denoted by $v(A)$. For each $x \in \mathbb{S}$, let $v_{A}(x)=\infty$ in case $x \in \bigcap_{n>0} A^{n}$ and if $x \notin \bigcap_{n>0} A^{n}$, let $v_{A}(x)$ be that integer $t(\geq 0)$ such that $x \in A^{t}$ but $x \in A^{t+1}$. Clearly, v_{A} is a pseudo-valuation on S. Let S be a noetherian ring, A and B proper ideals of S such that (1) $\operatorname{Rad} A=$ $\operatorname{Rad} B$, and (2) $\bigcap_{n>0} A^{n}=0$ (hence $\bigcap_{n>0} B^{n}=0$). Samuel [4] has shown that $\lim _{n \rightarrow \infty} v_{A}\left(B^{n}\right) / n$ exists and has denoted this number by $l_{A}(B)$. It has been observed by Rees [3] that ($\left.1^{\prime}\right) \bar{v}_{A}(x) \geq l_{A}(B) \bar{v}_{B}(x)$ for all $x \in S$ and $\left(2^{\prime}\right) l_{A}(B)=\bar{v}_{A}(B)$. The following proposition shows that $l_{A}(B)=$ $l_{S}\left(\bar{v}_{A}, \bar{v}_{B}\right)$.

Proposition 3.3. Let S be a commutative ring with identity and let A be an ideal of S. Let v be an arbitrary pseudo-valuation on S. Then
(i) $l_{S}\left(v, v_{A}\right)=v(A)$.
(ii) $l_{S}\left(\bar{v}, \bar{v}_{A}\right)=\bar{v}(A)$.

Proof. Statement (ii) follows from (i) and Proposition 3.2. If first will be shown that $v(x) \geq v(A) v_{A}(x)$ for all $x \in S$. Suppose $x \in A^{n}, n \geq 0$. Then $v(x) \geq v\left(A^{n}\right) \geq n v(A)$. It follows from this that $v(x) \geq v(A) v_{A}(x)$ and, therefore, $v(A) \leq l_{s}\left(v, v_{A}\right)$. On the otherhand,

$$
v(A) \geq l_{S}\left(v, v_{A}\right) v_{A}(A) \geq l_{S}\left(v, v_{A}\right)
$$

4. Let the notation be as in Section 1. Since for each $g \in \mathcal{S}, G^{\prime}(p)$ is precisely equal to $l\left(g, v_{p}\right)$, the symbol $l\left(g, v_{p}\right)$ will henceforth replace the less suggestive symbol $G^{\prime}(p)$.

Definition 4.1 An element $g \in \mathcal{S}$ is said to be perfect in case $g(x)=$ $\sum_{p \in I} l\left(g, v_{p}\right) v_{p}(x)$ for each $x \in K^{*}$.

Definition 4.2. Let $g \in S$. Any function \bar{G} satisfying (i) and (ii) of Theorem (A) is called a representation function for g.

Lemma 4.1. Let f be a perfect element of s. Let g be a non-trivial element of S and let \bar{G} be any representation function for g. Then

$$
\begin{aligned}
l(f, g) & =\inf \left\{l\left(f, v_{p}\right) / \bar{G}(p) ; p \in I, \bar{G}(p)>0\right\} \\
& =\inf \left\{l\left(f, v_{p}\right) / l\left(g, v_{p}\right) ; p \in I, l\left(g, v_{p}\right)>0\right\} .
\end{aligned}
$$

Proof. Let

$$
r=\inf \left\{l\left(f, v_{p}\right) / \bar{G}(p) ; p \in I, \bar{G}(p)>0\right\}
$$

and let

$$
r^{\prime}=\inf \left\{l\left(f, v_{p}\right) / l\left(g, v_{p}\right) ; p \in I, l\left(g, v_{p}\right)>0\right\}
$$

Since $\bar{G}(p) \leq l\left(g, v_{p}\right)$ for each $p \in I, r^{\prime} \leq r$. If $x \in K^{*} \cap \mathfrak{D}$, then since $r \bar{G}(p) \leq l\left(f, v_{p}\right)$ for all $p \in I$, it follows that $r \cdot g(x) \leq f(x)$. Thus, $r^{\prime} \leq r \leq l(f, g)$. On the other hand, $l(f, g) l\left(g, v_{p}\right) \leq l\left(f, v_{p}\right)$ for each $p \in I$, so $l(f, g) \leq r^{\prime} \leq r$. Hence, $r^{\prime}=r=l(f, g)$, Q.E.D.

Lemma 4.2. Let $f \in \mathbb{S}$ and let \bar{F} be a representation function for f. Let q be any element of I. The following are equivalent:
(i) For each $\varepsilon>0$, there exists $x \in q$ such that

$$
\sum_{p \in I, p \neq q} \bar{F}(p) v_{p}(x) \leq \varepsilon v_{p}(x) .
$$

(ii) $\bar{F}(q)=l\left(f, v_{q}\right)$.

We wish to point out that condition (i) is similar to, but slightly weaker than Samuel's condition that q be almost-principal relative to f. (See [5, §2].)

Proof. Suppose (i) holds. Let $\varepsilon>0$ be given and select $x \in q$ such that $\sum_{p \in I, p \neq q} \bar{F}(p) v_{p}(x) \leq \varepsilon v_{q}(x)$. Then $f(x) \leq(\bar{F}(q)+\varepsilon) v_{q}(x)$ so that $l\left(f, v_{q}\right) \leq \bar{F}(q)+\varepsilon$. Since ε was chosen arbitrarily, $l\left(f, v_{q}\right) \leq \bar{F}(q)$. Hence, equality holds (Theorem (B), (i)). Conversely, let $\varepsilon>0$ be given. Choose $x \in q$ such that $f(x) / v_{q}(x) \leq l\left(f, v_{q}\right)+\varepsilon$. Since by hypothesis $\bar{F}(q)=l\left(f, v_{q}\right)$, it is immediate that $\sum_{p \in I, p \neq q} \bar{F}(p) v_{p}(x) \leq \varepsilon v_{q}(x)$, Q.E.D.

Theorem 4.1. Let f be a perfect element of \mathcal{S}. If $g \in \mathcal{S}$ and $l(f, g) \neq 0$, then g is perfect.

Proof. If $l(f, q)=\infty$, then g is trivial and is already perfect, so assume
$l(f, g) \neq \infty$. For each $x \in K^{*}$, let $g^{\prime}(x)=l(f, g) g(x)$. It suffices to show that g^{\prime} is perfect. Since $g^{\prime}(x) \leq f(x)$ for all $x \in K^{*} \cap \mathfrak{o}, 1 \leq l\left(f, g^{\prime}\right)$. Let \bar{G}^{\prime} be any representation function for g^{\prime}. It follows from Lemma 4.1 that $\bar{G}^{\prime}(p) \leq l\left(f, v_{p}\right)$ for each $p \in I$. Since f is perfect, condition (iii) of Theorem (C) is satisfied relative to f. Hence, for each $q \in I$ and each $\varepsilon>0$, there exists $x \in q$ such that $\sum_{p \in I, p \neq q} \bar{G}^{\prime}(p) v_{p}(x) \leq \varepsilon v_{q}(x)$. By Lemma 4.2, $\bar{G}^{\prime}(q)=l\left(g^{\prime}, v_{q}\right)$, Q.E.D.

Theorem 4.2. Let f and g be perfect elements of S and let $f+g$ denote the point-wise sum of f and g (clearly, $f+g \epsilon \mathfrak{S}$). If $l(f, g) \neq 0$ or $l(g, f) \neq 0$, then $f+g$ is perfect.

Proof. Since $f+g=g+f$, it can be assumed that $l(f, g) \neq 0$. If $l(f, g)=\infty, g$ is trivial and there is nothing to prove, so assume $l(f, g) \neq \infty$. It will be shown that $l(f, f+g) \neq 0$. From Lemma 4.1 and the fact that $l\left(g, v_{p}\right)=0$ whenever $l\left(f, v_{p}\right)=0$ (since $\left.l(f, g) \neq 0\right)$, it follows that

$$
l(f, f+g)=\inf \left\{l\left(f, v_{p}\right) /\left(l\left(f, v_{p}\right)+l\left(g, v_{p}\right)\right) ; p \in I, l\left(f, v_{p}\right)>0\right\}
$$

For each $p \in I$ such that $l\left(f, v_{p}\right) \neq 0$,

$$
\begin{aligned}
l\left(f, v_{p}\right) /\left(l\left(f, v_{p}\right)+l\left(g, v_{p}\right)\right) & =\left(\frac{1}{2} l\left(f, v_{p}\right)+\frac{1}{2} l\left(f, v_{p}\right)\right) /\left(l\left(f, v_{p}\right)+l\left(g, v_{p}\right)\right) \\
& \geq \min \left\{\frac{1}{2}, \frac{1}{2} l(f, g)\right\}>0
\end{aligned}
$$

where $\frac{1}{2} l\left(f, v_{p}\right) / l\left(g, v_{p}\right)=\infty$ in case $l\left(g, v_{p}\right)=0$. Thus, $l(f, f+g) \neq 0$ so $f+g$ is perfect, Q.E.D.

We shall explore briefly a few lattice properties of s. Let f, g be elements of 5 . A partial ordering is defined on \mathcal{S} as follows: $g<f$ in case $1 \leq l(f, g)$ (i.e., $g(x) \leq f(x)$ for all $x \in K^{*} \cap \mathfrak{D}$). As a consequence of Lemma 4.1, when f is perfect, $g<f$ if and only if $l\left(g, v_{p}\right) \leq l\left(f, v_{p}\right)$ for each $p \in I$. For each pair f, g of perfect elements of \mathcal{S}, define $(f \cap g)(x)$ to be

$$
\sum_{p \epsilon I}\left(\min \left\{l\left(f, v_{p}\right), l\left(g, v_{p}\right)\right\}\right) v_{p}(x)
$$

and define $(f \cup g)(x)$ to be

$$
\sum_{p \in I}\left(\max \left\{l\left(f, v_{p}\right), l\left(g, v_{p}\right)\right\}\right) v_{p}(x)
$$

Then $f \cap g, f \cup g$ are elements of S and $f \cap g$ is perfect due to the fact that $l(f, f \cap g) \geq 1>0$. Since $l(f+g, f \cup g) \geq 1>0, f \cup g$ is perfect when $l(f, g) \neq 0$ or $l(g, f) \neq 0$. It is clear that (relative to the partial ordering \prec restricted to the set \mathcal{S}^{\prime} of perfect elements of $\left.\delta\right) f \cap g=\operatorname{GLB}\{f, g\}$ and when $f \cup g$ is perfect, $f \cup g=\operatorname{LUB}\{f, g\}$.

Lemma 4.3. Let f, g and h be non-trivial perfect elements of \mathcal{S}. Then
(i) $l(f \cup g, h) \geq \max \{l(f, h), l(g, h)\}$.
(ii) $l(h, f \cup g)=\min \{l(h, f), l(h, g)\}$.
(iii) $l(f \cap g, h)=\min \{l(f, h), l(g, h)\}$.
(iv) $l(h, f \cap g) \geq \max \{l(h, f), l(h, g)\}$.

Proof. Clear.
Let f be any non-trivial perfect element of δ and let

$$
L(f)=\{g \in \mathcal{S} ; l(f, g) \neq 0 \quad \text { and } \quad l(g, f) \neq 0\}
$$

Clearly, $f \in L(f)$, so $L(f)$ is non-empty. If $g \in L(f)$, then g is perfect due to the fact that $l(f, g) \neq 0$. On the other hand, $l(g, f) \neq 0$ implies g is nontrivial. If $g, g^{\prime} \in L(f)$, then $l\left(g, g^{\prime}\right) \geq l(g, f) l\left(f, g^{\prime}\right)>0$. Thus, g u g^{\prime} is again perfect. From Lemma 4.3 it follows that $g \cap g^{\prime}$ and $g \cup g^{\prime}$ are in $L(f)$ whenever $g, g^{\prime} \in L(f)$.

Theorem 4.3. Let S^{\prime} be the collection of all nontrivial perfect elements of S . Let $\mathcal{L}=\left\{L(f) ; f \in \mathcal{S}^{\prime}\right\}$. Then \mathfrak{L} is a partition of \mathcal{S}^{\prime} and each element $L(f)$ of \mathfrak{L} is a distributive lattice under the operations u and n .

Proof. Clear.

References

1. N. Bourbaki, Topologie générale, Éléments de Mathématique, Livre III, Paris, Hermann, 1947.
2. H. T. Muhly, On a problem of Samuel concerning divisors of second kind, to appear.
3. D. Rees, Valuations associated with a local ring, Proc. London Math. Soc. (3), vol. 5 (1955), pp. 107-128.
4. P. Samuel, Some asymptotic properties of powers of ideals, Ann. of Math. (2), vol. 56 (1952), pp. 11-21.
5. -, Multiplicités de certaines composantes singulières, Illinois J. Math., vol. 3 (1959), pp. 318-327.
6. ——, Sur l'image reciproque d'un diviseur, J. Reine Angew. Math., vol. 204 (1960), pp. 1-10.

University of Iowa
Iowa City, Iowa

[^0]: Received March 12, 1964.
 ${ }^{1}$ Work on this paper was supported in part by an NSF Grant and in part by an NSF Cooperative Graduate Fellowship.

