ON HOMOTOPY 3-SPHERES¹

BY

Wolfgang Haken

A homotopy 3-sphere M^3 is a compact, simply connected 3-manifold without boundary. After the work of Moise [6] and Bing [1] M^3 possesses a triangulation. The Poincaré conjecture [9] states that every homotopy 3-sphere M^3 is a 3-sphere. In this paper we prove three theorems, related to the Poincaré conjecture, about maps of a 3-sphere S^3 onto M^3 and about 1- and 2-spheres in M^3 .

1. Theorems 1 and 2, concerning maps $S^3 \to M^3$ and closed curves in M^3 . From the work of Hurewicz [5], Part III, it follows that there exists a continuous map $\varphi : S^3 \to M^3$ of degree 1 (where S^3 means a 3-sphere). We shall prove that there exists an especially simple map of this kind.²

THEOREM 1. If M^3 is a homotopy 3-sphere then there exists a simplicial map $\gamma : S^3 \to M^3$ of degree 1 such that the singularities of γ (i.e. the closure of the set of those points $p \in M^3$ for which $\gamma^{-1}(p)$ consists of more than one point) lie in a (polyhedral, compact) handlebody in M^3 .

One might consider this result as a step towards a proof of the Poincaré conjecture. Indeed, if it were possible to restrict the singularities of γ to a 3-cell in M^3 instead of a handlebody the existence of a homeomorphism $S^3 \to M^3$ would follow.

From Theorem 1 we may derive another aspect of the Poincaré problem by considering simple closed curves in M^3 .

From the definition of simple connectedness it follows that every closed curve $C^1 \subset M^3$ bounds a singular disk $D^2 \subset M^3$. If C^1 is a tame, simple closed curve then one can find a D^2 which is also tame and possesses only "normal" singularities (see [7], [8]), i.e. double curves in which two sheets of D^2 pierce each other, triple points in which three sheets pierce each other, and branch points from each of which one or more double arcs originate; the triple points, the branch points, and the interiors of the double curves are disjoint from the boundary D^2 of D^2 , but the double curves may have end points in D^2 .

As Bing [2] has proved, M^3 is a 3-sphere if (and only if) every tame, simple closed curve $C^1 \subset M^3$ lies in a (compact) 3-cell in M^3 . The statement that C^1 lies in a 3-cell $D^3 \subset M^3$ is equivalent to the statement that C^1 bounds a "knot projection cone" D^2 in M^3 , i.e. a (tame) singular disk whose singularities are one branch point P and double arcs originating from P, being pairwise

Received April 10, 1965.

¹ This research was partially supported by the Air Force Office of Scientific Research.

² Theorem 1 is a consequence of a "monotonic mapping theorem" announced by Moise in [6a]; however the proof is different from Moise' proof.

disjoint otherwise, and terminating in D^2 . (A small neighborhood of a knot projection cone in M^3 is always a 3-cell.) Hence one would prove the Poincaré conjecture if one could prove that every tame, simple closed curve $C^1 \subset M^3$ bounds a knot projection cone in M^3 . Theorem 2 of this paper (which may be considered as a corollary of Theorem 1) is a first step in this direction: it states that C^1 always bounds a knot projection cone D^2 with additional singularities that do not touch $D^2 = C^1$.

THEOREM 2. If C^1 is a tame, simple closed curve in a homotopy 3-sphere M^3 then there is a (tame) singular disk $D^2 \subset M^3$ with $D^2 = C^1$ such that D^2 has the following singularities:

(a) One branch point P of multiplicity g (g may be zero) and g double arcs Q_1^1, \dots, Q_g^1 (in each of which two sheets of D^2 pierce each other), starting from P and ending at D^2 with ${}^{0}Q_i^{1} \subset {}^{0}D^2$ such³ that the $Q_i^{1} - P$'s are pairwise disjoint.

(b) Closed double curves R_1^1, \dots, R_h^1 (h may be zero) which may pierce themselves and the Q_i^1 's in triple points of D^2 , but which are disjoint from D^2 .

In the special case h = 0, D^2 is a knot projection cone; in the case g = 0, D^2 is a so called Dehn disk (see [8]). In the latter case it follows from Dehn's lemma (stated by Dehn [3] and proved by Papakyriakopoulos [8]) that there exists a (tame) disk D^{*2} with $D^{*2} = C^1$ and $h^* = 0$ (and also $g^* = 0$). Now the question arises whether it follows in the general case ($g \neq 0$) that there exists a (tame, singular) disk D^{*2} with $D^{*2} = C^1$ and $h^* = 0$ (and g^* arbitrary, not necessarily equal to g). An affirmative answer to this question would imply the Poincaré conjecture.

If one applies the methods for proving Dehn's lemma, as developed by Papakyriakopoulos [8] and later simplified by Shapiro and Whitehead [12], to this problem then one has to consider a small neighborhood $D^3 \subset M^3$ of D^2 , a covering of D^3 , etc. Then all conclusions of the proof of Dehn's lemma in [12] apply to our problem as well, except in case (1) wherein the boundary D^3 of D^3 (or that of one of the neighborhoods in the coverings) consists of 2-spheres only: for case (1) it follows easily in dealing with Dehn's lemma that C^1 bounds a nonsingular disk; however it seems to be difficult to prove for case (1) in dealing with our problem, $g \neq 0$, that C^1 bounds a knot projection cone. Nevertheless I hope that someone will be able to fill this gap in the proof of the Poincaré conjecture.

2. Theorem 3, concerning 2-spheres in M^3 . We obtain another aspect of the Poincaré problem if we consider 2-spheres in M^3 instead of closed curves. If we remove the interior of a 3-cell C^3 from M^3 we get a so called homotopy 3-cell M^3_* . It follows from the Hurewicz theorem [5], Part II, that every 2-sphere in M^3_* may be homotopically deformed into one point.

Let us consider a 2-sphere $F_0^2 \subset M_*^3$, "topologically parallel" to the bound-

³ We denote the interior of a (tame) point set X by ${}^{0}X$, the boundary by X, and the closure by \overline{X} or ${}^{-}X$.

ary of M_*^3 , i.e. such that $F_0^2 + M_*^3$ bounds a 3-annulus $F_0^3 \subset M_*^3$. If one could prove that F_0^2 can be deformed⁴ into a 3-cell $H^3 \subset M_*^3$ not only by a homotopy but also by an isotopy whose image is tame at each level then the Poincaré conjecture would follow (since it would follow that M_*^3 is a 3-cell). It follows from the work of Smale [13] on regular homotopy that F_0^2 can be deformed onto the boundary of a 3-cell in H^3 in such a way that no branch points occur at any stage of the deformation. In order to go one step further in this direction we shall show that F_0^2 can be deformed into H^3 by especially simple homotopic deformations that take place in a special order.

First we have to define some special homotopic deformations. Let

$$\alpha: F'^2 \to M^3_*,$$

with the image $\alpha(F'^2) \subset {}^0M^3_*$ denoted by F^2 , be a continuous map, defining a (tame) 2-sphere with canonical singularities (i.e. normal double curves and triple points, but without branch points, see [8]). Let A'^2 be a disk in F'^2 whose image $\alpha(A'^2)$ is also a (nonsingular) disk A^2 . Let

$$A^{*2} \subset {}^{0}M^{3}_{*}$$

be another tame disk with $A^{*2} \cap A^2 = A^* = A^{*2}$ such that $A^2 + A^{*2}$ bounds a 3-cell $K^3 \subset M^3_*$. Now we consider a deformation δ that changes α into α^* such that

$$\alpha^* | (F'^2 - {}^{0}A'^2) = \alpha | (F'^2 - {}^{0}A'^2)$$

and $\alpha^* | A'^2$ is a homeomorphism onto A^{*2} . We call such a deformation *non-essential* if there exists an epi-homeomorphism

$$\zeta: M^3_* \to M^3_* \quad ext{with} \quad \zeta(F^2) \, = \, lpha^*(F'^2)$$

that is the identity outside a small neighborhood of K^3 . We call δ an *elementary deformation of type* 1, 2, or 3, respectively, if the surface defined by α^* has only normal singularities and one of the following conditions holds (see Fig. 1):

Type 1. Either case (a) $({}^{0}K^{3} \cap F^{2})$ is a disk B^{2} with ${}^{\cdot}B^{2} \subset {}^{0}A^{*2}$; or case (b) $({}^{0}K^{3} \cap F^{2})$ consists of two disks B^{2} , C^{2} such that

$$B^2, C^2 \subset A^{*2}$$

 $B^0(B^2 \cap C^2) \subset K^3.$

and $B^2 \cap C^2$ is an arc with

$$\xi: X'^2 \to M^3$$

is essentially determined by the image polyhedron $\xi(X'^2)$.

⁴ For convenience we shall use the word "deformation" not only for deformations of maps but also for deformations of polyhedra $X \subset M^3$ (i.e. for changes of X into X* such that there can be found homotopic maps $\xi, \xi^* : X' \to M^3$ with $\xi(X') = X, \xi^*(X') = X^*$). This is convenient since a surface with normal singularities, defined by a map

Type 2. $({}^{0}K^{3} \cap F^{2})$ is a disk B^{2} such that each of the intersections $B^{2} \cap A^{2}$ and $B^{2} \cap A^{*2}$ consists of two disjoint arcs with

 ${}^{\scriptscriptstyle 0}({}^{\scriptscriptstyle 0}B^2 \sqcap A^2) \subset {}^{\scriptscriptstyle 0}A^2 \quad \text{and} \quad {}^{\scriptscriptstyle 0}({}^{\scriptscriptstyle 0}B^2 \sqcap A^{*2}) \subset {}^{\scriptscriptstyle 0}A^{*2}.$

Type 3. Either case (a) $({}^{0}K^{3} \cap F^{2})$ is a disk B^{2} with ${}^{B^{2}} \subset {}^{0}A^{2}$; or case (b) $({}^{0}K^{3} \cap F^{2})$ consists of two disks B^{2} , C^{2} such that ${}^{B^{2}} \subset {}^{0}A^{2}$ and each of the intersections $C^{2} \cap A^{2}$, $C^{2} \cap A^{*2}$, $C^{2} \cap B^{2}$ is an arc with

 ${}^{0}({}^{\cdot}C^{2} \mathsf{n} A^{2}) \subset {}^{0}A^{2}, \qquad {}^{0}({}^{\cdot}C^{2} \mathsf{n} A^{*2}) \subset {}^{0}A^{*2}, \qquad {}^{0}(C^{2} \mathsf{n} B^{2}) \subset {}^{0}C^{2}, {}^{0}B^{2}.$

We remark that an elementary deformation of type 1 (a or b) changes the image sphere F^2 only in a small neighborhood (small with respect to F^2) of an arc (connecting a point in ${}^{0}A^2$ to a point in ${}^{0}B^2 \cap {}^{0}C^2$, respectively); a deformation⁴ of type 2 changes F^2 in a small neighborhood of a disk (whose boundary intersects each A^2 and B^2 in one arc). According to this one might say that a deformation of type i (i = 1, 2, 3) is essentially *i*-dimensional.

THEOREM 3. Let M_*^3 be a homotopy 3-cell and $\alpha_0 : F'^2 \to M_*^3$ an embedding of a 2-sphere, topologically parallel to M_*^3 . Then α_0 can be deformed step by step into maps α_1 , α_2 , α_3 of F'^2 into M_*^3 such that the following holds:

(a) α_i (i = 1, 2, 3) is obtained from α_{i-1} by a finite sequence of elementary deformations of type *i* and non-essential deformations.

(b) The image $\alpha_3(F'^2)$ lies in a 3-cell $H^3 \subset {}^0M^3_*$.

The two essential points of this theorem (which are not immediate consequences of Smale's results [13]) are (1) the order in which the deformations take place and (2) that no deformations are used that move the surface over a triple point.

We remark without proof: If it were possible to avoid the deformations of type 1b (i.e. to avoid triple points) or to avoid the deformations of type 2 then this would imply the Poincaré conjecture; this would hold even if H^3 were not a 3-cell, but homeomorphic to any compact subset of euclidean 3-space with connected boundary.

3. Sketch of the proofs. The theorems are proved by considering deformations of singular 2-spheres in a homotopy 3-cell M_*^3 . We start with an embedding

$$\beta_0: F_0^{\prime 3} \to M^3_*$$

of a 3-annulus $F_0^{\prime 3}$ into M_*^3 such that one boundary sphere S'^2 of $F_0^{\prime 3}$ is mapped onto M_*^3 and the other boundary sphere $F_0^{\prime 2}$ onto the 2-sphere $F_0^2 = \alpha_0(F'^2)$. Now we deform F_0^2 into a 3-cell $H^3 \subset {}^0M_*^3$ in the simplest way we can find. To do this we choose a simple cell-decomposition Γ of the homotopy 3-sphere $M^3 = M_*^3 + C^3$ (C^3 being a 3-cell with $C^3 \cap M_*^3 = C^3 = M_*^3$) into one vertex E^0 , r elements E_i^1 , E_i^2 ($i = 1, \dots, r$) of each dimension 1 and 2, and one open 3-cell E^3 containing C^3 . Then we choose a neighborhood J^3 of the 2-skeleton G^2 of Γ , and we may assume that our initial 3-annulus $\beta_0(F_0'^3)$ is $M_*^3 - {}^0J^3$, hence $F_0^2 = J^3$. Now we use the fact that M_*^3 is simply connected by taking a collection of r singular disks, bounded by the 1-skeleton G^1 of Γ (that consists of the r loops \bar{E}_i^1 with the common vertex E^0); these disks with the boundary point E^0 in common form a "fan" V^2 with singularities. We can choose V^2 such that its only singularities are pairwise disjoint double arcs A_i^1 ($j = 1, \dots, s$, as depicted in Fig. 2). Now we contract V^2 , changing it only within small neighborhoods A_i^3 of the A_i^1 's, onto a nonsingular fan V_*^2 , a small neighborhood H^3 of which is a 3-cell; that means we deform the 1-skeleton G^1 into the 3-cell H^3 . We carry out corresponding deformations (see footnote 4) of the 2-skeleton G^2 onto a "singular 2-skeleton" $G_{\#}^2$ and of its neighborhood J^3 onto a singular polyhedron $J_{\#}^3$; and we change the map β_0 correspondingly into a map $\beta_I : F_I^{\prime 3} \to M_{\#}^3$ with $\beta_I \mid S'^2 = \beta_0 \mid S'^2$. All the deformations of G^2 , J^3 take place in the A_j^3 's. $H^3 + \bigcup_{j=1}^s A_j^3$ is a handlebody K^3 . The corresponding deformations of F_0^2 onto F_1^2 are of type 1a only.

Now we have to deform the rest of F_I^2 into H^3 . First we remark that $J_{\mathscr{S}}^3$ may be decomposed into a neighborhood T_{*}^{3} of the deformed 1-skeleton V_{*}^{2} and into r "prismatic", singular 3-cells $P_{\$i}^3$ (being prismatic neighborhoods of middle parts of the deformed E_i^{2} 's), such that $T_{\mathscr{K}}^{\overline{i}} \subset {}^{0}H^{\overline{i}}$. That means, that part of F_I^2 lying outside of H^3 lies in the "top" and "bottom" disks of the $P_{\#i}^3$'s. The boundaries of the top and bottom disks of $P_{\$i}^3$ may be joined by an arc $W_i^1 \subset F_I^2 \cap {}^0H^3$ and by an arc $W_{P_i}^3 \subset P_{\#i}^3$; the so obtained 1-spheres $W_i^1 + W_{P_i}^1$ bound singular disks $W_i^2 \subset {}^{0}H^3$. We can choose these W_i^2 's such that their only singularities are double arcs and that singular, prismatic neighborhoods W_i^3 of them fit properly to F_I^2 and to the $P_{\#i}^3$'s. Then we expand the singular 3-annulus, defined by β_I , over these singular prisms W_i^3 (denoting the changed β_I by β_{II} ; the corresponding deformation of F_I^2 onto a singular 2-sphere F_{II}^2 may be decomposed into deformations of type 1 (a and b) yielding a singular 2-sphere F_1^2 (and a map α_1 according to Theorem 3) and after them deformations of type 2 yielding F_{II}^2 . Now F_{II}^2 contains "folds" around the $P_{\$i}^3$'s consisting of the top and bottom disks and joining disks (containing the W_{Pi}^{1} 's); so we can expand the singular 3-annulus over the $P_{\#i}^3$'s (denoting the changed β_{II} by $\beta : F'^3 \to M_*^3$ with $\beta \mid S'^2 = \beta_0 \mid S'^2$). The corresponding deformation of F_{II}^2 yields $F_3^2 \subset {}^0H^3$ (and α_3) and may be decomposed into deformations of type 2, yielding F_2^2 (and α_2), and after them deformations of type 3 (a and b); this completes the proof of Theorem 3.

To prove Theorem 2 we observe that the complement $M_*^3 - {}^0K^3$ of the handlebody K^3 is covered one-to-one by β . So we deform the given curve C^1 isotopically into a curve $C_0^1 \subset M_*^3 - K^3$; then we choose a knot projection cone D'^2 bounded by the knot $\beta^{-1}(C_0^1)$ in the 3-annulus F'^3 ; we bring about by small deformations the situation in which $\beta(D'^2)$ has only normal singularities. Then $D^2 = \beta(D'^2)$ has the demanded properties. Theorem 1 is proved by extending β to a 3-sphere $S^3 \supset F'^3$.

We remark: If it were possible to find the map

$$\beta: F'^3 \to M^3_*$$

(with $\beta(F'^3 - S'^2) \subset {}^0H^3$) such that $\beta \mid \beta^{-1}(M^3_* - H^3)$ is locally one-to-one then the Poincaré conjecture would follow by an easy conclusion. We would obtain such a map β if it were possible to deform the 3-annulus $\beta_0(F'^3)$ onto $\beta(F'^3)$ by "expansions" only. But in our procedure some of the very first deformations in the A_j^3 's (and only these) are not expansions, so we get certain surfaces in F'^3 such that β is not locally one-to-one at (and only at) the points of these surfaces. (β maps these surfaces homeomorphically into K^3 . Moreover it is possible to arrange our procedure such that these exceptional surfaces become disks.)

I. Proof of Theorems 1 and 2

We prove Theorem 1 and 2 first. After this we shall prove Theorem 3 by consideration of some more details.

4. Preliminaries. Let M^3 be a homotopy 3-sphere. After Moise [6] and Bing [1] there exists a triangulation of M^3 . This means there exists a homotopy 3-sphere, homeomorphic to M^3 , that is a (straight-lined, finite) polyhedron in a euclidean space \mathfrak{S}^n of sufficiently high dimension n. So we may assume for convenience and without loss of generality that M^3 itself is a polyhedron in \mathfrak{S}^n . All point sets considered in the subsequent part of this paper are *polyhedral in* \mathfrak{S}^n in the sense of [10] (i.e. finite unions of straightlined, finite, convex, open cells in \mathfrak{S}^n); they are denoted by capital roman letters, and their dimensions by upper indices. We use the notation $X, \bar{X}, {}^0X$ for the *boundary, closure, interior* of X, respectively, and $X - Y = X - (X \cap Y)$ for the *difference*.

By a decomposition of X we mean always a collection of finitely many pairwise disjoint point sets whose union is X. A decomposition Δ is called a cell-decomposition, if the elements of Δ are open cells such that for every two cells $A, B \epsilon \Delta$ either $A \cap B = \emptyset$ or $A \subset B$ holds. We call a cell-decomposition Δ a straight-lined triangulation if its elements are open, straight-lined simplices in \mathfrak{S}^n such that the open faces of each element are also elements of Δ ; we call a cell-decomposition Θ a triangulation in general if for each element $A \epsilon \Theta$ the decomposition $\Theta(\overline{A})$ of \overline{A} , consisting of all those elements of Θ that lie in \overline{A} , is isomorphic to the decomposition of a simplex (of the same dimension as A) into its interior and its open faces.

By a (polyhedral) neighborhood of X in Y (as defined in [14]) we mean the closure of the simplex star of X in a second barycentric subdivision Δ^{**} of a (general) triangulation Δ of Y such that X is the union of elements of Δ ; the neighborhood is called *small with respect to* $Z | V | \cdots | W$ (see [4, Kap. I,2]) if $Z \cap Y, V \cap Y, \cdots, W \cap Y$ are unions of elements of Δ .

By an *arc*, *disk*, or 3-*cell* we mean, if not stated otherwise, a compact, nonsingular 1-, 2-, or 3-cell, respectively.

All maps considered in the subsequent part of this paper are *simplicial* maps in the sense of [11, p. 114]: a continuus map $\alpha : A' \to B$ is called sim-

plicial if there exist straight-lined triangulations Δ' of A' and Δ of B such that α maps each element of Δ' linearly onto an element of Δ .

Let C^3 be a 3-cell in M^3 and denote the homotopy 3-cell $M^3 - {}^0C^3$ by M_*^3 .

5. A simple cell-decomposition Γ of M^3 . We can find a cell-decomposition Γ of M^3 with the following properties:

(i) Γ contains just one 0-dimensional element, say E^0 , and just one 3-dimensional element, say E^3 .

(ii) $C^3 \subset E^3$.

(iii) Γ contains r elements, say E_1^1, \dots, E_r^1 , of dimension 1 and r elements, say E_1^2, \dots, E_r^2 , of dimension 2.

(iv) Each element E_i^1 lies at least 2 times in the boundary of $\bigcup_{j=1}^r E_j^2$ (i.e.: if U^3 is a neighborhood of a point of E_i^1 in M^3 , which is small with respect to

$$|E_1^1| \cdots |E_r^1 E_1^2 \cdots |E_r^2|$$

then ${}^{0}U^{3} \cap \bigcup_{j=1}^{r} E_{j}^{2}$ consists of at least 2 pairwise disjoint open disks).

Proof of the assertion. Γ may be found as follows:

Step 0. We take an arbitrary decomposition Γ_0 of M^3 into open cells.

Step 1. We delete, step by step, such 2-dimensional elements of Γ_0 that separate two different 3-dimensional elements; this yields finally a decomposition Γ_1 with only one 3-dimensional element (see [11]).

Step 2. Now we contract a maximal tree in the 1-skeleton of Γ_1 into one point; this yields a decomposition Γ_2 with property (i).

Step 3. If a 1-dimensional element $E^1 \epsilon \Gamma_2$ lies just once in the boundary of a 2-dimensional element $E^2 \epsilon \Gamma_2$ and does not lie in the boundary of any other 2-dimensional element of Γ_2 then we delete both E^1 and E^2 ; repeating this operation as often as possible, we obtain a decomposition Γ_3 with properties (i) and (iv). Γ_3 possesses also property (iii) since the Euler characteristic of M^3 is zero (see [11]).

Step 4. To obtain Γ we deform the 2-skeleton of Γ_3 isotopically such that the deformed 2-skeleton lies in $M^3 - C^3$.

Remark. In the case r = 0, M^3 is obviously a 3-sphere and we have nothing to prove. Therefore we may assume for the subsequent sections of this paper that $r \neq 0$. We denote the 1-skeleton $\bigcup_{i=1}^{r} \overline{E}_{i}^{1}$ and the 2-skeleton $\bigcup_{i=1}^{r} \overline{E}_{i}^{2}$ of Γ by G^1 , G^2 , respectively.

6. The 1-skeleton G^1 of Γ bounds a singular fan V^2 . We assert: There exists a map

$$\zeta: V'^2 \to M^3_*,$$

with the image $\zeta(V'^2) \subset {}^0M^3_*$ denoted by V^2 , and with the following properties (see Fig. 2):

(i) V'^2 consists of r disks V'_1^2, \dots, V'_r^2 , possessing one common boundary

point E'^0 , and otherwise being pairwise disjoint; V'^2 is disjoint from M^3 , F'^2 . (ii) $V^2 = G^1$.

(iii) The only singularities of V^2 are pairwise disjoint, normal, double arcs A_1^1, \dots, A_s^1 (s may be zero) such that each of the two connected components $A_j'^1, A_j''^1$ of $\zeta^{-1}(A_j^1)$ possesses just one boundary point in $V'^2 - E'^0$ and otherwise lies in ${}^0V'^2$ (for all $j = 1, \dots, s$).

(iv) The arcs A_j^1 $(j = 1, \dots, s)$ intersect $G^2 - G^1$ at most in isolated piercing points, V^2 intersects $G^2 - G^1$ at most in piercing curves whose intersection and self-intersection points are the piercing points $A_j^1 \cap (G^2 - G^1)$.

(v) $\zeta^{-1}({}^{-1}\{V^2 \cap [G^2 - G^1]\})$ is disjoint from $V'^2 - E'^0$, i.e. a connected component of

$$\zeta^{-1}(V^2 \cap [G^2 - G^1])$$

is either a 1-sphere or an open arc whose boundary lies in

$$E'^0 + \bigcup_{j=1}^s [(A'^1_j + A''_j) \cap V'^2]$$

(see Fig. 3).

Proof of the assertion. Step 0. Since M^3_* is simply connected there exists a map $\zeta_0: V^{\prime 2} \to M^3_*$ with properties (i) and (ii).

Step 1. From ζ_0 we can obtain by small deformations (by a similar procedure as described in [7]) a map $\zeta_I : V'^2 \to M_*^3$, also with properties (i), (ii), such that the only singularities of $V_I^2 = \zeta_I(V'^2)$ are normal double curves, triple points, and branch points of multiplicity 1 (see [8]), and such that the triple points, the branch points, and the interiors of the double curves lie in ${}^0V_I^2$, and that E^0 is no double point.

Step 2. Now we consider the set D_I of all double points (not including the triple points) of V_I^2 , and we remove, step by step, all those connected components $D_{I1}^1, \dots, D_{Id}^1$ of D_I that are disjoint from V_I^2 . To do this we can find an arc $C_k^1 \subset V_I^2$ that joins a point of $V_I^2 - (E^0 + D_I)$ to a point of a component D_{Ik}^1 (provided that $d \neq 0$) such that ${}^0C_k^1 \cap \overline{D}_I$, ${}^0C_k^1 \cap V_I^2 = \emptyset$; then we remove D_{Ik}^1 (without introducing a new component of that kind) by a deformation of ζ_I (see Fig. 4) that changes V_I^2 only in a neighborhood of C_k^1 , and so on. In this way we obtain finally after d deformations a map $\zeta_{II}: V'^2 \to M_*^3$.

Step 3. Now we can remove the triple points of $V_{II}^2 = \zeta_{II}(V'^2)$ by deformations of ζ_{II} that change V_{II}^2 only in neighborhoods of double arcs of V_{II}^2 that join the triple points to $V_{II}^2 - E^0$. Further we can remove the branch points by cuts along those double arcs of V_{II}^2 that join the branch points to $V_{II}^2 - E^0$. This yields a map

$$\zeta_{III}: V'^2 \to M^3_*,$$

with $\zeta_{III}(V'^2)$ denoted by V_{III}^2 , such that the set D_{III} of double points of V_{III}^2 consists of pairwise disjoint arcs $D_{III1}^1, \dots, D_{IIIe}^1$.

Step 4. If one of the components of the inverse image of D_{IIIk}^1 —say $D_{IIIk}'^1$ is disjoint from V'^2 , then we choose an arc $C'_k \subset V'^2$, joining a point of ${}^0D_{IIIk}'^1$ to

166

a point of

$$V'^{2} - [E'^{0} + \zeta_{III}^{-1}(D_{III})],$$

with ${}^{0}C'_{k}{}^{1} \cap \zeta_{III}^{-1}(D_{III})$, ${}^{0}C'_{k}{}^{1} \cap V'^{2} = \emptyset$, and we remove $D'_{IIIk}{}^{1}$ by a deformation of ζ_{III} (similar to Step 2) that changes V^{2}_{III} only in a neighborhood of $\zeta_{III}(C'_{k}{}^{1})$; and so on. This yields finally a map

$$\zeta_{IV}: V'^2 \to M^3_*$$

with the properties (i), (ii), and (iii).

Step 5. From ζ_{IV} we obtain by small deformations a map

$$\zeta_V: V^{\prime 2} \to M^3_*,$$

with $\zeta_V(V'^2)$ denoted by V_V^2 , having the properties (i), \cdots , (iv).

Step 6. From ζ_V we obtain, by deformations that change V_V^2 only in a small neighborhood of $V_V^2 = G^1$, a map $\zeta : V'^2 \to M_3^*$ with the required properties.

7. Neighborhoods A_j^3 of the double arcs A_j^1 of V^2 . Let A_1^3, \ldots, A_s^3 be pairwise disjoint neighborhoods of A_1^1, \cdots, A_s^1 , respectively, in M_*^3 , which are small with respect to $G^2 | V^2$ (see Fig. 5a).

 $A_j^3 \cap G^1$ consists of two disjoint arcs; we denote them by K_j^1 , L_j^1 . The closures of the connected components of $(A_j^3 \cap V^2) - A_j^1$ are two disks; we denote them by $V_{\kappa_j}^2$, $V_{L_j}^2$ such that

$$K_j^1 \subset {}^{\cdot}V_{Kj}^2, \qquad L_j^1 \subset {}^{\cdot}V_{Lj}^2.$$

We choose a neighborhood A_j^2 of A_j^1 in $V_{\kappa_j}^2$, which is small with respect to G^2 , and we denote the nonsingular fan $(V^2 - \bigcup_{j=1}^s A_j^2)$ by V_*^2 .

We denote the nonsingular ran $(V - O_{j=1}A_j)$ by V_* . We denote those connected components of $A_j^3 \cap G^2$ that contain K_j^1 , L_j^1 , respectively, by K_j^2 , L_j^2 . The closures of the connected components of $K_j^2 - K_j^1$ and $L_j^2 - L_j^1$ are disks K_{j1}^2 , \cdots , $K_{jt_j}^2$ and L_{j1}^2 , \cdots , $L_{ju_j}^2$, respectively. Those connected components of $A_j^3 \cap G^2$ that are different from K_j^2 , L_j^2 are disks N_{j1}^2 , \cdots , $N_{jv_j}^2$ (v_j may be zero). We arrange the notation such that the disks K_{j1}^2 , \cdots , $K_{jt_j}^2$ lie around K_j^1 in the order of the enumeration and such that $V_{K_j}^2$ lies in this order between $K_{jt_j}^2$, and K_{j1}^2 .

8. A small neighborhood J^3 of the 2-skeleton G^2 and its complementary 3-annulus F_0^3 . Let T^3 be a neighborhood of G^1 in M_*^3 , which is small with respect to

$$G^2 | V^2 | A_1^3 | \cdots | A_s^3 | A_1^2 | \cdots | A_s^2;$$

Let J^3 be a neighborhood of G^2 in M^3_* , which is small with respect to

$$T^3 | V^2 | A_1^3 | \cdots | A_s^3 | A_1^2 | \cdots | A_s^2$$
.

Then $M^3_* - {}^0\!J^3$ is a 3-annulus F^3_0 .

We denote $T^3 \cap J^3$ by T^3_J , and the two connected components of $T^3_J \cap A^3_j$ $(j = 1, \dots, s)$ by T^3_{Kj} , T^3_{Lj} (see Fig. 5b) such that $K^1_j \subset T^3_{Kj}$ and $L^1_j \subset T^3_{Lj}$. Further we denote the connected components of $J^3 \cap A_j^3$ by $K_j^3, L_j^3, N_{j1}^3, \cdots, N_{jv_j}^3$ where

$$K_j^2 \subset K_j^3$$
, $L_j^2 \subset L_j^3$, $N_{jm}^2 \subset N_{jm}^3$ $(m = 1, \dots, v_j)$

and the connected components of $(K_j^3 - T_{Kj}^3)$ and $(L_j^3 - T_{Lj}^3)$ by $K_{j1}^3, \dots, K_{jt_j}^3$ and L_{j1}^3 , \cdots , $L_{ju_j}^3$, respectively, where

$$K_{jk}^2 \cap K_{jk}^3 \neq \emptyset \ (k = 1, \dots, t_j) \text{ and } L_{j1}^2 \cap L_{j1}^3 \neq \emptyset \ (1 = 1, \dots, u_j).$$

Those $t_j - 1$ connected components of $(A_j^3 - K_j^3)$ that are disjoint from $V_{\kappa_j}^2$ are 3-cells F_{Kj1}^3 , \cdots , $F_{Kjt_j-1}^3$ in F_0^3 (see Fig. 5b).

The connected components of $(J^3 - T_J^3)$ are r 3-cells; we denote them by P_1^3, \dots, P_r^3 where $E_i^2 \cap P_i^3 \neq \emptyset$ $(i = 1, \dots, r)$, and we denote the disks $E_i^2 \cap P_i^3$ by P_i^2 . Then P_i^3 can be represented as cartesian product $P_i^2 \times I^1$, where I^1 is the interval $-1 \leq x \leq +1$, such that

(i) P_i^2 is the central disk, i.e. $p \times 0 = p$ for all $p \in P_i^2$;

(ii) the top and bottom disks are the connected components of $P_j^3 \cap J^3$, i.e. $(P_i^2 \times 1) + (P_i^2 \times -1) = P_i^3 \cap J^3$; (iii) the polyhedra A_j^3 , V^2 , A_j^2 intersect P_i^3 "prismatically", i.e.:

$$A_{j}^{3} \cap P_{i}^{3} = (A_{j}^{3} \cap P_{i}^{2}) \times I^{1}, \ V^{2} \cap P_{i}^{3} = (V^{2} \cap P_{i}^{2}) \times I^{1}, \ A_{i}^{2} \cap P_{i}^{3} = (A_{i}^{2} \cap P_{i}^{2}) \times I^{1}.$$

Let $F_0^{\prime 3}$ be a 3-annulus, disjoint from M^3 , $V^{\prime 2}$, $F^{\prime 2}$, and let

$$\beta_0: F_0^{\prime 3} \to M^3_*$$

be a homeomorphism with the image $\beta_0(F_0^{\prime 3}) = F_0^3$. We denote the boundary 2-spheres $\beta_0^{-1}(J^3)$ and $\beta_0^{-1}(M^3)$ of $F_0^{\prime 3}$ by $F_0^{\prime 2}$ and $S^{\prime 2}$, respectively. (We may bring about by isotopic deformations the situation in which $\beta_0(F_0^{\prime 2}) = \alpha_0(F^{\prime 2})$ with α_0 the embedding given in Theorem 3.)

9. Deformations in the A_j^3 's that take G^1 onto the boundary of the nonsingular fan V_*^2 . We denote the 3-cell $K_j^3 + \bigcup_{k=1}^{t_j-1} F_{K_jk}^3$ (see Fig. 5b) by Q_j^3 , and choose a neighborhood Q_{*j}^3 of $(A_j^3 - Q_j^3)$ in $(A_j^3 - Q_j^3)$, which is small with respect to $G^2 | V^2 | A_j^2 | T^3 | T_j^3 | J^3$, such that (with respect to the product representation introduced in Sec. 8)

$${}^{-}({}^{0}Q_{*j}^{3} \cap P_{i}^{3}) = {}^{-}(Q_{*j}^{3} \cap P_{i}^{2}) \times I^{1} \qquad (i = 1, \cdots, r).$$

Then we denote the 3-cell $[A_j^3 - (Q_j^3 + Q_{*j}^3)]$ by O_j^3 and the disks $O_j^3 \cap Q_j^3$ and $O_j^3 \cap Q_{*j}^3$ by O_j^2 and O_{*j}^2 , respectively.

Now we can find an epi-homeomorphism $\delta_j: Q_j^3 \to Q_j^3 + O_j^3$ with the following properties (see Fig. 5):

(i) $\delta_{j} | (Q_{j}^{3} - O_{j}^{2}) = \text{identity}; \delta_{j}(O_{j}^{2}) = O_{\#j}^{2}.$ (ii) $\delta_{j}(K_{j}^{1}) = (K_{j}^{1} - A_{j}^{2}) + (A_{j}^{2} - K_{j}^{1}).$ (iii) $\delta_{j}(K_{jk}^{2})$ intersects L_{j}^{1} in just one point and intersects each disk $O_{j}^{2},$ $V_{Lj}^{2}, L_{j1}^{2}, \dots, L_{juj}^{2}, N_{j1}^{2}, \dots, N_{jv_{j}}^{2}$ in just one arc (for all $k = 1, \dots, t_{j}$); $\delta_j({}^{0}K_{jk}^2)$ is disjoint from V_{Kj}^2 .

168

(iv) The neighborhood $\delta_j(T^3_{\kappa_j})$ of $\delta_j(K^1_j)$ in A^3_j is small with respect to $T^3_{L_j} | V^2 | L^3_{j_1} | \cdots | L^3_{j_{u_j}} | N^3_{j_1} | \cdots | N^3_{j_{v_j}}$ and intersects O^2_j in just two disjoint disks.

(v) The intersections of $\delta_j(K_{jk}^3)$, $\delta_j(K_{jk}^2)$ $(k = 1, \dots, t_j)$, and $\delta_j(T_{Kj}^3)$ with L_{j1}^3 $(1 = 1, \dots, u_j)$ and N_{jm}^3 $(m = 1, \dots, v_j)$ (see also Fig. 6) can be written as cartesian products, using the product representation of the P_i^{3} introduced in Sec. 8; the same holds for the polyhedra

$$\begin{split} & \delta_j^{-1}(L_{j1}^3 \sqcap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(L_{j1}^2 \sqcap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(N_{jm}^3 \sqcap \delta_j(K_{jk}^3)), \\ & \delta_j^{-1}(N_{jm}^2 \sqcap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(T_{Lj}^3 \sqcap \delta_j(K_{jk}^3)), \qquad \delta_j^{-1}(V_{Lj}^2 \sqcap \delta_j(K_{jk}^3)). \end{split}$$

Let $\eta: J^3 \to M^3_*$ be the map defined by

(a)
$$\eta \mid {}^{-}(J^{3} - \bigcup_{j=1}^{s} K_{j}^{3}) = \text{identity},$$

(b) $\eta \mid K_{j}^{3} = \delta_{j} \mid K_{j}^{3} \text{ (for all } j = 1, \cdots, s),$

and denote the images $\eta(J^3), \eta(G^1), \eta(G^2), \eta(T_J^3), \eta(P_i^3)$ by $J_{\$}^3, G_{\$}^1, G_{\$}^2, T_{\$J}^3, O_{\$i}^3$,

respectively. Obviously we have $G_{\sharp}^{1} = {}^{\prime}V_{\ast}^{2}$. Now we denote $\beta_{0}^{-1}(O_{j}^{2})$ by $O_{j}^{\prime 2}$, and we choose *s* pairewise disjoint 3-cells $O_{1}^{\prime 3}, \dots, O_{s}^{\prime 3}$ (see Fig. 7) that are disjoint from $M^{3}, V^{\prime 2}, F^{\prime 2}, {}^{0}F_{0}^{\prime 3}$ such that $O_{j}^{\prime 3} \cap F_{0}^{\prime 3} = O_{j}^{\prime 2}$; then we denote $F_{0}^{\prime 3} + \bigcup_{j=1}^{s} O_{j}^{\prime 3}$ by $F_{I}^{\prime 3}$, and we choose a map

 $\beta_I: F_I^{\prime 3} \to M^3_*$

with the following properties:

 $k = 1, \cdots, t_j$

(III) $\beta_I | O_j^{\prime 3}$ is an epi-homeomorphism of $O_j^{\prime 3}$ onto O_j^3 .

We remark that the map β_I is locally one-to-one, except for the "reflection disks" $O_j^{\prime 2}$, i.e. if p is a point of $F_i^{\prime 3}$ and if $U^{\prime 3}$ is a sufficiently small neighborhood of p in $F_I^{\prime 3}$ then $\beta_I \mid U^{\prime 3}$ is a homeomorphim if and only if $p \notin \bigcup_{j=1}^s O_j^{\prime 2}$.

10. $G_{\1 and its neighborhood $T_{\$J}^{3}$ lie in a 3-cell H^{3} . Let H^{3} be a neighborhood of $V_*^2 + T_{*J}^3$ in M_*^3 , which is small with respect to

$$G_{\#}^2 \mid V^2 \mid J_{\#}^3 \mid A_1^3 \mid \cdots \mid A_s^3 \mid O_1^2 \mid \cdots \mid O_s^2$$

that intersects the $P_{\#i}^3$ is prismatically, i.e.: $\eta^{-1}(H^3 \cap P_{\#i}^3)$ $(i = 1, \dots, r)$ can be written as cartesian product using the product representation of the P_i^{3} introduced in Sec. 8 (compare Fig. 11a).

11. Arcs W_i^1 in $J^3 \cap T_J^3$ joining top and bottom disks of the prisms P_i^3 . T_J^3 a handlebody of genus r. The intersection $J^3 \cap T^3_J$ is a 2-sphere with 2r holes, denoted by T^2 .

We assert: There can be found r pairwise disjoint arcs $W_1^1, \dots, W_r^1 \subset T^2$ such that (for all $i = 1, \dots, r$)

(i) ${}^{0}W_{i}^{1} \subset {}^{0}T^{2}$; ${}^{*}W_{i}^{1} = p_{i} \times {}^{*}I^{1}$ (using the product representation of the P_{i}^{3} 's introduced in Sec. 8) with p_{i} an arbitrary point in ${}^{*}P_{i}^{2} - \bigcup_{j=1}^{s}A_{j}^{3}$; we denote the arc $p_i \times I^1$ by W_{Pi}^1 ;

(ii) if $S_i^1 \subset {}^0T_J^3$ is a 1-sphere, topologically parallel to $W_i^1 + W_{P_i}^1$, i.e.: such that there exists an annulus in T_J^3 with boundary curves S_i^1 and $W_i^1 + W_{P_i}^1$, then S_i^1 is homologous to 0 mod 2 in $M_*^3 - (W_i^1 + W_{Pi}^1)$.

We denote the arc $\eta(W_i^1)$ by $W_{\#i}^1$. There exists just one connected component of $\beta_I^{-1}(W_{\sharp i}^1)$ —we denote it by $W_i^{\prime 1}$ —such that $\beta_I(W_i^{\prime 1}) = W_{\sharp i}^1$; and $W_i^{\prime 1} \subset F_I^{\prime 3}$.

Proof of the assertion. First we remark that the 1-spheres P_1^2, \dots, P_r^2 form a 1-dimensional homology basis mod 2 of T_J^3 (if we identify the chains mod 2 with the corresponding polyhedra). If P_1^2, \dots, P_r^2 were homologously dependent mod 2 it would follow that there exists a surface in T_J^3 with boundary some of the P_i^{2} 's; this surface could be completed by the corresponding disks P_i^2 to a closed surface, non-separating in M_*^3 ; but this is impossible since M_*^3 is a homotopy 3-cell.

We choose an arbitrary system of pairwise disjoint arcs

$$W_1^{*1}, \cdots, W_r^{*1} \subset T^2$$

fulfilling condition (i). Now $W_i^{*1} + W_{Pi}^1$ $(i = 1, \dots, r)$ is homologous mod 2 in T_J^3 to a linear combination $\sum_{k=1}^r c'_{ik} P_k^2$ with coefficients $c'_{ik} = 0$ or 1. If $c'_{ii} = 0$ then we take $W_i^1 = W_i^{*1}$. If $c'_{ii} \neq 0$ then to obtain W_i^1 we take a small neighborhood N_i^2 of $P_i^2 \times 1$ in T^2 and replace the arc $W_i^{*1} \cap N_i^2$ by another arc in N_i^2 with the same boundary points such that $W_i^1 + W_{Pi}^1$ is homologous mod 2 to $W_i^{*1} + W_{P_i}^1 + P_i^2$ in T_J^3 . Now the W_i^{1} 's fulfill condition (ii) also. For every $i = 1, \dots, r$ there exists a surface in T_J^3 whose boundary consists of S_i^1 and some of the P_k^2 's, except P_i^2 , and whose interior lies in ${}^{0}T_J^3$; this surface can be completed by the corresponding P_k^2 's to a surface B_i^2 in $M_*^3 - (W_i^1 + W_{P_i}^1)$ that is bounded by S_i^1 only.

12. Singular disks $W_{\$i}^2$ in H^3 corresponding to the arcs $W_{\$i}^1$. Let $W_1^{\prime 2}, \dots, W_r^{\prime 2}$ be r pairwise disjoint disks that are disjoint from $M^3, {}^0F_I^{\prime 3}, F^{\prime 2}, V^{\prime 2}$ such that

$$W_i^{\prime 2} \cap F_I^{\prime 3} = W_i^{\prime 2} \cap F_I^{\prime 3} = W_i^{\prime 1}$$
 (for all $i = 1, \dots, r$).

We denote $W_{i}^{\prime 2} - {}^{0}W_{i}^{\prime 1}$ by $W_{P_{i}}^{\prime 1}$, and $\bigcup_{i=1}^{r} W_{i}^{\prime 2}$ by $W^{\prime 2}$.

Now we assert: There exists a map $\vartheta : W'^2 \to H^3$, with the image $\vartheta(W'^2) \subset {}^{0}H^3$ denoted by $W_{\mathscr{B}}^2$, and with the following properties: (i) $\vartheta \mid W_i^{\prime 1} = \beta_I \mid W_i^{\prime 1} \text{ and } \vartheta(W_{Pi}^{\prime 1}) = W_{Pi}^1 \text{ (for all } i = 1, \dots, r).$

(ii) The only singularities of $W_{\#}^2$ are pairwise disjoint, normal, double arcs (ii) The only singulations of W is the pairwise aligned, non-tail, abusic lates B_1^1, \dots, B_b^1 (b may be zero) such that each of the two connected components $B_f^{\prime 1}, B_f^{\prime 1}$ of $\vartheta^{-1}(B_f^1)$ possesses just one boundary point in $\bigcup_{i=1}^r {}^0W_i^{\prime 1}$ and otherwise lies in ${}^0W'^2$ (for all $f = 1, \dots, b$). W^2 intersects the $P_{\$i}^3$ prismatically. (iii) There exists a neighborhood U'^2 of ${}^{\cdot}W'^2$ in W'^2 such that $\vartheta({}^{0}U'^2) \subset {}^{0}T_{\$j}^3$.

Proof of the assertion. Step 0. Since $W_{\$i}^{1} + W_{Pi}^{1} \subset {}^{0}H^{3}$ (for all $i = 1, \dots, r$) there exists a map $\vartheta_{0} : W'^{2} \to H^{3}$ with property (i).

Step 1. As in the proof of Sec. 6, steps 1 to 5, we can derive from ϑ_0 a map $\vartheta_I : W'^2 \to H^3$ with properties (i), (ii).

Step 2. We choose pairwise disjoint neighborhoods N_1^3, \dots, N_r^3 of the 1-spheres $W_{\sharp i}^1 + W_{Pi}^1$ in H^3 , which are small with respect to $T_{\sharp J}^3 | \vartheta_I(W'^2)$. The intersection $N_i^3 \cap \vartheta_I(W'_i^2)$ consists of a 1-sphere N_i^1 , topologically parallel to $W_{\sharp i}^1 + W_{Pi}^1$, and of an even number n_i of meridian circles of N_i^3 each of which pierces N_i^1 in just one point. Now we choose an oriented 1-sphere X_i^1 in $N_i^3 \cap {}^0T_{\sharp J}^3$, topologically parallel to $W_{\sharp i}^1 + W_{Pi}^1$, and an oriented meridian circle Y_i^1 of N_i^3 that intersects X_i^1 in just one point; we denote the homology classes of X_i^1 and Y_i^1 in N_i^3 by \mathfrak{x}_i and \mathfrak{y}_i , respectively. Then the homology class \mathfrak{n}_i of the properly oriented 1-sphere N_i^1 is $\mathfrak{n}_i = \mathfrak{x}_i + w_i\mathfrak{y}_i$.

Now we need the fact that the coefficients w_i are even numbers. To prove this we show that both N_i^1 and X_i^1 are homologous $0 \mod 2$ in $M_*^3 - (W_{\#i}^1 + W_{Pi}^1)$:

(1) N_i^1 bounds a 2-dimensional polyhedron $D_i^2 \subset \vartheta_I(W_i^{\prime 2})$ that intersects $W_{\sharp i}^1 + W_{P_i}^1$ in the even number n_i of piercing points. From D_i^2 we remove n_i disks, being the intersections of D_i^2 with a small neighborhood U_i^3 of $W_{\sharp i}^1 + W_{P_i}^1$ in N_i^3 , and replace them by $\frac{1}{2}n_i$ annuli in U_i^3 such that we obtain a 2-dimensional polyhedron bounded by N_i^1 and disjoint from $W_{\sharp i}^1 + W_{P_i}^1$.

(2) $(\eta \mid T_J^3)^{-1}(X_i^1)$ is a 1-sphere $S_i^1 \subset {}^0T_J^3$ and there exists an annulus B_i^{*2} with boundary curves S_i^1 and $W_i^1 + W_{P_i}^1$ and with ${}^0B_i^{*2} \subset {}^0T_J^3$. On the other hand S_i^1 bounds a surface B_i^2 in $J^3 - (W_i^1 + W_{P_i}^1)$ as constructed in the proof of Sec. 11 which can be chosen disjoint from ${}^0B_i^{*2}$. We can bring about by small deformations the situation in which $\eta(B_i^2 + B_i^{*2})$ has normal double curves but no branch points (since η is locally one-to-one). Therefore (and since $\eta \mid B_i^{*2}$ is one-to-one) $\eta(B_i^2)$ intersects the boundary curve $W_{\sharp i}^1 + W_{P_i}^1$ of $\eta(B_i^2 + B_i^{*2})$ in an even number of piercing points. From $\eta(B_i^2)$ we obtain, as in (1), a 2-polyhedron disjoint from $W_{\sharp i}^1 + W_{P_i}^1$ with boundary X_i^1 .

If $w_i \neq 0$ (for some $i = 1, \dots, r$) then we choose a point in ${}^{0}W_{\#i}^{1}$, which is no double point of $\vartheta_I(W'^2)$, and a neighborhood R_i^3 of this point in N_i^3 which is small with respect to $\vartheta_I(W'^2) | W_{\#i}^1$. We denote the disk $R_i^3 \cap \vartheta_I(W'^2)$ by W_{Ri}^2 . In ${}^{0}R_i^3$ we choose a disk R_i^2 (see Fig. 8) such that $R_i^2 \cap W_{\#i}^1$ is one arc R_i^1 , such that ${}^{0}R_i^2 \cap {}^{0}W_{Ri}^2$ is an open arc one of whose boundary points lies in ${}^{*}R_i^2 - R_i^1$ and the other one in $W_{Ri}^1 - R_i^1$, and such that $[(W_{Ri}^2 + R_i^2) \cap {}^{0}R_i^3]$ is an unknotted chord in R_i^3 . Then we choose an epi-homeomorphism

$$\lambda_i: R^3_i \to R^3_i$$

with $\lambda_i | R_i^3 = \text{identity and } \lambda([(W_{Ri}^2 + R_i^2) \cap R_i^3]) = W_{\#i}^1 \cap R_i^3 \text{ and a map}$ $\vartheta_{II} : W'^2 \to H^3$

with

and

$$artheta_{II} \mid [W'^2 - artheta_I^{-1}(W^2_{Ri})] = artheta_I \mid [W'^2 - artheta_I^{-1}(W^2_{Ri})]$$

 $artheta_{II}(artheta_I^{-1}(W^2_{Ri})) = \lambda_i(W^2_{Ri} + R_i^{-2}).$

Now let N_{IIi}^3 be a neighborhood of $W_{\#i}^1 + W_{Pi}^1$ in N_i^3 , being small with respect to $\vartheta_{II}(W'^2) \mid T^3_{\#J}$. Then ${}^{0}N^3_{IIi} \cap \vartheta_{II}(W'^2)$ consists of a 1-sphere N^1_{IIi} , topologically parallel to $W_{\#i}^1 + W_{Pi}^1$, and of $n_i + 2$ meridian circles of N_{IIi}^3 . The homology class \mathfrak{n}_{IIi} of the properly oriented N^1_{IIi} in $N^3_i - {}^0N^3_{IIi}$ is

$$\mathfrak{n}_{IIi} = \mathfrak{x}_{IIi} + (w_i \pm 2)\mathfrak{y}_{IIi}$$

with \mathfrak{g}_{IIi} , \mathfrak{y}_{IIi} the homology classes of X_i^1 , Y_i^1 , respectively, in $N_i^3 - {}^0N_{IIi}^3$. The sign in the coefficient $w_i \pm 2$ depends on the choice of R_i^2 (see Fig. 8). So we can derive by $\frac{1}{2}\sum_{i=1}^{r} w_i$ operations of the kind described a map

$$\vartheta_*: W'^2 \to H^3$$

such that (under analogous notation) the curve N_{*i}^{1} is homologous to X_{*i}^{1} in $N_i^3 - {}^0N_{*i}^3$ (for all $i = 1, \dots, r$).

If $w_i = 0$ (for all $i = 1, \dots, r$) then we choose $\vartheta_* = \vartheta_I$, etc.

Step 3. From ϑ_* we can obtain by deformations (that change $\vartheta_*(W'^2)$) only in the N^3_{*i} 's) a map $\vartheta: W'^2 \to H^3$ with the demanded properties (i), (ii), (iii).

13. Deformation over prismatic neighborhoods of the singular disks $W_{\sharp i}^2$. The map ϑ can be extended to a map $\tilde{\vartheta}: W'^3 \to H^3$, with $\tilde{\vartheta}(W'^3) \subset {}^{0}H^3$ denoted by $W_{\3 , such that (see Fig. 9) the following hold:

(i) W'^3 may be represented as cartesian product $W'^2 \times I^1_*$ where I^1_* means an interval $-1 \leq x_* \leq 1$, with $p \times 0 = p$ for all $p \in W'^2$, and W'^3 is disjoint from M^3 , F'^2 , V'^2 . We denote the components $W'^2_i \times I^1_*$ of W'^3 by W'^3_i . (ii) $W'^3_i \cap F'^3_i = W'^3_i \cap F'^3_i = W'^1_i \times I^1_*$ with

$$\widetilde{\vartheta} \mid (\cdot W_i^{\prime 3} \cap \cdot F_i^{\prime 3}) \, = \, eta_I \mid (\cdot W_i^{\prime 3} \cap \cdot F_i^{\prime 3}).$$

 $W_{\#}^{3}$ and the $P_{\#i}^{3}$'s intersect each other prismatically, i.e.: (iii)

$$\eta^{-1}(W^3_{\star} \cap P^3_{\star}) \ = \ \{[\eta^{-1}(W^3_{\star} \cap P^3_{\star})] \ \cap \ P^2_i\} \ \times \ I^1$$

and

$$\tilde{\vartheta}^{-1}(W^{3}_{\$} \cap P^{3}_{\$i}) = \{ [\tilde{\vartheta}^{-1}(W^{3}_{\$} \cap P^{3}_{\$i})] \cap W^{2} \} \times I^{1}_{\ast}$$

(using the product representations introduced in Sec.8 and in (i), respectively).

(iv) If p is a point of $W_{\mathscr{S}}^3$, $\vartheta^{-1}(p)$ is either one or two points. The set B of all double points of W_{\sharp}^{3} is disjoint from the disks $\tilde{\vartheta}(W_{Pi}^{\prime 1} \times I_{\ast}^{1})$ $(i = 1, \dots, r)$ and is prismatic, i.e.

$$ilde{artheta}^{-1}(B)\,=\,[ilde{artheta}^{-1}(B)\,\,{\sf n}\,\,W'^2]\, imes\,I^1_*\,,$$

(using the same product representation as in (i)).

We denote the 3-annulus $F_{I}^{\prime 3} + W^{\prime 3}$ by $F_{II}^{\prime 3}$ and we define a map

$$\beta_{II}: F_{II}^{\prime 3} \to M^3_*$$

such that $\beta_{II} \mid F_I^{\prime 3} = \beta_I \mid F_I^{\prime 3}$ and $\beta_{II} \mid W^{\prime 3} = \tilde{\vartheta}$.

14. Deformation over the prisms P_{*i}^3 . In $F_{II}^{\prime 3} - S^{\prime 2}$ there are 2r pairwise disjoint disks $P_{+i}^{\prime 2}$, $P_{-i}^{\prime 2}$ $(i = 1, \dots, r)$ mapping onto the top and bottom disks of the $P_{\sharp i}^3$, i.e. such that $\beta_{II}(P_{\pm i}^{\prime 2}) = \eta(P_i^2 \times \pm 1)$. Now we choose r pairwise disjoint 3-cells P'_1^3, \dots, P'_r^3 , disjoint from M^3, F'^2, V'^2 , such that

$$P_i'^3 \cap F_{II}'^3 = P_i'^3 \cap F_{II}'^3 = P_{+i}'^2 + P_{-i}'^2 + (W_{Pi}'^1 \times I_*^1)$$

(being a disk, for all $i = 1, \dots, r$); and we choose epi-homeomorphisms

$$\kappa_i: P_i^{\prime 3} \to P_i^3$$

such that $\eta_i \cdot \varkappa_i | (\cdot P_i^{\prime 3} \cap \cdot F_{II}^{\prime 3}) = \beta_{II} | (\cdot P_i^{\prime 3} \cap \cdot F_{II}^{\prime 3}).$ 3-annulus $F_{II}^{\prime 3} + \bigcup_{i=1}^{r} P_i^{\prime 3}$ by $F^{\prime 3}$ and we define a map Finally we denote the

$$\beta: F'^3 \to M^3_*$$

such that $\beta \mid F_{II}^{\prime 3} = \beta_{II}$ and $\beta \mid P_i^{\prime 3} = \eta_i \cdot \kappa_i$. We denote the handlebody $H^3 + \bigcup_{j=1}^s A_j^3$ by K^3 and $\beta^{-1}(K^3 \cap \beta(F'^3))$ by K'^3 . We remark that $\beta(F'^3 - S'^2) \subset {}^0H^3$ and that

$$\beta \mid (F'^3 - K'^3) : (F'^3 - K'^3) \rightarrow (M^3_* - K^3)$$

is an epi-homeomorphism. Moreover β is locally one-to-one, except on the ⁸ surfaces $(O'_{j} \cap P'^{3})$; it is locally three-to-one on the arcs $(O'_{j} \cap P'^{3})$ and locally two-to-one otherwise on $(O'_{i}^{3} \cap {}^{0}F'^{3})$.

15. Conclusion. There can be found an epi-homeomorphism $\lambda : M^3 \to M^3$ such that the image $C_0^1 = \lambda(C^1)$ of the given curve C^1 lies in ${}^0M_*^3 - K^3$. Then we choose a knot projection cone $D'^2 \subset F'^3$ with $D'^2 = \beta^{-1}(C_0^1)$. We can choose D'^2 such that $\beta \mid D'^2$ is locally one-to-one. Further we can bring about by small deformations the situation in which the singularities of the image $\beta(D^2)$ Then $D^2 = \lambda^{-1}(\beta(D'^2))$ possesses the demanded properties. are normal. This proves Theorem 2.

We choose two disjoint 3-cells C'^3 , C''^3 with

$$C'^{3} \cap F'^{3} = S'^{2} = C'^{3}, \qquad C''^{3} \cap F'^{3} = F'^{3} - S'^{2} = C''^{3},$$

an epi-homeomorphism

$$\beta': C'^3 \to C^3$$

with $\beta' \mid {S'}^2 = \beta \mid {S'}^2$, and a map

$$\beta'': C''^3 \to H^3$$

with $\beta'' \mid (F'^3 - S'^2) = \beta \mid (F'^3 - S'^2)$. Then $F'^3 + C'^3 + C''^3$ is a 3-sphere S^3 and the map $\gamma : S^3 \to M^3$, composed of β, β', β'' , has the demanded properties. This proves Theorem 1.

II. Proof of Theorem 3

We bring about (by isotopic deformations) the situation in which the 2-sphere $J^3 = \beta_0(F_0^{\prime 2})$ (see Sec. 8) is equal to the image $F_0^2 = \alpha_0(F^{\prime 2})$ under the given embedding α_0 . We denote the 2-spheres

 $F_{I}^{\prime 3} - S^{\prime 2}, \quad F_{II}^{\prime 3} - S^{\prime 2}, \quad F^{\prime 3} - S^{\prime 2}$

by $F_{I}^{\prime 2}$, $F_{II}^{\prime 2}$, $F_{III}^{\prime 2}$, respectively, and we choose epi-homeomorphisms μ_0 , μ_I , μ_{II} , μ_{II} of $F^{\prime 2}$ onto $F_0^{\prime 2}$, $F_I^{\prime 2}$, $F_{II}^{\prime 2}$, $F_{III}^{\prime 2}$, respectively, such that $\alpha_0 = (\beta_0 | F_0^{\prime 2}) \cdot \mu_0$ and

 $\mu_{[i]}^{-1} \mid (F_{[i]}^{\prime 2} \cap F_{[i-1]}^{\prime 2}) = \mu_{[i-1]}^{-1} \mid (F_{[i]}^{\prime 2} \cap F_{[i-1]}^{\prime 2}) \quad (\text{for } [i] = I, II, III)$

We denote the maps

 $(\beta_I \mid F_I^{\prime 2}) \cdot \mu_I, \qquad (\beta_{II} \mid F_{II}^{\prime 2}) \cdot \mu_{II}, \qquad (\beta \mid F_{III}^{\prime 2}) \cdot \mu_{III},$

defining singular 2-spheres in M_*^3 , by α_I , α_{II} , α_3 , respectively. Now α_3 fulfills already the condition (b) of Theorem 3, and it remains to show that the deformation from α_0 to α_3 , which may be derived from the proof of Theorem 1, 2, can be decomposed into a sequence of elementary deformations, according to condition (a).

16. Decomposing the deformations in the A_j^3 's. The deformation from α_0 to α_I , changing the 2-sphere F_0^2 in the A_j^3 's (see Sec. 9), can be decomposed into a sequence of $\sum_{j=1}^{s} t_j \cdot (u_j + 2v_j)$ elementary deformations of type 1a, intermixed with nonessential deformations, (see Fig. 5).

We denote the connected components of the (prismatic) intersections

$$\eta(K_{jk}^3) \cap L_{jl}^3$$
 $(j = 1, \dots, s; k = 1, \dots, t_j; l = 1, \dots, u_j)$

under current enumeration by C_1^3 , \cdots , C_c^3 and the connected components of

$$\eta(K_{jk}^3) \cap N_{jm}^3 \qquad (m = 1, \cdots, v_j)$$

by D_1^3, \dots, D_d^3 . Further we denote that connected component of $\eta^{-1}(C_g^3)$ $(g = 1, \dots, c)$ that is different from C_g^3 by $C_g'^3$, and that connected component of $\eta^{-1}(D_h^3)$ $(h = 1, \dots, d)$ that is different from D_h^3 by $D_h'^3$. Finally we denote the intersections of the $C_g^3, C_g'^3, D_h^3, D_h'^3$'s with the P_i^2 's (see Fig. 11a) by $C_g^2, C_g'^2,$ $D_h^2, D_h'^2$, respectively, and the intersections of the K_{jk}^3, L_{jl}^3 's with the P_i^2 's by K_{Pjk}^2, L_{Pjl}^2 , respectively.

17. Decomposing the deformations over $W_{\mathscr{F}}^3$. We can bring about by small deformations the situation in which the singular discs $W_{\mathscr{F}_i}^2$ and their prismatic neighbourhood $W_{\mathscr{F}_i}^3$ (as constructed in Secs. 11, 12, 13) are in a "normal position" with respect to the singular 2-sphere $F_I^2 = \alpha_I(F'^2)$ and to the singular disks $P_{\mathscr{F}_i}^2$, etc., i.e. such that the following conditions hold:

(i) F_I^2 , H^3 , the A_J^3 's, and the $P_{\#i}^2$'s intersect $W_{\#}^3$ prismatically with respect to the product representation introduced in Sec. 13.

We denote $\tilde{\vartheta}(\vartheta^{-1}(p_i) \times I^1_*)$ by P^1_i (Fig. 9).

(ii) $\eta^{-1}(W_{\$}^2 \cap P_{\$}^2)$ $(i = 1, \dots, r)$ is disjoint from those connected components of $K_{Pjk}^2 \cap \eta^{-1}(H^3 \cap P_{\$j}^3)$ and $L_{Pjl}^2 \cap \eta^{-1}(H^3 \cap P_{\$j}^3)$ $(j = 1, \dots, s;$

 $k = 1, \dots, t_j; l = 1, \dots, u_j$ that contain the arcs $K_{Pjk}^2 \cap P_i^2, L_{Pjl}^2 \cap P_i^2$ respectively, in their boundaries (see Fig. 11a).

Now we carry out the deformation of α_I into α_{II} in three steps:

Step 1. Let $B'^{3}_{f}(f = 1, \dots, b)$ (see Fig. 10) be that connected component of $\tilde{\vartheta}^{-1}(B^3)$ that contains B'_f . We choose pairwise disjoint neighborhoods B'_{*f}^3 of the B'^{3} , s in W'^{3} , which are small with respect to $\tilde{\vartheta}^{-1}(F_{I}^{2} \cap W_{\mathscr{K}}^{3})| \tilde{\vartheta}^{-1}(B^{3})$ and which are cartesian products in the product representation introduced in Sec. 13. Now we deform F_I^2 over the 3-cells $\tilde{\vartheta}(\hat{B}_{*f}^{\prime 3})$ which can be done by a sequence of elementary deformations of type 1a. We denote the map so obtained from α_I by α_{I*} and $(W'^2 - \bigcup_{f=1}^b \dot{B}_{*f}^{\prime 3})$ by $W_{*}^{\prime 2}$. Now we have to deform $F_{I*}^2 = \alpha_{I*}(F'^2)$ over the remaining nonsingular 3-cells $\tilde{\vartheta}(W_*'^2 \times I_*^1)$.

Step 2. In $W_{*}^{\prime 2}$ we choose pairwise disjoint arcs $X_{1}^{1}, \dots, X_{x}^{1}$ (see Fig. 10) with ${}^{\hat{0}}X_m^1 \subset {}^{0}W_*^{\prime 2}$ that join points of

$$W_{*}^{\prime 2} - \bigcup_{i=1}^{r} W_{Pi}^{\prime 1}$$

to points of

$$\vartheta^{-1}(F_{I^{*}}^{2} \cap W_{\#}^{2}) \cap {}^{0}W_{*}^{\prime 2}$$

such that

every double point of $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2) \cap {}^0W_{*}^{\prime 2}$ is end point of one arc X_m^1 , (a)

(b) every connected component of $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2) \cap W_{*}^{\prime 2}$ contains at least one end point of an arc X_m^1 ,

(c) the X_m^1 's intersect $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2) \cap W_{*}^{\prime 2}$ in isolated piercing points that are no double points of $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2) \cap {}^{0}W_{*}^{\prime 2}$, (d) the points $\vartheta(X_{m}^1 \cap W_{*}^{\prime 2})$ are no double points of F_{I*}^2 .

Now we choose pairwise disjoint neighborhoods X_m^2 of the X_m^1 's in $W_*^{\prime 2}$, which are small with respect to $\vartheta^{-1}(F_{I*}^2 \cap W_{*}^2)$. Then we deform F_{I*}^2 over the 3-cells $\tilde{\vartheta}(X_m^2 \times I_*^1)$ which can be done by a sequence of elementary deformations of type 1a and 1b. According to the notation used in Theorem 3 we denote the map so obtained from α_{I*} by α_1 and $\alpha_1(F'^2)$ by F_1^2 . Further we denote $(W'_*^2 - \bigcup_{m=1}^x X_m^2)$ by W'_{**}^2 .

Step 3. Finally we deform F_1^2 over the remaining 3-cells $\tilde{\vartheta}(W_{**}^{\prime 2} \times I_*^1)$. This can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations) since the curves $\vartheta^{-1}(F_1^2 \cap W_{*}^2) \cap W_{**}^{\prime 2}$ are nonsingular, pairwise disjoint, open arcs with boundary points in

$$W_{**}^{\prime 2} - \bigcup_{i=1}^{r} W_{Pi}^{\prime 1}$$
.

By this we obtain from α_1 the map α_{II} .

18. Decomposing the deformations over the $P_{\Re i}^3$'s. We carry out the deformation of α_{II} into α_3 in four steps (see Fig. 11).

Step 1. Let Q_i^1 be a neighborhood of a point ϵP_i^1 in $P_i^2 - {}^0P_i^1$ which is small

with respect to $\eta^{-1}(F_{II}^2 \cap P_{\$i}^2)$ and let $Y_i^1 = P_i^2 - {}^0Q_i^1$. Further we choose a neighborhood Y_i^2 of Y_i^1 in P_i^2 , which is small with respect to

$$\eta^{-1}(H^3 \cap P^2_{\$i}) | \eta^{-1}(F^2_{II} \cap P^2_{\$i}) | \bigcup_{j,k=1}^{s,tj} K^2_{Pjk}$$

and intersecting the disks C_g^2 , $C_g^{\prime 2}$, $D_h^{\prime 2}$ prismatically, i.e. such that

$$\eta^{-1}(\eta(\boldsymbol{Y}_i^2\times\boldsymbol{I}^1))\,=\,[\eta^{-1}(\eta(\boldsymbol{Y}_i^2\times\boldsymbol{I}^1))\,\,\mathbf{n}\,P_i^2]\,\,\mathbf{X}\,\boldsymbol{I}$$

(using the product representation introduced in Sec. 8). Then we deform F_{II}^2 over the 3-cells $\eta(Y_1^2 \times I^1)$ which can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations). We denote the map so obtained from α_{II} by α_{II*} , and $\alpha_{II*}(F'^2)$ by F_{II*}^2 , further $(P_i^2 - Y_i^2)$ by P_{*i}^2 (see Fig. 11b), the image $\eta(P_{*i}^2)$ by $P_{\#i}^2$, and the intersections of K_{Pjk}^2 , L_{Pjl}^2 with the P_{*i}^2 's by K_{*jk}^2 , L_{*jl}^2 , respectively. Further we denote the set of double points of

$$\eta(\bigcup_{i=1}^r P_{*i}^2 \times I^1)$$

by D_* and the connected components of

$$\eta^{-1}(D_{st})$$
 n $igcup_{i=1}^r P_{st i}^2$

by C_{*g}^2 , $C_{*g}'^2$, D_{*h}^2 , $D_{*h}'^2$ such that $C_{*g}^2 \subset C_g^2$, $C_{*g}'^2 \subset C_g'^2$, $D_{*h}^2 \subset D_h^2$, $D_{*h}'^2 \subset D_h'$, $(g = 1, \dots, c; h = 1, \dots, d)$.

Step 2. We choose pairwise disjoint arcs $Y_{i_1}^1, \dots, Y_{i_{y_1}}^1$ (see Fig. 11b) in P_{*i}^* with ${}^{0}Y_{i_f}^1 \subset {}^{0}P_{*i}^2$ ($f = 1, \dots, y_i$) that join points of Y_1^2 to points in ${}^{0}P_{*i}^2 - \eta^{-1}(F_{II*}^2 \cap P_{*i}^2)$, and we choose pairwise disjoint neighborhoods $Y_{i_f}^2$ of the $Y_{i_f}^1$'s in P_{*i}^2 , which are small with respect to $\eta^{-1}(F_{II*}^2 \cap P_{*i}^2) | \bigcup_{j,k=1}^{s,t} K_{*jk}^2$ such that, with the notation $P_{**i}^2 = (P_{*i}^2 - \bigcup_{j=1}^{y} Y_{i_f}^2)$, the following hold:

(i) The arcs Y_{if}^1 intersect the curves $\lceil \eta^{-1}(F_{II*}^2 \cap P_{**i}^2) \cap {}^0P_{*i}^2 \rceil$ in isolated piercing points that are no double points (and no boundary points) of that curves.

(ii) The arcs Y_{ij}^1 are disjoint from the disks C_{*g}^2 , $C_{*g}'^2$, D_{*h}^2 $(g = 1, \dots, c; h = 1, \dots, d)$ and from the arcs $(K_{*jk}^2 \cap P_{*i}^2)(j = 1, \dots, s; k = 1, \dots, t_j)$ and intersect the disks $D_{*h}'^2$ prismatically, i.e. such that

$$\eta(Y_{if}^{1} \cap D_{*h}^{\prime 2}) = [\eta(Y_{if}^{1} \cap D_{*h}^{\prime 2}) \cap D_{*h}^{2}] \times I^{1}$$

using the product representation introduced in Sec. 8. The Y_{if}^2 's intersect the $D_{*h}^{\prime 2}$'s also prismatically.

(iii) If Z^1 is a connected component of $[\eta^{-1}(F_{II*}^2 \cap P_{**i}^2) \cap {}^0P_{**i}^2]$ then one of the following cases holds (see Fig. 12):

case a. Z^1 is an arc (that is either disjoint from the disks C^2_{*g} , C'^2_{*g} , D^2_{*h} , D'^2_{*h} or lies in the boundary of one disk C^2_{*g} , C'^2_{*g} , or D'^2_{*h}).

case b. Z^1 consists of two arcs, piercing each other in one point, and is disjoint from the disks C^2_{*g} , C'^2_{*g} , D^2_{*h} , D'^2_{*h} .

case c. Z^1 consists of two arcs Z_1^1 , Z_2^1 lying in the boundary of one disk $D_{*h}^{\prime 2}$, and of one arc Z_3^1 that pierces Z_1^1 and Z_2^1 each in one point.

case d. Z^1 consists of the boundary of one disk D^2_{*h} and of an arbitrary number of pairwise disjoint arcs that intersect D^2_{*h} each in one arc (and D^2_{*h} each in two points).

Then we deform F_{II*}^2 over the 3-cells $\eta(Y_{if}^2 \times I^1)$ $(i = 1, \dots, r; f = 1, \dots, y_i)$ which can be done by a sequence of elementary deformations of type 2 (and may be nonessential deformations). According to the notation used in Theorem 3 we denote the map so obtained from α_{II*} by α_2 and $\alpha_2(F'^2)$ by F_2^2 . Further we denote the intersections of the disks K_{*jk}^2 with the P_{**i}^2 's by K_{**jk}^2 .

Step 3. Now we deform F_2^2 over the 3-cells $\eta(K_{**jk}^2 \times I^1)$ $(j = 1, \dots, s;$ $k = 1, \dots, t_j)$ which can be done by a sequence of elementary deformations of type 3a and 3b and nonessential deformations. We denote the map so obtained from α_2 by α_{2*} and $\alpha_{2*}(F'^2)$ by F_{2*}^2 .

Step 4. The remaining parts $\eta([P_{**i}^2 - \bigcup_{j,k=1}^{s,t_j} K_{**jk}^2] \times I^1)$ of the P_{*i}^3 are nonsingular 3-cells, and we can deform F_{2*}^2 over them by a sequence of elementary deformations of type 3a and 3b (and may be nonessential deformations). By this we obtain from α_{2*} the map α_3 .

19. Conclusion. The maps α_1 and α_2 , as obtained in Sec. 17, Step 2, and Sec. 18, Step 2, respectively, and the map α_3 possess the demanded properties, and Theorem 3 is proved.

BIBLIOGRAPHY

- R. H. BING, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2), vol. 69 (1959), pp. 37-65.
- —, Necessary and sufficient conditions that a 3-manifold be S³, Ann. of Math. (2), vol. 68 (1958), pp. 17-37.
- M. DEHN, Über die Topologie des 3-dimensionalen Raumes, Math. Ann., vol. 69 (1910), pp. 137-168.
- 4. W. HAKEN, Theorie der Normalflächen, Acta Math., vol. 105 (1961), pp. 245-375.
- W. HUREWICZ, Beiträge zur Topologie der Deformationen, I-IV, Proc. Akad. Amsterdam, vol. 38 (1935), pp. 112–119, 521–528; vol. 39 (1936), pp. 117–126, 215–224.
- E. E. MOISE, Affine structures in 3-manifolds, V, Ann. of Math. (2), vol. 56 (1952), pp. 96-114.
- 6a. ——, Simply connected 3-manifolds, Topology of 3-manifolds and related topics, Englewood Cliffs, Prentice-Hall, 1962, pp. 196–197.
- 7. E. PANNWITZ, Eine elementargeometrische Eigenschaft von Verschlingungen und Knoten, Math. Ann., vol. 108 (1933), pp. 629–672.
- C. D. PAPAKYRIAKOPOULOS, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2) vol. 66 (1957), pp. 1–26.
- H. POINCARÉ, Cinquième complément a l'Analysis Situs, Rend. Circ. Mat. Palermo, vol. 18 (1904), pp. 45-110.

- 10. K. REIDEMEISTER, Topologie der Polyeder und kombinatorische Topologie der Komplexe, Leipzig, Geest and Portig, 1953.
- 11. H. SEIFERT AND W. THRELFALL, Lehrbuch der Topologie, Leipzig, B. G. Teubner, 1934.
- 12. A. S. SHAPIRO AND J. H. C. WHITEHEAD, A proof and extension of Dehn's lemma, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 174–178.
- 13. S. SMALE, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc., vol. 90 (1959), pp. 281-290.
- 14. J. H. C. WHITEHEAD, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., vol. 45 (1939), pp. 243-327.

INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY

FIGURE 6

Intersections of K_{jk}^2 , $L_{i'l}^2$, $N_{i''m}^2$ $(j, j', j'' = 1, \dots, s; k = 1, \dots, t_j; l = 1, \dots, u_{j'}; m = 1, \dots, v_{j''})$, etc. with P_i^2 .

FIGURE 9

FIGURE 10

FIGURE 11 Compare with Figure 6. (a) depicts P_i^2 . (b) depicts $P_{\bullet_i}^2$.

FIGURE 12