ON HOMOTOPY 3-SPHERES ${ }^{1}$

BY
Wolfgang Haken

A homotopy 3 -sphere M^{3} is a compact, simply connected 3 -manifold without boundary. After the work of Moise [6] and Bing [1] M^{3} possesses a triangulation. The Poincaré conjecture [9] states that every homotopy 3 -sphere M^{3} is a 3 -sphere. In this paper we prove three theorems, related to the Poincaré conjecture, about maps of a 3 -sphere S^{3} onto M^{3} and about 1- and 2 -spheres in M^{3}.

1. Theorems 1 and 2, concerning maps $S^{3} \rightarrow M^{3}$ and closed curves in M^{3}. From the work of Hurewicz [5], Part III, it follows that there exists a continuous map $\varphi: S^{3} \rightarrow M^{3}$ of degree 1 (where S^{3} means a 3 -sphere). We shall prove that there exists an especially simple map of this kind. ${ }^{2}$

Theorem 1. If M^{3} is a homotopy 3 -sphere then there exists a simplicial map $\gamma: S^{3} \rightarrow M^{3}$ of degree 1 such that the singularities of γ (i.e. the closure of the set of those points $p \in M^{3}$ for which $\gamma^{-1}(p)$ consists of more than one point) lie in a (polyhedral, compact) handlebody in M^{3}.

One might consider this result as a step towards a proof of the Poincaré conjecture. Indeed, if it were possible to restrict the singularities of γ to a 3 -cell in M^{3} instead of a handlebody the existence of a homeomorphism $S^{3} \rightarrow M^{3}$ would follow.

From Theorem 1 we may derive another aspect of the Poincaré problemby considering simple closed curves in M^{3}.

From the definition of simple connectedness it follows that every closed curve $C^{1} \subset M^{3}$ bounds a singular disk $D^{2} \subset M^{3}$. If C^{1} is a tame, simple closed curve then one can find a D^{2} which is also tame and possesses only "normal" singularities (see [7], [8]), i.e. double curves in which two sheets of D^{2} pierce each other, triple points in which three sheets pierce each other, and branch points from each of which one or more double arcs originate; the triple points, the branch points, and the interiors of the double curves are disjoint from the boundary D^{2} of D^{2}, but the double curves may have end points in $\cdot D^{2}$.

As Bing [2] has proved, M^{3} is a 3 -sphere if (and only if) every tame, simple closed curve $C^{1} \subset M^{3}$ lies in a (compact) 3-cell in M^{3}. The statement that C^{1} lies in a 3 -cell $D^{3} \subset M^{3}$ is equivalent to the statement that C^{1} bounds a "knot projection cone" D^{2} in M^{3}, i.e. a (tame) singular disk whose singularities are one branch point P and double arcs originating from P, being pairwise

[^0]disjoint otherwise, and terminating in $\cdot D^{2}$. (A small neighborhood of a knot projection cone in M^{3} is always a 3 -cell.) Hence one would prove the Poincaré conjecture if one could prove that every tame, simple closed curve $C^{1} \subset M^{3}$ bounds a knot projection cone in M^{3}. Theorem 2 of this paper (which may be considered as a corollary of Theorem 1) is a first step in this direction: it states that C^{1} always bounds a knot projection cone D^{2} with additional singularities that do not touch $\cdot D^{2}=C^{1}$.

Theorem 2. If C^{1} is a tame, simple closed curve in a homotopy 3 -sphere M^{3} then there is a (tame) singular disk $D^{2} \subset M^{3}$ with $\cdot D^{2}=C^{1}$ such that D^{2} has the following singularities:
(a) One branch point P of multiplicity g (g may be zero) and g double arcs $Q_{1}^{1}, \cdots, Q_{g}^{1}$ (in each of which two sheets of D^{2} pierce each other), starting from P and ending at D^{2} with ${ }^{0} Q_{i}^{1} \subset{ }^{0} D^{2}$ such 3 that the $Q_{i}^{1}-P$'s are pairwise disjoint.
(b) Closed double curves $R_{1}^{1}, \cdots, R_{h}^{1}$ (h may be zero) which may pierce themselves and the Q_{i}^{1} 's in triple points of D^{2}, but which are disjoint from $\cdot D^{2}$.

In the special case $h=0, D^{2}$ is a knot projection cone; in the case $g=0$, D^{2} is a so called Dehn disk (see [8]). In the latter case it follows from Dehn's lemma (stated by Dehn [3] and proved by Papakyriakopoulos [8]) that there exists a (tame) disk $D^{* 2}$ with $\cdot D^{* 2}=C^{1}$ and $h^{*}=0$ (and also $g^{*}=0$). Now the question arises whether it follows in the general case $(g \neq 0)$ that there exists a (tame, singular) disk $D^{* 2}$ with $D^{* 2}=C^{1}$ and $h^{*}=0$ (and g^{*} arbitrary, not necessarily equal to g). An affirmative answer to this question would imply the Poincaré conjecture.

If one applies the methods for proving Dehn's lemma, as developed by Papakyriakopoulos [8] and later simplified by Shapiro and Whitehead [12], to this problem then one has to consider a small neighborhood $D^{3} \subset M^{3}$ of D^{2}, a covering of D^{3}, etc. Then all conclusions of the proof of Dehn's lemma in [12] apply to our problem as well, except in case (1) wherein the boundary D^{3} of D^{3} (or that of one of the neighborhoods in the coverings) consists of 2 -spheres only : for case (1) it follows easily in dealing with Dehn's lemma that C^{1} bounds a nonsingular disk; however it seems to be difficult to prove for case (1) in dealing with our problem, $g \neq 0$, that C^{1} bounds a knot projection cone. Nevertheless I hope that someone will be able to fill this gap in the proof of the Poincaré conjecture.
2. Theorem 3, concerning 2 -spheres in M^{3}. We obtain another aspect of the Poincaré problem if we consider 2 -spheres in M^{3} instead of closed curves. If we remove the interior of a 3 -cell C^{3} from M^{3} we get a so called homotopy 3 -cell M_{*}^{3}. It follows from the Hurewicz theorem [5], Part II, that every 2 -sphere in M_{*}^{3} may be homotopically deformed into one point.

Let us consider a 2 -sphere $F_{0}^{2} \subset M_{*}^{3}$, "topologically parallel" to the bound-

[^1]ary of M_{*}^{3}, i.e. such that $F_{0}^{2}+M_{*}^{3}$ bounds a 3 -annulus $F_{0}^{3} \subset M_{*}^{3}$. If one could prove that F_{0}^{2} can be deformed ${ }^{4}$ into a 3 -cell $H^{3} \subset M_{*}^{3}$ not only by a homotopy but also by an isotopy whose image is tame at each level then the Poincaré conjecture would follow (since it would follow that M_{*}^{3} is a 3 -cell). It follows from the work of Smale [13] on regular homotopy that F_{0}^{2} can be deformed onto the boundary of a 3 -cell in H^{3} in such a way that no branch points occur at any stage of the deformation. In order to go one step further in this direction we shall show that F_{0}^{2} can be deformed into H^{3} by especially simple homotopic deformations that take place in a special order.

First we have to define some special homotopic deformations. Let

$$
\alpha:{F^{\prime}}^{2} \rightarrow M_{*}^{3},
$$

with the image $\alpha\left(F^{\prime 2}\right) \subset{ }^{0} M_{*}^{3}$ denoted by F^{2}, be a continuous map, defining a (tame) 2 -sphere with canonical singularities (i.e. normal double curves and triple points, but without branch points, see [8]). Let $A^{\prime 2}$ be a disk in ${F^{\prime 2}}^{2}$ whose image $\alpha\left(A^{\prime 2}\right)$ is also a (nonsingular) disk A^{2}. Let

$$
A^{* 2} \subset{ }^{0} M_{*}^{3}
$$

be another tame disk with $A^{* 2} \cap A^{2}=A^{2}=A^{* 2}$ such that $A^{2}+A^{* 2}$ bounds a 3 -cell $K^{3} \subset M_{*}^{3}$. Now we consider a deformation δ that changes α into α^{*} such that

$$
\alpha^{*}\left|\left(F^{\prime 2}-{ }^{0} A^{\prime 2}\right)=\alpha\right|\left(F^{\prime 2}-{ }^{0} A^{\prime 2}\right)
$$

and $\alpha^{*} \mid A^{\prime 2}$ is a homeomorphism onto $A^{* 2}$. We call such a deformation nonessential if there exists an epi-homeomorphism

$$
\zeta: M_{*}^{3} \rightarrow M_{*}^{3} \quad \text { with } \quad \zeta\left(F^{2}\right)=\alpha^{*}\left(F^{\prime 2}\right)
$$

that is the identity outside a small neighborhood of K^{3}. We call δ an elementary deformation of type 1,2 , or 3 , respectively, if the surface defined by α^{*} has only normal singularities and one of the following conditions holds (see Fig. 1):

Type 1. Either case (a) ${ }^{-}\left({ }^{0} K^{3} \cap F^{2}\right)$ is a disk B^{2} with $\cdot B^{2} \subset{ }^{0} A^{* 2}$; or case (b) ${ }^{-}\left({ }^{0} K^{3} \cap F^{2}\right)$ consists of two disks B^{2}, C^{2} such that

$$
\cdot B^{2}, \cdot C^{2} \subset{ }^{0} A^{* 2}
$$

and $B^{2} \cap C^{2}$ is an are with

$$
{ }^{0}\left(B^{2} \cap C^{2}\right) \subset{ }^{0} K^{3}
$$

[^2]Type 2. ${ }^{-}\left({ }^{0} K^{3} \cap F^{2}\right)$ is a disk B^{2} such that each of the intersections $B^{2} \cap A^{2}$ and $B^{2} \cap A^{* 2}$ consists of two disjoint arcs with

$$
{ }^{0}\left(\cdot B^{2} \cap A^{2}\right) \subset{ }^{0} A^{2} \text { and }{ }^{0}\left(\cdot B^{2} \cap A^{* 2}\right) \subset{ }^{0} A^{* 2} .
$$

Type 3. Either case (a) ${ }^{-}\left({ }^{0} K^{3} \cap F^{2}\right)$ is a disk B^{2} with $\cdot B^{2} \subset{ }^{0} A^{2}$; or case (b) ${ }^{-}\left({ }^{0} K^{3} \cap F^{2}\right)$ consists of two disks B^{2}, C^{2} such that $B^{2} \subset{ }^{0} A^{2}$ and each of the intersections $C^{2} \cap A^{2}, C^{2} \cap A^{* 2}, C^{2} \cap B^{2}$ is an arc with

$$
{ }^{0}\left(\cdot C^{2} \cap A^{2}\right) \subset{ }^{0} A^{2}, \quad{ }^{0}\left(\cdot C^{2} \cap A^{* 2}\right) \subset{ }^{0} A^{* 2}, \quad{ }^{0}\left(C^{2} \cap B^{2}\right) \subset{ }^{0} C^{2},{ }^{0} B^{2} .
$$

We remark that an elementary deformation of type 1 (a or b) changes the image sphere F^{2} only in a small neighborhood (small with respect to F^{2}) of an arc (connecting a point in ${ }^{0} A^{2}$ to a point in ${ }^{0} B^{2}$ or in ${ }^{0} B^{2} \cap{ }^{0} C^{2}$, respectively); a deformation ${ }^{4}$ of type 2 changes F^{2} in a small neighborhood of a disk (whose boundary intersects each A^{2} and B^{2} in one arc). According to this one might say that a deformation of type $i(i=1,2,3)$ is essentially i-dimensional.

Theorem 3. Let M_{*}^{3} be a homotopy 3 -cell and $\alpha_{0}: F^{\prime 2} \rightarrow M_{*}^{3}$ an embedding of a 2-sphere, topologically parallel to $\cdot M_{*}^{3}$. Then α_{0} can be deformed step by step into maps $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of ${F^{\prime 2}}^{2}$ into M_{*}^{3} such that the following holds:
(a) $\quad \alpha_{i}(i=1,2,3)$ is obtained from α_{i-1} by a finite sequence of elementary deformations of type i and non-essential deformations.
(b) The image $\alpha_{3}\left(F^{\prime 2}\right)$ lies in a 3 -cell $H^{3} \subset{ }^{0} M_{*}^{3}$.

The two essential points of this theorem (which are not immediate consequences of Smale's results [13]) are (1) the order in which the deformations take place and (2) that no deformations are used that move the surface over a triple point.

We remark without proof: If it were possible to avoid the deformations of type 1 b (i.e. to avoid triple points) or to avoid the deformations of type 2 then this would imply the Poincaré conjecture; this would hold even if H^{3} were not a 3-cell, but homeomorphic to any compact subset of euclidean 3 -space with connected boundary.
3. Sketch of the proofs. The theorems are proved by considering deformations of singular 2 -spheres in a homotopy 3 -cell M_{*}^{3}. We start with an embedding

$$
\beta_{0}: F_{0}^{\prime 3} \rightarrow M_{*}^{3}
$$

of a 3 -annulus $F_{0}^{\prime 3}$ into M_{*}^{3} such that one boundary sphere ${S^{\prime 2}}^{2}$ of $F_{0}^{\prime 3}$ is mapped onto ${ }^{\cdot} M_{*}^{3}$ and the other boundary sphere $F_{0}^{\prime 2}$ onto the 2 -sphere $F_{0}^{2}=\alpha_{0}\left(F^{\prime 2}\right)$. Now we deform F_{0}^{2} into a 3 -cell $H^{3} \subset{ }^{0} M_{*}^{3}$ in the simplest way we can find. To do this we choose a simple cell-decomposition Γ of the homotopy 3 -sphere $M^{3}=M_{*}^{3}+C^{3}\left(C^{3}\right.$ being a 3 -cell with $C^{3} \cap M_{*}^{3}=C^{3}={ }^{\prime} M_{*}^{3}$) into one vertex E^{0}, r elements $E_{i}^{1}, E_{i}^{2}(i=1, \cdots, r)$ of each dimension 1 and 2 , and one open 3 -cell E^{3} containing C^{3}. Then we choose a neighborhood J^{3} of the 2 -skeleton G^{2} of Γ, and we may assume that our initial 3 -annulus $\beta_{0}\left(F_{0}^{\prime 3}\right)$ is $M_{*}^{3}-{ }^{0} J^{3}$,
hence $F_{0}^{2}=J^{3}$. Now we use the fact that M_{*}^{3} is simply connected by taking a collection of r singular disks, bounded by the 1 -skeleton G^{1} of Γ (that consists of the r loops \bar{E}_{i}^{1} with the common vertex E^{0}); these disks with the boundary point E^{0} in common form a "fan" V^{2} with singularities. We can choose V^{2} such that its only singularities are pairwise disjoint double arcs $A_{j}^{1}\left(j=1, \cdots, s\right.$, as depicted in Fig. 2). Now we contract V^{2}, changing it only within small neighborhoods A_{j}^{3} of the A_{j}^{1}, s, onto a nonsingular fan V_{*}^{2}, a small neighborhood H^{3} of which is a 3 -cell; that means we deform the 1 -skeleton G^{1} into the 3 -cell H^{3}. We carry out corresponding deformations (see footnote 4) of the 2 -skeleton G^{2} onto a "singular 2 -skeleton" G_{*}^{2} and of its neighborhood J^{3} onto a singular polyhedron J_{*}^{3}; and we change the map β_{0} correspondingly into a map $\beta_{I}: F_{I}^{\prime 3} \rightarrow M^{3}$ with $\beta_{I}\left|{S^{\prime 2}}^{2}=\beta_{0}\right| S^{\prime 2}$. All the deformations of G^{2}, J^{3} take place in the A_{j}^{3} 's. $\quad H^{3}+\bigcup_{j=1}^{s} A_{j}^{3}$ is a handlebody K^{3}. The corresponding deformations of F_{0}^{2} onto F_{I}^{2} are of type 1a only.

Now we have to deform the rest of F_{I}^{2} into H^{3}. First we remark that J_{*}^{3} may be decomposed into a neighborhood T_{*}^{3} of the deformed 1 -skeleton $\cdot V_{*}^{2}$ and into r "prismatic", singular 3-cells $P_{\# i}^{3}$ (being prismatic neighborhoods of middle parts of the deformed E_{i}^{2}, s), such that $T_{*}^{3} \subset{ }^{0} H^{3}$. That means, that part of F_{I}^{2} lying outside of H^{3} lies in the "top" and "bottom" disks of the $P_{* i}^{3}$'s. The boundaries of the top and bottom disks of $P_{\nless i}^{3}$ may be joined by an arc $W_{i}^{1} \subset F_{I}^{2} \cap{ }^{0} H^{3}$ and by an are $W_{P i}^{3} \subset \cdot P_{\# i}^{3}$; the so obtained 1 -spheres $W_{i}^{1}+W_{P i}^{1}$ bound singular disks $W_{i}^{2} \subset{ }^{0} H^{3}$. We can choose these W_{i}^{2}, such that their only singularities are double ares and that singular, prismatic neighborhoods W_{i}^{3} of them fit properly to F_{I}^{2} and to the $P_{* i}^{3}$'s. Then we expand the singular 3 -annulus, defined by β_{I}, over these singular prisms W_{i}^{3} (denoting the changed β_{I} by $\beta_{I I}$); the corresponding deformation of F_{I}^{2} onto a singular 2 -sphere $F_{I I}^{2}$ may be decomposed into deformations of type 1 (a and b) yielding a singular 2 -sphere F_{1}^{2} (and a map α_{1} according to Theorem 3) and after them deformations of type 2 yielding $F_{I I}^{2}$. Now $F_{I I}^{2}$ contains "folds" around the $P_{* i}^{3}$'s consisting of the top and bottom disks and joining disks (containing the $W_{P i}^{1}$'s); so we can expand the singular 3 -annulus over the $P_{\# i}^{3}$'s (denoting the changed $\beta_{I I}$ by $\beta:{F^{\prime \prime}}^{3} \rightarrow M_{*}^{3}$ with $\beta\left|{S^{\prime}}^{2}=\beta_{0}\right|{S^{\prime 2}}^{2}$). The corresponding deformation of $F_{1 I}^{2}$ yields $F_{3}^{2} \subset{ }^{0} H^{3}$ (and α_{3}) and may be decomposed into deformations of type 2, yielding F_{2}^{2} (and α_{2}), and after them deformations of type 3 (a and b); this completes the proof of Theorem 3.

To prove Theorem 2 we observe that the complement $M_{*}^{3}-{ }^{0} K^{3}$ of the handlebody K^{3} is covered one-to-one by β. So we deform the given curve C^{1} isotopically into a curve $C_{0}^{1} \subset M_{*}^{3}-K^{3}$; then we choose a knot projection cone $D^{\prime 2}$ bounded by the $\operatorname{knot} \beta^{-1}\left(C_{0}^{1}\right)$ in the 3 -annulus $F^{\prime 3}$; we bring about by small deformations the situation in which $\beta\left(D^{\prime 2}\right)$ has only normal singularities. Then $D^{2}=\beta\left(D^{\prime 2}\right)$ has the demanded properties. Theorem 1 is proved by extending β to a 3 -sphere $S^{3} \supset F^{\prime 3}$.

We remark: If it were possible to find the map

$$
\beta: F^{i^{3}} \rightarrow M_{*}^{3}
$$

(with $\left.\beta\left(\cdot F^{\prime 3}-{S^{\prime}}^{2}\right) \subset{ }^{0} H^{3}\right)$ such that $\beta \mid \beta^{-1}\left(M_{*}^{3}-H^{3}\right)$ is locally one-to-one then the Poincaré conjecture would follow by an easy conclusion. We would obtain such a map β if it were possible to deform the 3 -annulus $\beta_{0}\left(F_{0}^{\prime 3}\right)$ onto $\beta\left(F^{\prime 3}\right)$ by "expansions" only. But in our procedure some of the very first deformations in the $A_{j}^{3,}$ s (and only these) are not expansions, so we get certain surfaces in $F^{\prime 3}$ such that β is not locally one-to-one at (and only at) the points of these surfaces. (β maps these surfaces homeomorphically into K^{3}. Moreover it is possible to arrange our procedure such that these exceptional surfaces become disks.)

I. Proof of Theorems 1 and 2

We prove Theorem 1 and 2 first. After this we shall prove Theorem 3 by consideration of some more details.
4. Preliminaries. Let M^{3} be a homotopy 3 -sphere. After Moise [6] and Bing [1] there exists a triangulation of M^{3}. This means there exists a homotopy 3 -sphere, homeomorphic to M^{3}, that is a (straight-lined, finite) polyhedron in a euclidean space \mathfrak{E}^{n} of sufficiently high dimension n. So we may assume for convenience and without loss of generality that M^{3} itself is a polyhedron in \mathbb{E}^{n}. All point sets considered in the subsequent part of this paper are polyhedral in \S^{n} in the sense of [10] (i.e. finite unions of straightlined, finite, convex, open cells in \mathbb{E}^{n}); they are denoted by capital roman letters, and their dimensions by upper indices. We use the notation $X, \bar{X},{ }^{0} X$ for the boundary, closure, interior of X, respectively, and $X-Y=$ $X-(X \cap Y)$ for the difference.

By a decomposition of X we mean always a collection of finitely many pairwise disjoint point sets whose union is X. A decomposition Δ is called a cell-decomposition, if the elements of Δ are open cells such that for every two cells $A, B \in \Delta$ either $A \cap B=\emptyset$ or $A \subset \cdot B$ holds. We call a cell-decomposition Δ a straight-lined triangulation if its elements are open, straight-lined simplices in \mathbb{E}^{n} such that the open faces of each element are also elements of Δ; we call a cell-decomposition Θ a triangulation in general if for each element $A \epsilon \Theta$ the decomposition $\Theta(\bar{A})$ of \bar{A}, consisting of all those elements of Θ that lie in \bar{A}, is isomorphic to the decomposition of a simplex (of the same dimension as A) into its interior and its open faces.

By a (polyhedral) neighborhood of X in Y (as defined in [14]) we mean the closure of the simplex star of X in a second barycentric subdivision $\Delta^{* *}$ of a (general) triangulation Δ of Y such that X is the union of elements of Δ; the neighborhood is called small with respect to $Z|V| \cdots \mid W$ (see [4, Kap. I,2]) if $Z \cap Y, V \cap Y, \cdots, W \cap Y$ are unions of elements of Δ.

By an arc, disk, or 3 -cell we mean, if not stated otherwise, a compact, nonsingular 1-, 2 -, or 3 -cell, respectively.

All maps considered in the subsequent part of this paper are simplicial maps in the sense of [11, p. 114]: a continous map $\alpha: A^{\prime} \rightarrow B$ is called sim-
plicial if there exist straight-lined triangulations Δ^{\prime} of A^{\prime} and Δ of B such that α maps each element of Δ^{\prime} linearly onto an element of Δ.

Let C^{3} be a 3 -cell in M^{3} and denote the homotopy 3 -cell $M^{3}-{ }^{0} C^{3}$ by M_{*}^{3}.
5. A simple cell-decomposition Γ of M^{3}. We can find a cell-decomposition Γ of M^{3} with the following properties:
(i) Γ contains just one 0-dimensional element, say E^{0}, and just one 3-dimensional element, say E^{3}.
(ii) $C^{3} \subset E^{3}$.
(iii) Γ contains r elements, say $E_{1}^{1}, \cdots, E_{r}^{1}$, of dimension 1 and r clements, say $E_{1}^{2}, \cdots, E_{r}^{2}$, of dimension 2 .
(iv) Each element E_{i}^{1} lies at least 2 times in the boundary of $\bigcup_{j=1}^{r} E_{j}^{2}$ (i.e.: if U^{3} is a neighborhood of a point of E_{i}^{1} in M^{3}, which is small with respect to

$$
E_{1}^{1}|\cdots| E_{r}^{1} E_{1}^{2} \cdots \mid E_{r}^{2}
$$

then ${ }^{0} U^{3} \cap \bigcup_{j=1}^{r} E_{j}^{2}$ consists of at least 2 pairwise disjoint open disks).
Proof of the assertion. I may be found as follows:
Step 0. We take an arbitrary decomposition Γ_{0} of M^{3} into open cells.
Step 1. We delete, step by step, such 2 -dimensional elements of Γ_{0} that separate two different 3 -dimensional elements; this yields finally a decomposition Γ_{1} with only one 3-dimensional element (see [11]).

Step 2. Now we contract a maximal tree in the 1 -skeleton of Γ_{1} into one point; this yields a decomposition Γ_{2} with property (i).

Step 3. If a 1-dimensional element $E^{1} \epsilon \Gamma_{2}$ lies just once in the boundary of a 2-dimensional element $E^{2} \epsilon \Gamma_{2}$ and does not lie in the boundary of any other 2-dimensional element of Γ_{2} then we delete both E^{1} and E^{2}; repeating this operation as often as possible, we obtain a decomposition Γ_{3} with properties (i) and (iv). Γ_{3} possesses also property (iii) since the Euler characteristic of M^{3} is zero (see [11]).

Step 4. To obtain Γ we deform the 2-skeleton of Γ_{3} isotopically such that the deformed 2 -skeleton lies in $M^{3}-C^{3}$.

Remark. In the case $r=0, M^{3}$ is obviously a 3 -sphere and we have nothing to prove. Therefore we may assume for the subsequent sections of this paper that $r \neq 0$. We denote the 1 -skeleton $\bigcup_{i=1}^{r} \bar{E}_{i}^{1}$ and the 2 -skeleton $\bigcup_{i=1}^{r} \bar{E}_{i}^{2}$ of Γ by G^{1}, G^{2}, respectively.
6. The 1-skeleton G^{1} of Γ bounds a singular fan V^{2}. We assert: There exists a map

$$
\zeta: V^{\prime 2} \rightarrow M_{*}^{3}
$$

with the image $\zeta\left(V^{\prime 2}\right) \subset{ }^{0} M_{*}^{3}$ denoted by V^{2}, and with the following properties (see Fig. 2):
(i) $V^{\prime 2}$ consists of r disks $V_{1}^{\prime 2}, \cdots, V_{r}^{\prime 2}$, possessing one common boundary
point $E^{\prime \prime}$, and otherwise being pairwise disjoint; $V^{\prime 2}$ is disjoint from $M^{3}, F^{\prime 2}$.
(ii) $\cdot V^{2}=G^{1}$.
(iii) The only singularities of V^{2} are pairwise disjoint, normal, double $\operatorname{arcs} A_{1}^{1}, \cdots, A_{s}^{1}$ (s may be zero) such that each of the two connected components $A_{j}^{\prime 1}, A_{j}^{\prime \prime 1}$ of $\zeta^{-1}\left(A_{j}^{1}\right)$ possesses just one boundary point in ${ }^{\prime} V^{\prime 2}-E^{\prime 0}$ and otherwise lies in ${ }^{0} V^{\prime 2}$ (for all $j=1, \cdots, s$).
(iv) The arcs $A_{j}^{1}(j=1, \cdots, s)$ intersect $G^{2}-G^{1}$ at most in isolated piercing points, V^{2} intersects $G^{2}-G^{1}$ at most in piercing curves whose intersection and self-intersection points are the piercing points $A_{j}^{1} \cap\left(G^{2}-G^{1}\right)$.
(v) $\zeta^{-1}\left(-\left\{V^{2} \cap\left[G^{2}-G^{1}\right]\right\}\right)$ is disjoint from $\cdot V^{\prime 2}-E^{\prime 0}$, i.e. a connected component of

$$
\zeta^{-1}\left(V^{2} \cap\left[G^{2}-G^{1}\right]\right)
$$

is either a 1 -sphere or an open are whose boundary lies in

$$
E^{\prime 0}+\bigcup_{j=1}^{s}\left[\left(A_{j}^{\prime 1}+\cdot A_{j}^{\prime \prime 1}\right) \cap^{0} V^{\prime 2}\right]
$$

(see Fig. 3).
Proof of the assertion. Step 0 . Since M_{*}^{3} is simply connected there exists a map $\zeta_{0}: V^{\prime 2} \rightarrow M_{*}^{3}$ with properties (i) and (ii).

Step 1. From ζ_{0} we can obtain by small deformations (by a similar procedure as described in [7]) a map $\zeta_{I}: V^{\prime 2} \rightarrow M_{*}^{3}$, also with properties (i), (ii), such that the only singularities of $V_{I}^{2}=\zeta_{I}\left(V^{\prime 2}\right)$ are normal double curves, triple points, and branch points of multiplicity 1 (see [8]), and such that the triple points, the branch points, and the interiors of the double curves lie in ${ }^{0} V_{I}^{2}$, and that E^{0} is no double point.

Step 2. Now we consider the set D_{I} of all double points (not including the triple points) of V_{I}^{2}, and we remove, step by step, all those connected components $D_{I 1}^{1}, \cdots, D_{I d}^{1}$ of D_{I} that are disjoint from $\cdot V_{I}^{2}$. To do this we can find an arc $C_{k}^{1} \subset V_{I}^{2}$ that joins a point of $\cdot V_{I}^{2}-\left(E^{0}+D_{I}\right)$ to a point of a component $D_{I k}^{1}$ (provided that $d \neq 0$) such that ${ }^{0} C_{k}^{1} \cap \bar{D}_{I},{ }^{0} C_{k}^{1} \cap \cdot V_{I}^{2}=\emptyset$; then we remove $D_{I k}^{1}$ (without introducing a new component of that kind) by a deformation of ζ_{I} (see Fig. 4) that changes V_{I}^{2} only in a neighborhood of C_{k}^{1}, and so on. In this way we obtain finally after d deformations a map $\zeta_{I I}: V^{\prime 2} \rightarrow M_{*}^{3}$.

Step 3. Now we can remove the triple points of $V_{I I}^{2}=\zeta_{I I}\left(V^{\prime 2}\right)$ by deformations of $\zeta_{I I}$ that change $V_{I I}^{2}$ only in neighborhoods of double arcs of $V_{I I}^{2}$ that join the triple points to $V_{I I}^{2}-E^{0}$. Further we can remove the branch points by cuts along those double arcs of $V_{I I}^{2}$ that join the branch points to $\cdot V_{I I}^{2}-E^{0}$. This yields a map

$$
\zeta_{I I I}: V^{\prime 2} \rightarrow M_{*}^{3}
$$

with $\zeta_{I I I}\left(V^{\prime 2}\right)$ denoted by $V_{I I I}^{2}$, such that the set $D_{I I I}$ of double points of $V_{I I I}^{2}$ consists of pairwise disjoint arcs $D_{I I I I}^{1}, \cdots, D_{I I I e}^{1}$.
Step 4. If one of the components of the inverse image of $D_{I I I k}^{1}-$ say $D_{I I I k}^{\prime 1}-$ is disjoint from $\cdot V^{\prime 2}$, then we choose an arc $C_{k}^{\prime 1} \subset V^{\prime 2}$, joining a point of ${ }^{0} D_{I I I k}^{\prime 1}$ to
a point of

$$
\cdot V^{\prime 2}-\left[E^{\prime 0}+\zeta_{I I I}^{-1}\left(\cdot D_{I I I}\right)\right]
$$

with ${ }^{0} C_{k}^{\prime 1} \cap \zeta_{I I I}^{-1}\left(D_{I I I}\right),{ }^{0} C_{k}^{\prime 1} \cap \cdot V^{\prime 2}=\emptyset$, and we remove $D_{I I I k}^{\prime 1}$ by a deformation of $\zeta_{I I I}$ (similar to Step 2) that changes $V_{I I I}^{2}$ only in a neighborhood of $\zeta_{I I I}\left(C_{k}^{\prime 1}\right)$; and so on. This yields finally a map

$$
\zeta_{I V}: V^{\prime 2} \rightarrow M_{*}^{3}
$$

with the properties (i), (ii), and (iii).
Step 5 . From $\zeta_{I V}$ we obtain by small deformations a map

$$
\zeta_{V}: V^{\prime 2} \rightarrow M_{*}^{3}
$$

with $\zeta_{V}\left(V^{\prime 2}\right)$ denoted by V_{V}^{2}, having the properties (i), \cdots, (iv).
Step 6 . From ζ_{V} we obtain, by deformations that change V_{V}^{2} only in a small neighborhood of $\cdot V_{V}^{2}=G^{1}$, a map $\zeta: V^{\prime 2} \rightarrow M_{3}^{*}$ with the required properties.
7. Neighborhoods A_{j}^{3} of the double arcs A_{j}^{1} of V^{2}. Let $A_{1}^{3}, \ldots, A_{s}^{3}$ be pairwise disjoint neighborhoods of $A_{1}^{1}, \cdots, A_{s}^{1}$, respectively, in M_{*}^{3}, which are small with respect to $G^{2} \mid V^{2}$ (see Fig. 5a).
$A_{j}^{3} \cap G^{1}$ consists of two disjoint arcs; we denote them by K_{j}^{1}, L_{j}^{1}. The closures of the connected components of $\left(A_{j}^{3} \cap V^{2}\right)-A_{j}^{1}$ are two disks; we denote them by $V_{K j}^{2}, V_{L j}^{2}$ such that

$$
K_{j}^{1} \subset \cdot V_{K j}^{2}, \quad L_{j}^{1} \subset \cdot V_{L j}^{2}
$$

We choose a neighborhood A_{j}^{2} of A_{j}^{1} in $V_{K j}^{2}$, which is small with respect to G^{2}, and we denote the nonsingular fan ${ }^{-}\left(V^{2}-\bigcup_{j=1}^{s} A_{j}^{2}\right)$ by V_{*}^{2}.

We denote those connected components of $A_{j}^{3} \cap G^{2}$ that contain K_{j}^{1}, L_{j}^{1}, respectively, by K_{j}^{2}, L_{j}^{2}. The closures of the connected components of $K_{j}^{2}-K_{j}^{1}$ and $L_{j}^{2}-L_{j}^{1}$ are disks $K_{j 1}^{2}, \cdots, K_{j t_{j}}^{2}$ and $L_{j 1}^{2}, \cdots, L_{j u_{j}}^{2}$, respectively. Those connected components of $A_{j}^{3} \cap G^{2}$ that are different from K_{j}^{2}, L_{j}^{2} are disks $N_{j 1}^{2}, \cdots, N_{j v_{j}}^{2}\left(v_{j}\right.$ may be zero). We arrange the notation such that the disks $K_{j 1}^{2}, \cdots, K_{j t_{j}}^{2}$ lie around K_{j}^{1} in the order of the enumeration and such that $V_{K j}^{2}$ lies in this order between $K_{j t_{j}}^{2}$ and $K_{j 1}^{2}$.
8. A small neighborhood J^{3} of the 2 -skeleton G^{2} and its complementary 3 -annulus F_{0}^{3}. Let T^{3} be a neighborhood of G^{1} in M_{*}^{3}, which is small with respect to

$$
G^{2}\left|V^{2}\right| A_{1}^{3}|\cdots| A_{s}^{3}\left|A_{1}^{2}\right| \cdots \mid A_{s}^{2} ;
$$

Let J^{3} be a neighborhood of G^{2} in M_{*}^{3}, which is small with respect to

$$
T^{3}\left|V^{2}\right| A_{1}^{3}|\cdots| A_{s}^{3}\left|A_{1}^{2}\right| \cdots \mid A_{s}^{2}
$$

Then $M_{*}^{3}-{ }^{0} J^{3}$ is a 3 -annulus F_{0}^{3}.
We denote $T^{3} \cap J^{3}$ by T_{J}^{3}, and the two connected components of $T_{J}^{3} \cap A_{j}^{3}$ $(j=1, \cdots, s)$ by $T_{K j}^{3}, T_{L j}^{3}$ (see Fig. 5b) such that $K_{j}^{1} \subset T_{K j}^{3}$ and $L_{j}^{1} \subset T_{L j}^{3}$.

Further we denote the connected components of $J^{3} \cap A_{j}^{3}$ by $K_{j}^{3}, L_{j}^{3}, N_{j 1}^{3}, \cdots, N_{j v_{j}}^{3}$ where

$$
K_{j}^{2} \subset K_{j}^{3}, \quad L_{j}^{2} \subset L_{j}^{3}, \quad N_{j m}^{2} \subset N_{j m}^{3} \quad\left(m=1, \cdots, v_{j}\right)
$$

and the connected components of ${ }^{-}\left(K_{j}^{3}-T_{K j}^{3}\right)$ and $^{-}\left(L_{j}^{3}-T_{L j}^{3}\right)$ by $K_{j 1}^{3}, \cdots, K_{j t_{j}}^{3}$ and $L_{j 1}^{3}, \cdots, L_{j u_{j}}^{3}$, respectively, where

$$
K_{j k}^{2} \cap K_{j k}^{3} \neq \emptyset\left(k=1, \cdots, t_{j}\right) \quad \text { and } \quad L_{j 1}^{2} \cap L_{j 1}^{3} \neq \emptyset\left(1=1, \cdots, u_{j}\right)
$$

Those $t_{j}-1$ connected components of ${ }^{-}\left(A_{j}^{3}-K_{j}^{3}\right)$ that are disjoint from $V_{K j}^{2}$ are 3-cells $F_{K j 1}^{3}, \cdots, F_{K j t_{j}-1}^{3}$ in F_{0}^{3} (see Fig. 5b).

The connected components of ${ }^{-}\left(J^{3}-T_{J}^{3}\right)$ are r 3-cells; we denote them by $P_{1}^{3}, \cdots, P_{r}^{3}$ where $E_{i}^{2} \cap P_{i}^{3} \neq \emptyset(i=1, \cdots, r)$, and we denote the disks $E_{i}^{2} \cap P_{i}^{3}$ by P_{i}^{2}. Then P_{i}^{3} can be represented as cartesian product $P_{i}^{2} \times I^{1}$, where I^{1} is the interval $-1 \leqq x \leqq+1$, such that
(i) $\quad P_{i}^{2}$ is the central disk, i.e. $p \times 0=p$ for all $p \in P_{i}^{2}$;
(ii) the top and bottom disks are the connected components of $\cdot P_{j}^{3} \cap \cdot J^{3}$, i.e. $\left(P_{i}^{2} \times 1\right)+\left(P_{i}^{2} \times-1\right)=\cdot P_{i}^{3} \cap: J^{3}$;
(iii) the polyhedra $A_{j}^{3}, V^{2}, A_{j}^{2}$ intersect P_{i}^{3} "prismatically", i.e.:
$A_{j}^{3} \cap P_{i}^{3}=\left(A_{j}^{3} \cap P_{i}^{2}\right) \times I^{1}, V^{2} \cap P_{i}^{3}=\left(V^{2} \cap P_{i}^{2}\right) \times I^{1}, A_{i}^{2} \cap P_{i}^{3}=\left(A_{i}^{2} \cap P_{i}^{2}\right) \times I^{1}$.
Let $F_{0}^{\prime 3}$ be a 3 -annulus, disjoint from $M^{3}, V^{\prime 2}, F^{\prime 2}$, and let

$$
\beta_{0}: F_{0}^{\prime 3} \rightarrow M_{*}^{3}
$$

be a homeomorphism with the image $\beta_{0}\left(F_{0}^{\prime 3}\right)=F_{0}^{3}$. We denote the boundary 2-spheres $\beta_{0}^{-1}\left(J^{3}\right)$ and $\beta_{0}^{-1}\left(\cdot M_{*}^{3}\right)$ of $F_{0}^{\prime 3}$ by $F_{0}^{\prime 2}$ and $S^{\prime 2}$, respectively. (We may bring about by isotopic deformations the situation in which $\beta_{0}\left(F_{0}^{\prime 2}\right)=\alpha_{0}\left(F^{\prime 2}\right)$ with α_{0} the embedding given in Theorem 3.)
9. Deformations in the A_{j}^{3} 's that take G^{1} onto the boundary of the nonsingular fan V_{*}^{2}. We denote the 3 -cell $K_{j}^{3}+\bigcup_{k=1}^{t_{j}-1} F_{K j k}^{3}$ (see Fig. 5b) by Q_{j}^{3}, and choose a neighborhood $Q_{* j}^{3}$ of ${ }^{-}\left(A_{j}^{3}-Q_{j}^{3}\right)$ in ${ }^{-}\left(A_{j}^{3}-Q_{j}^{3}\right)$, which is small with respect to $G^{2}\left|V^{2}\right| A_{j}^{2}\left|T^{3}\right| T_{J}^{3} \mid J^{3}$, such that (with respect to the product representation introduced in Sec. 8)

$$
{ }^{-}\left({ }^{0} Q_{* j}^{3} \cap P_{i}^{3}\right)={ }^{-}\left(Q_{* j}^{3} \cap P_{i}^{2}\right) \times I^{1} \quad(i=1, \cdots, r)
$$

Then we denote the 3 -cell ${ }^{-}\left[A_{j}^{3}-\left(Q_{j}^{3}+Q_{* j}^{3}\right)\right]$ by O_{j}^{3} and the disks $\cdot O_{j}^{3} \cap Q_{j}^{3}$ and $\cdot O_{j}^{3} \cap Q_{* j}^{3}$ by O_{j}^{2} and $O_{\# j}^{2}$, respectively.

Now we can find an epi-homeomorphism $\delta_{j}: Q_{j}^{3} \rightarrow Q_{j}^{3}+O_{j}^{3}$ with the following properties (see Fig. 5):
(i) $\delta_{j} \mid\left(\cdot Q_{j}^{3}-{ }^{0} O_{j}^{2}\right)=$ identity; $\delta_{j}\left(O_{j}^{2}\right)=O_{\# j}^{2}$.
(ii) $\delta_{j}\left(K_{j}^{1}\right)=\left(K_{j}^{1}-\cdot A_{j}^{2}\right)+{ }^{-}\left(\cdot A_{j}^{2}-K_{j}^{1}\right)$.
(iii) $\delta_{j}\left(K_{j k}^{2}\right)$ intersects L_{j}^{1} in just one point and intersects each disk O_{j}^{2}, $V_{L j}^{2}, L_{j 1}^{2}, \cdots, L_{j u_{j}}^{2}, N_{j 1}^{2}, \cdots, N_{j v_{j}}^{2}$ in just one arc (for all $k=1, \cdots, t_{j}$); $\delta_{j}\left({ }^{0} K_{j k}^{2}\right)$ is disjoint from $V_{K j}^{2}$.
(iv) The neighborhood $\delta_{j}\left(T_{K j}^{3}\right)$ of $\delta_{j}\left(K_{j}^{1}\right)$ in A_{j}^{3} is small with respect to $T_{L j}^{3}\left|V^{2}\right| L_{j 1}^{3}|\cdots| L_{j u_{j}}^{3}\left|N_{j 1}^{3}\right| \cdots \mid N_{j v_{j}}^{3}$ and intersects O_{j}^{2} in just two disjoint disks.
(v) The intersections of $\delta_{j}\left(K_{j k}^{3}\right), \delta_{j}\left(K_{j_{k}}^{2}\right)\left(k=1, \cdots, t_{j}\right)$, and $\delta_{j}\left(T_{K j}^{3}\right)$ with $L_{j 1}^{3}\left(1=1, \cdots, u_{j}\right)$ and $N_{j m}^{3}\left(m=1, \cdots, v_{j}\right)$ (see also Fig. 6) can be written as cartesian products, using the product representation of the P_{i}^{3} 's introduced in Sec. 8; the same holds for the polyhedra

$$
\begin{array}{ccc}
\delta_{j}^{-1}\left(L_{j 1}^{3} \cap \delta_{j}\left(K_{j k}^{3}\right)\right), & \delta_{j}^{-1}\left(L_{j 1}^{2} \cap \delta_{j}\left(K_{j k}^{3}\right)\right), & \delta_{j}^{-1}\left(N_{j m}^{3} \cap \delta_{j}\left(K_{j k}^{3}\right)\right), \\
\delta_{j}^{-1}\left(N_{j m}^{2} \cap \delta_{j}\left(K_{j k}^{3}\right)\right), & \delta_{j}^{-1}\left(T_{L j}^{3} \cap \delta_{j}\left(K_{j k}^{3}\right)\right), & \delta_{j}^{-1}\left(V_{L j}^{2} \cap \delta_{j}\left(K_{j k}^{3}\right)\right) .
\end{array}
$$

Let $\eta: J^{3} \rightarrow M_{*}^{3}$ be the map defined by
(a) $\left.\eta\right|^{-}\left(J^{3}-\bigcup_{j=1}^{s} K_{j}^{3}\right)=$ identity,
(b) $\quad \eta\left|K_{j}^{3}=\delta_{j}\right| K_{j}^{3}$ (for all $j=1, \cdots, s$),
and denote the images $\eta\left(J^{3}\right), \eta\left(G^{1}\right), \eta\left(G^{2}\right), \eta\left(T_{J}^{3}\right), \eta\left(P_{i}^{3}\right)$ by $J_{*}^{3}, G_{*}^{1}, G_{*}^{2}, T_{* J}^{3}, O_{* i}^{3}$, respectively. Obviously we have $G_{*}^{1}=V^{2}$.

Now we denote $\beta_{0}^{-1}\left(O_{j}^{2}\right)$ by ${O_{j}^{\prime 2}}^{2}$, and we choose s pairewise disjoint 3 -cells $O_{1}^{\prime 3}, \cdots, O_{s}^{\prime 3}$ (see Fig. 7) that are disjoint from $M^{3}, V^{\prime 2}, F^{\prime 2},{ }^{0} F_{0}^{\prime 3}$ such that $\cdot O_{j}^{\prime 3} \cap \cdot F_{0}^{\prime 3}=O_{j}^{\prime 2}$; then we denote $F_{0}^{\prime 3}+\bigcup_{j=1}^{s} O_{j}^{\prime 3}$ by $F_{I}^{\prime 3}$, and we choose a map

$$
\beta_{I}: F_{I}^{\prime 3} \rightarrow M_{*}^{3}
$$

with the following properties:
(I) $\left.\beta_{I}\right|^{-}\left[F_{0}^{\prime 3}-\bigcup_{j=1}^{s} \bigcup_{k=1}^{t} t_{j=1}^{-1} \beta_{0}^{-1}\left(F_{K j k}^{3}\right)\right]=\left.\beta_{0}\right|^{-}\left[F_{0}^{\prime 3}-\bigcup_{j=1}^{s} \bigcup_{k=1}^{t_{j}-1} \beta_{0}^{-1}\left(F_{K j k}^{3}\right)\right]$.
(II) $\beta_{I} \mid \beta_{0}^{-1}\left(F_{K j k}^{3}\right)=\left[\delta_{j} \mid F_{K j k}^{3}\right] \cdot\left[\beta_{0} \mid \beta_{0}^{-1}\left(F_{K j k}^{3}\right)\right]$ for all $j=1, \cdots, s$; $k=1, \cdots, t_{j}$).
(III) $\beta_{I} \mid O_{j}^{\prime 3}$ is an epi-homeomorphism of $O_{j}^{\prime 3}$ onto O_{j}^{3}.

We remark that the map β_{I} is locally one-to-one, except for the "reflection disks" $O_{j}^{\prime 2}$, i.e. if p is a point of $F_{i}^{\prime 3}$ and if $U^{\prime 3}$ is a sufficiently small neighborhood of p in $F_{I}^{\prime 3}$ then $\beta_{I} \mid U^{\prime 3}$ is a homeomorisphm if and only if $p \notin \bigcup_{j=1}^{s} O_{j}^{\prime 2}$.
10. $G_{\#}^{1}$ and its neighborhood $T_{* J}^{3}$ lie in a 3-cell H^{3}. Let H^{3} be a neighborhood of $V_{*}^{2}+T_{* J}^{3}$ in M_{*}^{3}, which is small with respect to

$$
G_{*}^{2}\left|V^{2}\right| J_{*}^{3}\left|A_{1}^{3}\right| \cdots\left|A_{s}^{3}\right| O_{1}^{2}|\cdots| O_{s}^{2}
$$

that intersects the $P_{\# i}^{3}$'s prismatically, i.e.: $\eta^{-1}\left(H^{3} \cap P_{\# i}^{3}\right)(i=1, \cdots, r)$ can be written as cartesian product using the product representation of the $P_{i}^{3 \prime} s$ introduced in Sec. 8 (compare Fig. 11a).
11. Arcs W_{i}^{1} in $\cdot J^{3} \cap T_{J}^{3}$ joining top and bottom disks of the prisms P_{i}^{3}. T_{J}^{3} a handlebody of genus r. The intersection $: J^{3} \cap \cdot T_{J}^{3}$ is a 2 -sphere with $2 r$ holes, denoted by T^{2}.

We assert: There can be found r pairwise disjoint $\operatorname{arcs} W_{1}^{1}, \cdots, W_{r}^{1} \subset T^{2}$ such that (for all $i=1, \cdots, r$)
(i) ${ }^{0} W_{i}^{1} \subset{ }^{0} T^{2} ; \cdot W_{i}^{1}=p_{i} \times \cdot I^{1}$ (using the product representation of the P_{i}^{3} 's introduced in Sec. 8) with p_{i} an arbitrary point in $\cdot P_{i}^{2}-\bigcup_{j=1}^{s} A_{j}^{3}$; we denote the arc $p_{i} \times I^{1}$ by $W_{P i}^{1}$;
(ii) if $S_{i}^{1} \subset{ }^{0} T_{J}^{3}$ is a 1 -sphere, topologically parallel to $W_{i}^{1}+W_{P i}^{1}$, i.e.: such that there exists an annulus in T_{J}^{3} with boundary curves S_{i}^{1} and $W_{i}^{1}+W_{P i}^{1}$, then S_{i}^{1} is homologous to $0 \bmod 2$ in $M_{*}^{3}-\left(W_{i}^{1}+W_{P i}^{1}\right)$.

We denote the arc $\eta\left(W_{i}^{1}\right)$ by $W_{\neq i}^{1}$. There exists just one connected component of $\beta_{I}^{-1}\left(W_{\circledast i}^{1}\right)$-we denote it by $W_{i}^{\prime 1}$-such that $\beta_{I}\left(W_{i}^{\prime 1}\right)=W_{\# i}^{1}$; and $W_{i}^{\prime 1} \subset \cdot F_{I}^{\prime 3}$.

Proof of the assertion. First we remark that the 1 -spheres $\cdot P_{1}^{2}, \cdots, \cdot P_{r}^{2}$ form a 1-dimensional homology basis $\bmod 2$ of T_{J}^{3} (if we identify the chains $\bmod 2$ with the corresponding polyhedra). If $\cdot P_{1}^{2}, \cdots, \cdot P_{r}^{2}$ were homologously dependent $\bmod 2$ it would follow that there exists a surface in T_{J}^{3} with boundary some of the $\cdot P_{i}^{2}$, s; this surface could be completed by the corresponding disks P_{i}^{2} to a closed surface, non-separating in M_{*}^{3}; but this is impossible since M_{*}^{3} is a homotopy 3-cell.

We choose an arbitrary system of pairwise disjoint arcs

$$
W_{1}^{*_{1}}, \cdots, W_{r}^{*_{1}} \subset T^{2}
$$

fulfilling condition (i). Now $W_{i}^{* 1}+W_{P i}^{1}(i=1, \cdots, r)$ is homologous mod 2 in T_{J}^{3} to a linear combination $\sum_{k=1}^{r} c_{i k}^{\prime} \cdot P_{k}^{2}$ with coefficients $c_{i k}^{\prime}=0$ or 1 . If $c_{i i}^{\prime}=0$ then we take $W_{i}^{1}=W_{i}^{* 1}$. If $c_{i i}^{\prime} \neq 0$ then to obtain W_{i}^{1} we take a small neighborhood N_{i}^{2} of $\cdot P_{i}^{2} \times 1$ in T^{2} and replace the arc $W_{i}^{* 1} \cap N_{i}^{2}$ by another arc in N_{i}^{2} with the same boundary points such that $W_{i}^{1}+W_{P i}^{1}$ is homologous $\bmod 2$ to $W_{i}^{* 1}+W_{P i}^{1}+\cdot P_{i}^{2}$ in T_{J}^{3}. Now the $W_{i}^{1,}$ s fulfill condition (ii) also. For every $i=1, \cdots, r$ there exists a surface in T_{J}^{3} whose boundary consists of S_{i}^{1} and some of the $\cdot P_{k}^{2}$, s , except $\cdot P_{i}^{2}$, and whose interior lies in ${ }^{0} T_{J}^{3}$; this surface can be completed by the corresponding P_{k}^{2},s to a surface B_{i}^{2} in $M_{*}^{3}-\left(W_{i}^{1}+W_{P i}^{1}\right)$ that is bounded by S_{i}^{1} only.
12. Singular disks $W_{\neq i}^{2}$ in H^{3} corresponding to the arcs $W_{\neq i}^{1}$. Let $W_{1}^{\prime 2}, \cdots, W_{r}^{\prime 2}$ be r pairwise disjoint disks that are disjoint from $M^{3},{ }^{0} F_{I}^{\prime 3}, F^{\prime 2}, V^{\prime 2}$ such that

$$
W_{i}^{\prime 2} \cap \cdot F_{I}^{\prime 3}=\cdot W_{i}^{\prime 2} \cap \cdot F_{I}^{\prime 3}=W_{i}^{\prime 1} \quad(\text { for all } i=1, \cdots, r)
$$

We denote $\cdot W_{i}^{\prime 2}-{ }^{0} W_{i}^{\prime 1}$ by $W_{P i}^{\prime 1}$, and $\bigcup_{i=1}^{r} W_{i}^{\prime 2}$ by $W^{\prime 2}$.
Now we assert: There exists a map $\vartheta: W^{\prime 2} \rightarrow H^{3}$, with the image $\vartheta\left(W^{\prime 2}\right) \subset{ }^{0} H^{3}$ denoted by W_{*}^{2}, and with the following properties:
(i) $\vartheta\left|W_{i}^{\prime \prime}=\beta_{I}\right| W_{i}^{\prime 1}$ and $\vartheta\left(W_{P i}^{\prime 1}\right)=W_{P i}^{1}($ for all $i=1, \cdots, r)$.
(ii) The only singularities of W_{*}^{2} are pairwise disjoint, normal, double arcs $B_{1}^{1}, \cdots, B_{b}^{1}$ (b may be zero) such that each of the two connected components $B_{f}^{\prime 1}, B_{f}^{\prime \prime 1}$ of $\vartheta^{-1}\left(B_{f}^{1}\right)$ possesses just one boundary point in $\bigcup_{i=1}^{r}{ }^{0} W_{i}^{\prime 1}$ and otherwise lies in ${ }^{0} W^{\prime 2}$ (for all $f=1, \cdots, b$). W^{2} intersects the $P_{\# i}^{3}$'s prismatically.
(iii) There exists a neighborhood $U^{\prime 2}$ of $\cdot W^{\prime 2}$ in $W^{\prime 2}$ such that $\vartheta\left({ }^{0} U^{\prime 2}\right) \subset{ }^{0} T_{\# J}^{3}$.

Proof of the assertion. Step 0. Since $W_{\# i}^{1}+W_{P i}^{1} \subset{ }^{0} H^{3}$ (for all $\left.i=1, \cdots, r\right)$ there exists a map $\vartheta_{0}: W^{\prime 2} \rightarrow H^{3}$ with property (i).

Step 1. As in the proof of Sec. 6, steps 1 to 5 , we can derive from ϑ_{0} a map $\vartheta_{I}: W^{\prime 2} \rightarrow H^{3}$ with properties (i), (ii).

Step 2. We choose pairwise disjoint neighborhoods $N_{1}^{3}, \cdots, N_{r}^{3}$ of the 1 -spheres $W_{\# i}^{1}+W_{P i}^{1}$ in H^{3}, which are small with respect to $T_{* J}^{3} \mid \vartheta_{I}\left(W^{\prime 2}\right)$. The intersection $N_{i}^{3} \cap \vartheta_{I}\left(W_{i}^{\prime 2}\right)$ consists of a 1 -sphere N_{i}^{1}, topologically parallel to $W_{\# i}^{1}+W_{P i}^{1}$, and of an even number n_{i} of meridian circles of N_{i}^{3} each of which pierces N_{i}^{1} in just one point. Now we choose an oriented 1 -sphere X_{i}^{1} in $\cdot N_{i}^{3} \cap{ }^{0} T_{\# J}^{3}$, topologically parallel to $W_{\# i}^{1}+W_{P i}^{1}$, and an oriented meridian circle Y_{i}^{1} of N_{i}^{3} that intersects X_{i}^{1} in just one point; we denote the homology classes of X_{i}^{1} and Y_{i}^{1} in N_{i}^{3} by \mathfrak{x}_{i} and \mathfrak{y}_{i}, respectively. Then the homology class \mathfrak{n}_{i} of the properly oriented 1 -sphere N_{i}^{1} is $\mathfrak{n}_{i}=\mathfrak{x}_{i}+w_{i} \mathfrak{\eta}_{i}$.

Now we need the fact that the coefficients w_{i} are even numbers. To prove this we show that both N_{i}^{1} and X_{i}^{1} are homologous $0 \bmod 2$ in $M_{*}^{3}-\left(W_{\# i}^{1}+W_{P i}^{1}\right)$:
(1) $\quad N_{i}^{1}$ bounds a 2-dimensional polyhedron $D_{i}^{2} \subset \vartheta_{I}\left(W_{i}^{\prime 2}\right)$ that intersects $W_{\# i}^{1}+W_{P i}^{1}$ in the even number n_{i} of piercing points. From D_{i}^{2} we remove n_{i} disks, being the intersections of D_{i}^{2} with a small neighborhood U_{i}^{3} of $W_{* i}^{1}+W_{P i}^{1}$ in N_{i}^{3}, and replace them by $\frac{1}{2} n_{i}$ annuli in $\cdot U_{i}^{3}$ such that we obtain a 2 -dimensional polyhedron bounded by N_{i}^{1} and disjoint from $W_{\# i}^{1}+W_{P i}^{1}$.
(2) $\quad\left(\eta \mid T_{J}^{3}\right)^{-1}\left(X_{i}^{1}\right)$ is a 1 -sphere $S_{i}^{1} \subset{ }^{0} T_{J}^{3}$ and there exists an annulus $B_{i}^{* 2}$ with boundary curves S_{i}^{1} and $W_{i}^{1}+W_{P i}^{1}$ and with ${ }^{0} B_{i}^{* 2} \subset{ }^{0} T_{J}^{3}$. On the other hand S_{i}^{1} bounds a surface B_{i}^{2} in $J^{3}-\left(W_{i}^{1}+W_{P i}^{1}\right)$ as constructed in the proof of Sec. 11 which can be chosen disjoint from ${ }^{0} B_{i}^{* 2}$. We can bring about by small deformations the situation in which $\eta\left(B_{i}^{2}+B_{i}^{* 2}\right)$ has normal double curves but no branch points (since η is locally one-to-one). Therefore (and since $\eta \mid B_{i}^{* 2}$ is one-to-one) $\eta\left(B_{i}^{2}\right)$ intersects the boundary curve $W_{\ngtr i}^{1}+W_{P i}^{1}$ of $\eta\left(B_{i}^{2}+B_{i}^{* 2}\right)$ in an even number of piercing points. From $\eta\left(B_{i}^{2}\right)$ we obtain, as in (1), a 2-polyhedron disjoint from $W_{* i}^{1}+W_{P i}^{1}$ with boundary X_{i}^{1}.

If $w_{i} \neq 0$ (for some $i=1, \cdots, r$) then we choose a point in ${ }^{0} W_{\nless i}^{1}$, which is no double point of $\vartheta_{I}\left(W^{\prime 2}\right)$, and a neighborhood R_{i}^{3} of this point in N_{i}^{3} which is small with respect to $\vartheta_{I}\left(W^{\prime 2}\right) \mid W_{* i}^{1}$. We denote the disk $R_{i}^{3} \cap \vartheta_{I}\left(W^{\prime 2}\right)$ by $W_{R i}^{2}$. In ${ }^{0} R_{i}^{3}$ we choose a disk $R_{i}^{2}\left(\right.$ see Fig. 8) such that $\cdot R_{i}^{2} \cap W_{\# i}^{1}$ is one arc R_{i}^{1}, such that ${ }^{0} R_{i}^{2} \cap^{0} W_{\mathrm{R} i}^{2}$ is an open arc one of whose boundary points lies in $\cdot R_{i}^{2}-R_{i}^{1}$ and the other one in $W_{R i}^{1}-R_{i}^{1}$, and such that $-\left[\cdot\left(W_{R i}^{2}+R_{i}^{2}\right) \cap{ }^{0} R_{i}^{3}\right]$ is an unknotted chord in R_{i}^{3}. Then we choose an epi-homeomorphism

$$
\lambda_{i}: R_{i}^{3} \rightarrow R_{i}^{3}
$$

with $\lambda_{i} \mid \cdot R_{i}^{3}=$ identity and $\lambda\left(-\left[\cdot\left(W_{R i}^{2}+R_{i}^{2}\right) \cap{ }^{0} R_{i}^{3}\right]\right)=W_{\# i}^{1} \cap R_{i}^{3}$ and a map

$$
\vartheta_{I I}: W^{\prime 2} \rightarrow H^{3}
$$

with

$$
\left.\vartheta_{I I}\right|^{-}\left[W^{\prime 2}-\vartheta_{I}^{-1}\left(W_{R i}^{2}\right)\right]=\left.\vartheta_{I}\right|^{-}\left[W^{\prime 2}-\vartheta_{I}^{-1}\left(W_{R i}^{2}\right)\right]
$$

and

$$
\vartheta_{I I}\left(\vartheta_{I}^{-1}\left(W_{\mathbf{R} i}^{2}\right)\right)=\lambda_{i}\left(W_{R i}^{2}+R_{i}^{2}\right) .
$$

Now let $N_{I I i}^{3}$ be a neighborhood of $W_{\nless i}^{1}+W_{P i}^{1}$ in N_{i}^{3}, being small with respect to $\vartheta_{I I}\left(W^{\prime 2}\right) \mid T_{\neq J}^{3}$. Then ${ }^{0} N_{I I i}^{3} \cap \vartheta_{I I}\left(W^{\prime 2}\right)$ consists of a 1 -sphere $N_{I I i}^{1}$, topologically parallel to $W_{\# i}^{1}+W_{P i}^{1}$, and of $n_{i}+2$ meridian circles of $N_{I I i}^{3}$. The homology class $\mathfrak{n}_{I I i}$ of the properly oriented $N_{I I i}^{1}$ in $N_{i}^{3}-{ }^{0} N_{I I i}^{3}$ is

$$
\mathfrak{n}_{I I i}=\mathfrak{x}_{I I i}+\left(w_{i} \pm 2\right) \mathfrak{y}_{I I i}
$$

with $\mathfrak{r}_{I I i}, \mathfrak{y}_{I I i}$ the homology classes of X_{i}^{1}, Y_{i}^{1}, respectively, in $N_{i}^{3}-{ }^{0} N_{I I i}^{3}$. The sign in the coefficient $w_{i} \pm 2$ depends on the choice of R_{i}^{2} (see Fig. 8). So we can derive by $\frac{1}{2} \sum_{i=1}^{r} w_{i}$ operations of the kind described a map

$$
\vartheta_{*}: W^{\prime 2} \rightarrow H^{3}
$$

such that (under analogous notation) the curve $N_{* i}^{1}$ is homologous to $X_{* i}^{1}$ in $N_{i}^{3}-{ }^{0} N_{* i}^{3}($ for all $i=1, \cdots, r)$.

If $w_{i}=0$ (for all $\left.i=1, \cdots, r\right)$ then we choose $\vartheta_{*}=\vartheta_{I}$, etc.
Step 3. From ϑ_{*} we can obtain by deformations (that change $\vartheta_{*}\left(W^{\prime 2}\right)$ only in the $N_{* i}^{3}$'s) a map $\vartheta: W^{\prime 2} \rightarrow H^{3}$ with the demanded properties (i), (ii), (iii).
13. Deformation over prismatic neighborhoods of the singular disks $W_{\# i}^{2}$. The map ϑ can be extended to a map $\tilde{\vartheta}: W^{\prime 3} \rightarrow H^{3}$, with $\tilde{\vartheta}\left(W^{\prime 3}\right) \subset{ }^{0} H^{3}$ denoted by W_{*}^{3}, such that (see Fig. 9) the following hold:
(i) $W^{\prime 3}$ may be represented as cartesian product $W^{\prime 2} \times I_{*}^{1}$ where I_{*}^{3} means an interval $-1 \leqq x_{*} \leqq 1$, with $p \times 0=p$ for all $p \epsilon W^{\prime 2}$, and $W^{\prime 3}$ is disjoint from $M^{3},{F^{\prime 2}}^{2}, V^{\prime 2}$. We denote the components $W_{i}^{\prime 2} \times I^{1}$ of $W^{\prime 3}$ by $W_{i}^{\prime 3}$.
(ii) $W_{i}^{\prime 3} \cap F_{i}^{\prime 3}=\cdot W_{i}^{\prime 3} \cap \cdot F_{i}^{\prime 3}=W_{i}^{\prime 1} \times I_{*}^{1}$ with

$$
\tilde{\vartheta}\left|\left(\cdot W_{i}^{\prime 3} \cap \cdot F_{i}^{\prime 3}\right)=\beta_{I}\right|\left(\cdot W_{i}^{\prime 3} \cap \cdot F_{i}^{\prime 3}\right)
$$

(iii) W_{*}^{3} and the $P_{* i}^{3}$'s intersect each other prismatically, i.e.:

$$
\eta^{-1}\left(W_{\#}^{3} \cap P_{\# i}^{3}\right)=\left\{\left[\eta^{-1}\left(W_{\#}^{3} \cap P_{\# i}^{3}\right)\right] \cap P_{i}^{2}\right\} \times I^{1}
$$

and

$$
\tilde{\vartheta}^{-1}\left(W_{\#}^{3} \cap P_{* i}^{3}\right)=\left\{\left[\tilde{\vartheta}^{-1}\left(W_{*}^{3} \cap P_{\# i}^{3}\right)\right] \cap W^{2}\right\} \times I_{*}^{1}
$$

(using the product representations introduced in Sec. 8 and in (i), respectively).
(iv) If p is a point of $W_{*}^{3}, \vartheta^{-1}(p)$ is either one or two points. The set B of all double points of W_{*}^{3} is disjoint from the disks $\tilde{\vartheta}\left(W_{P i}^{\prime 1} \times I_{*}^{1}\right)(i=1, \cdots, r)$ and is prismatic, i.e.

$$
\tilde{\vartheta}^{-1}(B)=\left[\tilde{\vartheta}^{-1}(B) \cap W^{\prime 2}\right] \times I_{*}^{1},
$$

(using the same product representation as in (i)).
We denote the 3 -annulus $F_{I}^{\prime 3}+W^{\prime 3}$ by $F_{I I}^{\prime 3}$ and we define a map

$$
\beta_{I I}: F_{I I}^{\prime 3} \rightarrow M_{*}^{3}
$$

such that $\beta_{I I}\left|F_{I}^{\prime 3}=\beta_{I}\right| F_{I}^{\prime 3}$ and $\beta_{I I} \mid W^{\prime 3}=\tilde{\vartheta}$.
14. Deformation over the prisms $P_{* i}^{3}$. In $F_{I I}^{\prime 3}-S^{\prime 2}$ there are $2 r$ pairwise disjoint disks $P_{+i}^{\prime 2}, P_{-i}^{\prime 2}(i=1, \cdots, r)$ mapping onto the top and bottom disks of the $P_{\# i}^{3}$'s, i.e. such that $\beta_{I I}\left(P_{ \pm i}^{\prime 2}\right)=\eta\left(P_{i}^{2} \times \pm 1\right)$. Now we choose r pairwise disjoint 3 -cells $P_{1}^{\prime 3}, \cdots, P_{r}^{\prime 3}$, disjoint from $M^{3}, F^{\prime 2}, V^{\prime 2}$, such that

$$
P_{i}^{\prime 3} \cap F_{I I}^{\prime 3}=\cdot P_{i}^{\prime 3} \cap \cdot F_{I I}^{\prime 3}=P_{+i}^{\prime 2}+P_{-i}^{\prime 2}+\left(W_{P i}^{\prime 1} \times I_{*}^{1}\right)
$$

(being a disk, for all $i=1, \cdots, r$); and we choose epi-homeomorphisms

$$
\varkappa_{i}: P_{i}^{\prime 3} \rightarrow P_{i}^{3}
$$

such that $\eta_{i} \cdot \varkappa_{i}\left|\left(\cdot P_{i}^{\prime 3} \cap \cdot F_{I I}^{\prime 3}\right)=\beta_{I I}\right|\left(\cdot P_{i}^{\prime 3} \cap \cdot F_{I I}^{\prime 3}\right)$. Finally we denote the 3 -annulus $F_{I I}^{\prime 3}+\bigcup_{i=1}^{r} P_{i}^{\prime 3}$ by $F^{\prime 3}$ and we define a map

$$
\beta: F^{\prime 3} \rightarrow M_{*}^{3}
$$

such that $\beta \mid F_{I I}^{\prime 3}=\beta_{I I}$ and $\beta \mid P_{i}^{\prime 3}=\eta_{i} \cdot \varkappa_{i}$.
We denote the handlebody $H^{3}+\mathrm{U}_{j=1}^{s} A_{j}^{3}$ by K^{3} and $\beta^{-1}\left(K^{3} \cap \beta\left(F^{\prime 3}\right)\right)$ by $K^{\prime 3}$. We remark that $\beta\left(\cdot F^{\prime 3}-S^{\prime 2}\right) \subset{ }^{0} H^{3}$ and that

$$
\left.\beta\right|^{-}\left(F^{\prime 3}-K^{\prime 3}\right):^{-}\left(F^{\prime 3}-K^{\prime 3}\right) \rightarrow^{-}\left(M_{*}^{3}-K^{3}\right)
$$

is an epi-homeomorphism. Moreover β is locally one-to-one, except on the s surfaces ${ }^{-}\left(\cdot O_{j}^{\prime 3} \cap^{0} F^{\prime 3}\right)$; it is locally three-to-one on the $\operatorname{arcs}^{-}\left(\cdot O_{j}^{\prime 2} \cap^{0} F^{\prime 3}\right)$ and locally two-to-one otherwise on ${ }^{-}\left(\cdot O_{j}^{\prime 3} \cap^{0} F^{\prime 3}\right)$.
15. Conclusion. There can be found an epi-homeomorphism $\lambda: M^{3} \rightarrow M^{3}$ such that the image $C_{0}^{3}=\lambda\left(C^{1}\right)$ of the given curve C^{1} lies in ${ }^{0} M_{*}^{3}-K^{3}$. Then we choose a knot projection cone $D^{\prime 2} \subset F^{\prime 3}$ with $\cdot D^{\prime 2}=\beta^{-1}\left(C_{0}^{1}\right)$. We can choose $D^{\prime 2}$ such that $\beta \mid D^{\prime 2}$ is locally one-to-one. Further we can bring about by small deformations the situation in which the singularities of the image $\beta\left(D^{\prime 2}\right)$ are normal. Then $D^{2}=\lambda^{-1}\left(\beta\left(D^{\prime 2}\right)\right)$ possesses the demanded properties. This proves Theorem 2.

We choose two disjoint 3 -cells $C^{\prime 3}, C^{\prime \prime 3}$ with

$$
C^{\prime 3} \cap F^{\prime 3}={S^{\prime 2}}^{2}=C^{\prime 3}, \quad C^{\prime \prime 3} \cap F^{\prime 3}=\cdot F^{\prime 3}-S^{\prime 2}=\cdot C^{\prime 3},
$$

an epi-homeomorphism

$$
\beta^{\prime}: C^{\prime 3} \rightarrow C^{3}
$$

with $\beta^{\prime}\left|{S^{\prime}}^{2}=\beta\right|{S^{\prime}}^{2}$, and a map

$$
\beta^{\prime \prime}: C^{\prime \prime 3} \rightarrow H^{3}
$$

with $\beta^{\prime \prime}\left|\left(\cdot F^{\prime 3}-S^{\prime 2}\right)=\beta\right|\left(\cdot F^{\prime 3}-S^{\prime 2}\right)$. Then $F^{\prime 3}+C^{\prime 3}+C^{\prime \prime 3}$ is a 3 -sphere S^{3} and the map $\gamma: S^{3} \rightarrow M^{3}$, composed of $\beta, \beta^{\prime}, \beta^{\prime \prime}$, has the demanded properties. This proves Theorem 1.

II. Proof of Theorem 3

We bring about (by isotopic deformations) the situation in which the 2 -sphere $J^{3}=\beta_{0}\left(F_{0}^{\prime 2}\right)$ (see Sec. 8) is equal to the image $F_{0}^{2}=\alpha_{0}\left(F^{\prime 2}\right)$ under the given
embedding α_{0}. We denote the 2 -spheres

$$
\cdot F_{I}^{\prime 3}-S^{\prime 2}, \quad \cdot F_{I I}^{\prime 3}-S^{\prime 2}, \quad \cdot F^{\prime 3}-S^{2}
$$

by $F_{I}^{\prime 2}, F_{I I}^{\prime 2}, F_{I I I}^{\prime 2}$, respectively, and we choose epi-homeomorphisms μ_{0}, μ_{I}, $\mu_{I I}, \mu_{I I I}$ of $F^{\prime 2}$ onto $F_{0}^{\prime 2}, F_{I}^{\prime 2}, F_{I I}^{\prime 2}, F_{I I I}^{\prime 2}$, respectively, such that $\alpha_{0}=\left(\beta_{0} \mid F_{0}^{\prime 2}\right) \cdot \mu_{0}$ and

$$
\mu_{[i]}^{-1}\left|\left(F_{[i]}^{\prime 2} \cap F_{[i-1]}^{\prime 2}\right)=\mu_{[i-1]}^{-1}\right|\left(F_{[i]}^{\prime 2} \cap F_{[i-1]}^{\prime 2}\right) \quad(\text { for }[i]=I, I I, I I I)
$$

We denote the maps

$$
\left(\beta_{I} \mid F_{I}^{\prime 2}\right) \cdot \mu_{I}, \quad\left(\beta_{I I} \mid F_{I I}^{\prime 2}\right) \cdot \mu_{I I}, \quad\left(\beta \mid F_{I I I}^{\prime 2}\right) \cdot \mu_{I I I}
$$

defining singular 2 -spheres in M_{*}^{3}, by $\alpha_{I}, \alpha_{I I}, \alpha_{3}$, respectively. Now α_{3} fulfills already the condition (b) of Theorem 3, and it remains to show that the deformation from α_{0} to α_{3}, which may be derived from the proof of Theorem 1, 2 , can be decomposed into a sequence of elementary deformations, according to condition (a).
16. Decomposing the deformations in the A_{j}^{33} s. The deformation from α_{0} to α_{I}, changing the 2 -sphere F_{0}^{2} in the A_{j}^{3} 's (see Sec. 9), can be decomposed into a sequence of $\sum_{j=1}^{s} t_{j} \cdot\left(u_{j}+2 v_{j}\right)$ elementary deformations of type 1a, intermixed with nonessential deformations, (see Fig. 5).

We denote the connected components of the (prismatic) intersections

$$
\eta\left(K_{j k}^{3}\right) \cap L_{j l}^{3} \quad\left(j=1, \cdots, s ; k=1, \cdots, t_{j} ; l=1, \cdots, u_{j}\right)
$$

under current enumeration by $C_{1}^{3}, \cdots, C_{c}^{3}$ and the connected components of

$$
\eta\left(K_{j k}^{3}\right) \cap N_{j m}^{3} \quad\left(m=1, \cdots, v_{j}\right)
$$

by $D_{1}^{3}, \cdots, D_{d}^{3}$. Further we denote that connected component of $\eta^{-1}\left(C_{g}^{3}\right)$ ($g=1, \cdots, c$) that is different from C_{g}^{3} by $C_{g}^{\prime 3}$, and that connected component of $\eta^{-1}\left(D_{h}^{3}\right)(h=1, \cdots, d)$ that is different from D_{h}^{3} by $D_{h}^{\prime 3}$. Finally we denote the intersections of the $C_{g}^{3}, C_{g}^{\prime 3}, D_{h}^{3}, D_{h}^{\prime 3}$ s s with the P_{i}^{2}, (see Fig. 11a) by $C_{g}^{2}, C_{g}^{\prime 2}$, $D_{h}^{2}, D_{h}^{2}{ }_{h}$, respectively, and the intersections of the $K_{j k}^{3}, L_{j l}^{3}$'s with the P_{i}^{2} 's by $K_{P j k}^{2}, L_{P j l}^{2}$, respectively.
17. Decomposing the deformations over W_{*}^{3}. We can bring about by small deformations the situation in which the singular dises $W_{* i}^{2}$ and their prismatic neighbourhood W_{*}^{3} (as constructed in Secs. 11, 12, 13) are in a "normal position" with respect to the singular 2 -sphere $F_{I}^{2}=\alpha_{I}\left(F^{\prime 2}\right)$ and to the singular disks $P_{\# i}^{2}$, etc., i.e. such that the following conditions hold:
(i) F_{I}^{2}, H^{3}, the A_{j}^{3} 's, and the $P_{\# i}^{2}$'s intersect W_{*}^{3} prismatically with respect to the product representation introduced in Sec. 13.

We denote $\widetilde{\vartheta}\left(\vartheta^{-1}\left(p_{i}\right) \times I_{*}^{1}\right)$ by P_{i}^{1} (Fig. 9$)$.
(ii) $\eta^{-1}\left(W_{*}^{2} \cap P_{\# i}^{2}\right)(i=1, \cdots, r)$ is disjoint from those connected components of $K_{P j k}^{2} \cap \eta^{-1}\left(H^{3} \cap P_{\# i}^{3}\right)$ and $L_{P j l}^{2} \cap \eta^{-1}\left(H^{3} \cap P_{\# i}^{3}\right)(j=1, \cdots, s$;
$\left.k=1, \cdots, t_{j} ; l=1, \cdots, u_{j}\right)$ that contain the $\operatorname{arcs} \cdot K_{P j k}^{2} \cap \cdot P_{i}^{2}, L_{P j l}^{2} \cap \cdot P_{i}^{2}$, respectively, in their boundaries (see Fig. 11a).

Now we carry out the deformation of α_{I} into $\alpha_{I I}$ in three steps:
Step 1. Let $B_{f}^{\prime 3}(f=1, \cdots, b)$ (see Fig. 10) be that connected component of $\widetilde{\vartheta}^{-1}\left(B^{3}\right)$ that contains $B_{f}^{\prime 1}$. We choose pairwise disjoint neighborhoods $B_{*_{f}^{\prime}}^{\prime 3}$ of the $B_{f}^{\prime 3}$'s in $W^{\prime 3}$, which are small with respect to $\tilde{\vartheta}^{-1}\left(F_{I}^{2} \cap W_{\#}^{3}\right) \mid \tilde{\vartheta}^{-1}\left(B^{3}\right)$ and which are cartesian products in the product representation introduced in Sec. 13. Now we deform F_{I}^{2} over the 3 -cells $\tilde{\vartheta}\left(B_{* f}^{\prime 3}\right)$ which can be done by a sequence of elementary deformations of type 1a. We denote the map so obtained from α_{I} by $\alpha_{I *}$ and ${ }^{-}\left(W^{\prime 2}-\bigcup_{f=1}^{b} B_{* f}^{\prime 3}\right)$ by $W_{*}^{\prime 2}$. Now we have to deform $F_{I *}^{2}=\alpha_{I *}\left(F^{\prime 2}\right)$ over the remaining nonsingular 3-cells $\tilde{\vartheta}\left(W_{*}^{\prime 2} \times I_{*}^{1}\right)$.

Step 2. In $W_{*}^{\prime 2}$ we choose pairwise disjoint $\operatorname{arcs} X_{1}^{1}, \cdots, X_{x}^{1}$ (see Fig. 10) with ${ }^{0} X_{m}^{1} \subset{ }^{0} W_{*}^{\prime 2}$ that join points of

$$
\cdot W_{*}^{\prime 2}-\bigcup_{i=1}^{r} W_{P i}^{\prime 1}
$$

to points of

$$
\vartheta^{-1}\left(F_{I *}^{2} \cap W_{\#}^{2}\right) \cap{ }^{0} W_{*}^{\prime 2}
$$

such that
(a) every double point of $\vartheta^{-1}\left(F_{I *}^{2} \cap W_{*}^{2}\right) \cap^{0} W_{*}^{\prime 2}$ is end point of one arc X_{m}^{1},
(b) every connected component of $\vartheta^{-1}\left(F_{I *}^{2} \cap W_{*}^{2}\right) \cap^{0} W_{*}^{\prime 2}$ contains at least one end point of an arc X_{m}^{1},
(c) the X_{m}^{1} s intersect $\vartheta^{-1}\left(F_{I *}^{\gamma} \cap W_{*}^{2}\right) \cap^{0} W_{*}^{\prime 2}$ in isolated piercing points that are no double points of $\vartheta^{-1}\left(F_{I *}^{2} \cap W_{\#}^{2}\right) \cap^{0} W_{*}^{\prime 2}$,
(d) the points $\vartheta\left(\cdot X_{m}^{1} \cap \cdot W_{*}^{\prime 2}\right)$ are no double points of $F_{I *}^{2}$.

Now we choose pairwise disjoint neighborhoods X_{m}^{2} of the X_{m}^{1} 's in $W_{*}^{\prime 2}$, which are small with respect to $\vartheta^{-1}\left(F_{I *}^{2} \cap W_{*}^{2}\right)$. Then we deform $F_{I *}^{2}$ over the 3 -cells $\tilde{\vartheta}\left(X_{m}^{2} \times I_{*}^{1}\right)$ which can be done by a sequence of elementary deformations of type 1a and 1 b . According to the notation used in Theorem 3 we denote the map so obtained from $\alpha_{I *}$ by α_{1} and $\alpha_{1}\left(F^{\prime 2}\right)$ by F_{1}^{2}. Further we denote ${ }^{-}\left(W_{*}^{\prime 2}-\bigcup_{m=1}^{x} X_{m}^{2}\right)$ by $W_{* *}^{\prime 2}$.

Step 3. Finally we deform F_{1}^{2} over the remaining 3-cells $\widetilde{\vartheta}\left(W_{* *}^{\prime 2} \times I_{*}^{1}\right)$. This can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations) since the curves $\vartheta^{-1}\left(F_{1}^{2} \cap W_{*}^{2}\right) n^{0} W_{* *}^{\prime 2}$ are nonsingular, pairwise disjoint, open arcs with boundary points in

$$
\cdot W_{* *}^{\prime 2}-\bigcup_{i=1}^{r} W_{P i}^{\prime 1}
$$

By this we obtain from α_{1} the map $\alpha_{I I}$.
18. Decomposing the deformations over the $P_{* i}^{3}$'s. We carry out the deformation of $\alpha_{I I}$ into α_{3} in four steps (see Fig. 11).

Step 1. Let Q_{i}^{1} be a neighborhood of a point $\epsilon \cdot P_{i}^{1}$ in $\cdot P_{i}^{2}-{ }^{0} P_{i}^{1}$ which is small
with respect to $\eta^{-1}\left(F_{1 I}^{2} \cap P_{\nless i}^{2}\right)$ and let $Y_{i}^{1}=\cdot P_{i}^{2}-{ }^{0} Q_{i}^{1}$. Further we choose a neighborhood Y_{i}^{2} of Y_{i}^{1} in P_{i}^{2}, which is small with respect to

$$
\eta^{-1}\left(H^{3} \cap P_{\# i}^{2}\right)\left|\eta^{-1}\left(F_{I I}^{2} \cap P_{\# i}^{2}\right)\right| \bigcup_{j, k=1}^{s, t j} K_{P j k}^{2}
$$

and intersecting the disks $C_{g}^{2}, C_{g}^{\prime 2}, D_{h}^{\prime 2}$ prismatically, i.e. such that

$$
\eta^{-1}\left(\eta\left(Y_{i}^{2} \times I^{1}\right)\right)=\left[\eta^{-1}\left(\eta\left(Y_{i}^{2} \times I^{1}\right)\right) \cap P_{i}^{2}\right] \times I^{1}
$$

(using the product representation introduced in Sec. 8). Then we deform $F_{I I}^{3}$ over the 3-cells $\eta\left(Y_{1}^{2} \times I^{1}\right)$ which can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations). We denote the map so obtained from $\alpha_{I I}$ by $\alpha_{I I *}$, and $\alpha_{I I *}\left({F^{\prime 2}}^{2}\right)$ by $F_{I I *}^{2}$, further ${ }^{-}\left(P_{i}^{2}-Y_{i}^{2}\right)$ by $P_{* i}^{2}$ (see Fig. 11b), the image $\eta\left(P_{* i}^{2}\right)$ by $P_{* * i}^{2}$, and the intersections of $K_{P j k}^{2}, L_{P j l}^{2}$ with the $P_{* i}^{2}$'s by $K_{* j k}^{2}, L_{* j l}^{2}$, respectively. Further we denote the set of double points of

$$
\eta\left(\bigcup_{i=1}^{r} P_{* i}^{2} \times I^{1}\right)
$$

by D_{*} and the connected components of

$$
\eta^{-1}\left(D_{*}\right) \cap \bigcup_{i=1}^{r} P_{* i}^{2}
$$

by $C_{* g}^{2}, C_{* g}^{\prime 2}, D_{* h}^{2}, D_{* h}^{\prime 2}$ such that
$C_{* g}^{2} \subset C_{g}^{2}, \quad C_{* g}^{\prime 2} \subset C_{g}^{\prime 2}, \quad D_{* h}^{2} \subset D_{h}^{2}$,

$$
D_{* h}^{\prime 2} \subset D_{h}^{\prime} \quad(g=1, \cdots, c ; h=1, \cdots, d)
$$

Step 2. We choose pairwise disjoint $\operatorname{arcs} Y_{i 1}^{1}, \cdots, Y_{i y_{1}}^{1}$ (see Fig. 11b) in $P_{*_{i}}^{2}$ with ${ }^{0} Y_{i f}^{1} \subset{ }^{0} P_{*_{i}}^{2}\left(f=1, \cdots, y_{i}\right)$ that join points of Y_{1}^{2} to points in ${ }^{0} P_{* i}^{2}-\eta^{-1}\left(F_{1 I *}^{2} \cap P_{* * i}^{2}\right)$, and we choose pairwise disjoint neighborhoods $Y_{i f}^{2}$ of the $Y_{i f}^{1}$'s in $P_{* i}^{2}$, which are small with respect to $\eta^{-1}\left(F_{I I *}^{2} \cap P_{* * i}^{2}\right) \mid \bigcup_{j, k=1}^{s, t}{ }_{j} K_{* j k}^{2}$ such that, with the notation $P_{* * i}^{2}={ }^{-}\left(P_{* i}^{2}-\bigcup_{f=1}^{y_{i}} Y_{i f}^{2}\right)$, the following hold:
(i) The arcs $Y_{i f}^{1}$ intersect the curves ${ }^{-}\left[\eta^{-1}\left(F_{I I *}^{2} \cap P_{* * i}^{2}\right) \cap{ }^{0} P_{* i}^{2}\right]$ in isolated piercing points that are no double points (and no boundary points) of that curves.
(ii) The arcs $Y_{i f}^{1}$ are disjoint from the disks $C_{* g}^{2}, C_{* g}^{\prime 2}, D_{* h}^{2}(g=1, \cdots, c$; $h=1, \cdots, d)$ and from the $\operatorname{arcs}^{-}\left(\cdot K_{* j k}^{2} \cap^{0} P_{* i}^{2}\right)\left(j=1, \cdots, s ; k=1, \cdots, t_{j}\right)$ and intersect the disks $D_{* h}^{\prime 2}$ prismatically, i.e. such that

$$
\eta\left(Y_{i f}^{1} \cap D_{* h}^{\prime 2}\right)=\left[\eta\left(Y_{i f}^{1} \cap D_{* h}^{\prime 2}\right) \cap D_{* h}^{2}\right] \times I^{1}
$$

using the product representation introduced in Sec. 8. The $Y_{i f}^{2}$'s intersect the $D_{* h}^{\prime 2}$'s also prismatically.
(iii) If Z^{1} is a connected component of ${ }^{-}\left[\eta^{-1}\left(F_{I I *}^{2} \cap P_{* * i}^{2}\right) \cap^{0} P_{* * i}^{2}\right]$ then one of the following cases holds (see Fig. 12) :
case a. Z^{1} is an arc (that is either disjoint from the disks $C_{* g}^{2}, C_{*_{g}}^{\prime 2}, D_{* h}^{2}$, $D_{* h}^{\prime 2}$ or lies in the boundary of one disk $C_{* g}^{2}, C_{* g}^{\prime 2}$, or $D_{* h}^{\prime 2}$).
case b. Z^{1} consists of two arcs, piercing each other in one point, and is disjoint from the disks $C_{* g}^{2}, C_{* g}^{\prime 2}, D_{* h}^{2}, D_{* h}^{\prime 2}$.
case c. Z^{1} consists of two $\operatorname{arcs} Z_{1}^{1}, Z_{2}^{1}$ lying in the boundary of one disk $D_{* h}^{\prime 2}$, and of one arc Z_{3}^{1} that pierces Z_{1}^{1} and Z_{2}^{1} each in one point.
case d. Z^{1} consists of the boundary of one disk $D_{* h}^{2}$ and of an arbitrary number of pairwise disjoint arcs that intersect $D_{* h}^{2}$ each in one arc (and $\cdot D_{* h}^{2}$ each in two points).
Then we deform $F_{I I *}^{2}$ over the 3 -cells $\eta\left(Y_{i f}^{2} \times I^{1}\right)(i=1, \cdots, r$; $f=1, \cdots, y_{i}$) which can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations). According to the notation used in Theorem 3 we denote the map so obtained from $\alpha_{\text {II* }}$ by α_{2} and $\alpha_{2}\left(F^{\prime 2}\right)$ by F_{2}^{2}. Further we denote the intersections of the disks $K_{* j k}^{2}$ with the $P_{* * i}^{2}$'s by $K_{* * j k}^{2}$.

Step 3. Now we deform F_{2}^{2} over the 3-cells $\eta\left(K_{* * j k}^{2} \times I^{1}\right)(j=1, \cdots, s ;$ $k=1, \cdots, t_{j}$) which can be done by a sequence of elementary deformations of type 3 a and 3 b and nonessential deformations. We denote the map so obtained from α_{2} by $\alpha_{2 *}$ and $\alpha_{2 *}\left({F^{\prime}}^{2}\right)$ by $F_{2 *}^{2}$.

Step 4. The remaining parts $\eta\left({ }^{-}\left[P_{* * i}^{2}-\bigcup_{j, k=1}^{s, t_{j}} K_{* * j k}^{2}\right] \times I^{1}\right)$ of the $P_{* i}^{3}$'s are nonsingular 3 -cells, and we can deform $F_{2 *}^{2}$ over them by a sequence of elementary deformations of type 3 a and 3 b (and may be nonessential deformations). By this we obtain from $\alpha_{2 *}$ the map α_{3}.
19. Conclusion. The maps α_{1} and α_{2}, as obtained in Sec. 17, Step 2, and Sec. 18, Step 2, respectively, and the map α_{3} possess the demanded properties, and Theorem 3 is proved.

Bibliography

1. R. H. Bing, An alternative proof that 3 -manifolds can be triangulated, Ann. of Math. (2), vol. 69 (1959), pp. 37-65.
2. -, Necessary and sufficient conditions that a 3 -manifold be S^{3}, Ann. of Math. (2), vol. 68 (1958), pp. 17-37.
3. M. Dehn, Über die Topologie des 3-dimensionalen Raumes, Math. Ann., vol. 69 (1910), pp. 137-168.
4. W. Haken, Theorie der Normalfächen, Acta Math., vol. 105 (1961), pp. 245-375.
5. W. Hurewicz, Beiträge zur Topologie der Deformationen, I-IV, Proc. Akad. Amsterdam, vol. 38 (1935), pp. 112-119, 521-528; vol. 39 (1936), pp. 117-126, 215-224.
6. E. E. Moise, Affine structures in 3 -manifolds, V, Ann. of Math. (2), vol. 56 (1952), pp. 96-114.
6a. ——— Simply connected 3-manifolds, Topology of 3 -manifolds and related topics, Englewood Cliffs, Prentice-Hall, 1962, pp. 196-197.
7. E. Pannwitz, Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Math. Ann., vol. 108 (1933), pp. 629-672.
8. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) vol. 66 (1957), pp. 1-26.
9. H. Poincaré, Cinquième complément a l'Analysis Situs, Rend. Circ. Mat. Palermo, vol. 18 (1904), pp. 45-110.
10. K. Reidemeister, Topologie der Polyeder und kombinatorische Topologie der Komplexe, Leipzig, Geest and Portig, 1953.
11. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Leipzig, B. G. Teubner, 1934.
12. A. S. Shapiro and J. H. C. Whitehead, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 174-178.
13. S. Smale, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc., vol. 90 (1959), pp. 281-290.
14. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., vol. 45 (1939), pp. 243-327.

Institute for Advanced Study
Princeton, New Jersey

[^0]: Received April 10, 1965.
 ${ }^{1}$ This research was partially supported by the Air Force Office of Scientific Research.
 ${ }^{2}$ Theorem 1 is a consequence of a "monotonic mapping theorem" announced by Moise in [6a]; however the proof is different from Moise' proof.

[^1]: ${ }^{3}$ We denote the interior of a (tame) point set X by ${ }^{0} X$, the boundary by ${ }^{\circ} X$, and the closure by \bar{X} or ${ }^{-} X$.

[^2]: ${ }^{4}$ For convenience we shall use the word "deformation" not only for deformations of maps but also for deformations of polyhedra $X \subset M^{3}$ (i.e. for changes of X into X^{*} such that there can be found homotopic maps $\xi, \xi^{*}: X^{\prime} \rightarrow M^{3}$ with $\left.\xi\left(X^{\prime}\right)=X, \xi^{*}\left(X^{\prime}\right)=X^{*}\right)$. This is convenient since a surface with normal singularities, defined by a map

 $$
 \xi: X^{\prime 2} \rightarrow M^{3}
 $$

 is essentially determined by the image polyhedron $\xi\left(X^{\prime 2}\right)$.

