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1. Introduction

It is known that under certain mild set-theoretic assumptions, a finite,
countably additive measure defined on all Borel sets of a metric space is con-
centrated in a separable subspace (Marczewski and Sikorski [8]). However,
there are interesting probability measures on metric spaces not concentrated
in separable subspaces. In this paper, we consider countably additive prob-
ability measures on the smallest a-field containing the open balls of a metric
space. This -field is the Borel field for a separable space, but is smaller in
general. A probability measure on it need not be confined to a separable
subspace.
A sequence of such measures will be said to converge weak* to a Borel meas-

ure if the upper and lower integrals of each bounded continuous real function
converge. Some abstract results on this convergence, similar to those in
Prokhorov [9] for separable metric spaces, will be given in 2.
The rest of the paper deals with "empirical measures" on Euclidean spaces,

whose study motivated the abstract results and provides an application of
them. Two of the main results of Donsker [3], [4] for measures on the real
line will be generalized to arbitrary Euclidean spaces. At the same time, his
results are corrected by replacing some integrals, which may not be defined, by
upper and lower integrals.

I discovered after writing most of the rest of this paper that a generalization
of Donsker’s work to multidimensional spaces was proved several years ago by
L. LeCam, who is now revising a paper embodying his results for the Illinois
Journal of Mathematics. I shall try to explain what seem to be the main
differences between our approaches.
While my abstract results in 2 are for metric spaces and guided by those in

Prokhorov [9] for the separable case, LeCam uses a more elaborate abstract
apparatus involving the second dual spaces of topological linear spaces and
nonmetrie topologies; the place of upper and lower integrals is taken by
integrals with respect to finitely additive extensions of a measure.
With regard to the more concrete equicontinuity properties of empirical

distribution functions, my approach in 4 below uses a sort of Markov property
for the random empirical measure u., namely given u(E) for a set E, the
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values of it, on subsets of E are independenL of its values on sets disjoint from
E. LeCam instead lets n be a random variable n( with a Poisson dis-
tribution and obtains a random measure with independent values on disjoint
sets.
Aclnowledgments. I am grate[ul both to Prof. LeCam for providing the

above information and to V. Strassen for earlier conversations bout the
Skorokhod topology, etc.

2. Weak*-convergence in nonseparable metric spaces

Suppose is a measure on a -field in a space S and let F be any real-
valued function on S. Then the lower integral

f, F(s) aft(s)

is defined as the supremum of all integrals

f f(s)

where f <_ F on S, f is &-measurable, and the integral of f is defined. Simi-
larly, the upper integral

f*F d
is defined as the infimum of f f d5 for f >__ F on S and f f d5 defined. Clearly

f*f,F d <_ dF

for any F. If x is the indicator function of a set A, let

fl,(A) J, Xa dS, fl*(A) J Xa

5, and 5" are clearly the usual inner and outer measures for 5.
A Baire set in a topological space is a member of the smallest a-field with

respect to which all continuous functions are measurable. In a metric space,
the Baire sets are precisely the Borel sets. Now if 3 are measures on a
topological space S (not necessarily defined on all Baire sets), and 5 is a Baire
measure on S, ve say

5 -- (weak*)
if for every bounded continuous real function F on S,

f* f, flim F d lim F d, F dfl.

Let (S, o) be a metric space, and let $ be the z-field generated by the balls

[yeS" p(x, y) < e]
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for any x e S and e > 0. Let ( be the Borel z-field generated by the open sets
of S. In the cases of interest here, S will be non-separable and strictly
larger than $.

Let (e, II) be the Banach space of bounded real continuous functions on
S with supremum norm. For any subset A of S and e > 0 let

A [xeS" p(x,y) < for some yeA].

We need the following well-known fact"

LA 1. If F is a continuous real-valued function on a metric space (S, p),
K is a compact subset of S, and > O, then there is a > 0 such that if x K,
y S, and p (x, y) then

Proof. If the conclusion is false there are x K and y, S, n 1, 2,
with p (x,, y) < 1/n and

F(x) F(y)I >_ .
A subsequence of the x converges to an x K at which F is not continuous, a
contradiction which completes the proof.
We call a set N of measures on S weak*-precompact if any sequence [n] of

distinct elements of 5 has a subsequence which is weak*-convergent (to a Borel
measure on S).

THEOREM l. If S, zs a metric space and is a set of probability measures
each defined at least on in S, then 3C is weatc*-precompact if for every > 0 there
is a compact set K S such that for every > O,

(K) >_ 1-

for all but finitely many .
Proof. Note that K is a countable union of open balls and hence is in $.

For each positive integer N, let K be a compact set in S such that for any
i>O,

(K) >_ 1- 1IN
for all but finitely many e . Let {F/:= be a countable set of continuous
functions on S with F <: 1 for all n, uniformly dense on K for each N in
the continuous functions F with F - 1 (such F. exist since (K) is a
separable Banach space for each N and we can use the Tietze extension
theorem).
Given N and n, let > 0 be such that p(x, y) < nd x Kv imply

F(x) Fn(y)l < 1IN.
Let x, Xr be points of K such that for each x K,

x) <



112 n.M. DUDLEY

for some j. For j 1,..., r let A. be the set of all xeS such that
p(xi, x) >_ for i < j and p(xj, x) < ti. Then the sets A. are disjoint and
belong to $; if A is their union,

KNcA cK.
Since A is open, K c A for some , > 0, so that (A) > 1 1/N for all but
finitely many 3. Let e 1/N,

G(x) F,(xi) e, x Aj j 1, r

-1, x,A

H(x) Fn(xj) -t- ?, X Ai, j 1,..., r

1, x,A.

Then G _< F. _< H, G and H are S-measurable, and

f (H G) d5 <_ 2 q- 2 4

for anySeawith(A) > 1- v.
If {m} is any sequence of distinct elements of , we can find a subsequence

{Star} such that

f,F d,
is convergent for given n, so that

lim sup Fn d lim Fd g 4e.

Tnking further subsequences nd digonlizing, we can nssume this holds
for 11 n. Letting tend to zero through some sequence and diagonlizing
gin, we get subsequence {q} of { such that

f,lira inf F d lim sup F d

for all , so ha lim inf and lim sup can be replaced by lim.
Now le F be a bounded eonginuous funegion on S wigh 1. in

N, choose so

for all z e K hen his will hold for all z e K for some > 0. Then exeep
for finitely many N,

* f*N + a/.
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Thus

f* f,lim sup F dTq lim inf F d’lq <_ 6IN.

Since this holds for all N, the limit M(F) defined by

f*M(F) lim F dq lim F dq

exists. Then this clearly holds for all F e without the restriction F -< 1.
Clearly M is linear on e, M(1) 1, andM(F) >_ 0ifF >_ 0. IfFeeand
F 0 pointwise, then F 0 uniformly on compact sets. Given F e with

IIFII -< land

there is a > 0 such that

so that

Thus M(F) , O.

supxN IF(x)[

_
l/N,

supxN F x <-- 2IN
M(F) <_ 3IN.

Hence there is a nonnegative, countably additive probability measure P on
S such that each F e e is P-measurable with

Since S is a metric space, P is a Borel measure on S. Now % -+ P (weak*),
and the proof is complete.

PROeOSITIO 1. Suppo,e (S, o) i, a complete meric ,pace, a i, a finite Borel
measure on S, concentrated in a separable subspace, the oe, are defined on g,
and a, -- a (wealc*). Then for any bounded real function F on S which is con-
tinuous almost everywhere with respect to a,

f* f, flim F dan lim F dan F doe.

Proof. We can assume that the a and a are all probability measures and
F 1. Given e > 0, there is a compact set K on which F is continuous

with a(K) >_ 1 e. Take t > 0 such that whenever p(x, y) < i and x e K,
F() F(,V)I < e.
Let G be F restricted to K. Then by the Tietze extension theorem G can

be extended to a continuous function on all of S with G - 1. There is a

> 0 such that p(x, y) and x K imply

G(x) G(u)I < ;

we can assumey < ti. ForxeK,
F(x) G(x)l

_
2.
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Let f be a continuous function on S with 0 <_ f(x)

_
1 for all x, f(x) 1 for

xeK, andf(x) 0forxK. Then

f, fd f f d, >_ 1- e

so that a(K) >_ 1 2e for n large enough, say n >_ no. Now

f, f* flim G da, lim G da, G da,
n-->oo n-->

Forn >_ no, _
f, G d

f* f*F da, <_ G da -- 4e.

Thus

f* f, flim F da lim F da, F da, Q.E.D.

In proving wek*-precompactness using Theorem 1, the following is useful"
suppose (C, p) is a metric space, let (B, II) be the Bnach space of all
bounded reM-valued functions on C, and for e and ti > 0 let B be the set of
all f e B such that for some x, y C, p(x, y) < and If(x) f(Y)l >- e.

PnOPOSITION 2. Suppose (C, p) is compact and n n 1, 2, are prob-
ability measures on the z-field $ in B such that for any e > 0 there are > O, no,
and M such that

()*(B) < for n >_ no,
and

{f’llf]] -- M} < e for all n.

Then for any e > 0 there is a compact set K in B, consisting entirely of con-
tinuous functions, such that for any . > O,

,(K") >_ 1--
for n suflcientl lawe.

Proof. We mayssumeO e 1. ChooseM > lsuchtht

for all n, and for m 1, 2, > O, let
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We choose a decreasing sequence {} of positive numbers satisfying the fol-
lowing two conditions"

(I) If (3m m v./2m+lM, then m+l < tim/4 for all m.
(II) For some sequence {n0(m)}, (u)*(Am) < e/2 for n no(m).

Then letA Am. Nowifl]fll M, feA,andp(x,y) i,then

If(x) f(y) 2M e/2 co(x, y)

while if p(x, y) < , ]f(x) f(y) /2. Thus for any x, y C,

e (o(x,y))(*) If(x) --f(y) N .max 1, gi

Let Bm be the set of f e B such that f -< M and (.) holds for j 2, n
and allx, yeC. Then

(u),(Bm) >_ 1 e for n >_ N N(m).

Now let K be the set of all g e B such that g - M and for all j,

p(x, y) < ti./2 implies [g(x) g(Y)l < 3’/2.
K is a set of continuous functions, compact by Ascoli’s theorem.
Givena, > 0, choose an integerm > 1 such that e/2 < //2. Let us

show that Bm c K. Choose a finite set Cm of points of C such that
o(x, y) >_ m for any distinct x, y Cm, and such that for any z C, p(x, z) < tim
for some x e C (choosing points one by one to satisfy the first condition, we
end with a finite set satisfying the second condition).

Iffe Bm and x, y e Cm

f(x) f(y)

_
ep(x, y)
2’nm

Let fm be f restricted to Cm. Then fm can be extended to a function g on C
satisfying

g(x) g(Y)l -- cO(x, y)/2%m

for all x, y e C (Czipszer and Geher [21). We can assume g -< M.
show that g e K. For j >_ m, since e/2m <_

Let us

g(x) g(Y)l -- e2 for o(x, y) < .
For j < m, given x, yeC with p(x,y) < tii/2, choose X,n,ymeCn with
o(x, xm) < 8m and p(y, ym) < tim. Then

p(Xm, Ym) < /2 + 2m < ,
It(X) --g(Y)l

__
It(X) g(Xm)l + f(Xm) --f(Ym)l + g(Yn) g(Y)l__
/2 + /2 + /2

__
3V/2.

Thus geK. Finally IIf g]l < ’ since for any xeC and xmeCm with
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p(X, X) < ,
If(x) g(x)l

_
If(x) --f(X,,,)I + g(xm) g(x) _< 2e/2 < .

Thus indeed Bm K, so that u,(K) >_ 1 e for n sufficiently large,
Q.E.D.

3. Empirical measures on Euclidean spaces
Let R be the Cartesian space of ordered/-tuples (t, t} of real

numbers. Suppose u s a Borel probability measure on R Let X, X,
be independent R-valued random variables wth dstnbuton u; specifically,
let t be a coutably infinite product of probability spaces isomorphic to
(R, u), with X as coordinate functions, and call the product measure Pr.
For any e R, let t be the unit measure at t, and let u be the measure

(, + + ,)/n, n 1, 2, ....
Then the u, will be called "empirical measures" for u. They may be thought

of as approximations to u given by a series of independent trials. Let

Let H be the Hilbert spce L(R u) For ny f fm e H the multi-
dimensional central limit theorem implies that the joint distribution of

f f dtzn, f f d.

converges as n -- to that of

L(fl), ,L(f)

where L is a linear mp of H into spce of Gussian random variables with
mean zero and

f, g H. L is the "centered noise" r.l.f, with spectral measure u as defined in
[5, 7].

RGiven (tl, t} e let At be the indicator function of the set B of
Rll s e such that for each j,

t_< s < 0 or 0_< s < t.

(Bt is empty if any t is zero.)
For/c 1, if is nontomic measure, the celebrated Kolmogorov-Smirnov

theorems give information on the limiting behavior as n -- of the dis-
tribution of

supt tzn(gt)l
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and related quantities (see e.g. Fortet [6, Chapter 5]). It is not hard to see
that, still for ]c 1, the distributions are the same for any nonatomic t on the
half-line > 0. One approach to the Kolmogorov-Smirnov results is to show
that the limiting distribution is that of

sup,

and that this is true not only for the supremum but for a large class of other
functionals (Donsker [3], [4]). In this paper I shall extend this last result to
/c > 1 although the "invariance principle" no longer holds, i.e. the distribu-
tions depend on what continuous measure u is chosen.

Let J be the space of all bounded real-valued functions f on Rk such that for
anyteRk,f(s) --f(t) ifs. 1" tjforj 1, ...,k. Then it is easy to verify
that J is a Banach space with the supremum norm

f suptRk If(t)l,
and that if Q is any countable dense set in Rk and f J,

f supte If(t)[.
It is clear that the functions V or V,

Vn(t) ttn(Bt),

belong to J, and that the set of such functions includes no countable dense sub-
set for the supremum norm, even if a set of zero probability is removed, unless

is purely atomic.
I want to show that for any real-valued function F on J which is continuous

for the given norm, the limiting distribution of F(n(Bt) is that of F(L(A t) ).
The formulation requires special attention since the distribution of #n(Bt)
will in general not be a Borel measure on J, and F may not be measurable for
this distribution, so that F(p(Bt)) will not have a well-defined distribution.
Nevertheless its distribution is defined with increasing precision as n -- o

and does approach that of F(L(At)) in a sense to be explained below.
The functions #n(Bt) for ]c 1 have only jump discontinuities, and by

introducing the "Skorokhod topology" (Skorokhod [10] and [11], Kolmogorov
[7]) on the space of such functions and considering only functionals F con-
tinuous for this topology, one can avoid the imprecision in the definition of the
distribution of F(n(Bt)) (Prokborov [9, Theorem 2.4]). The method used
here yields a larger class of functionals and easily implies the results using the
Skorokhod topology. Also, no useful generalization of the Skorokhod to-
pology to functions on R seems to be known.

Let Q be as defined in [5, 4], i.e. the set of real-valued functions on/,
continuous except on hyperplanes tj constant having positive t-measure, and
there being continuous from below with limits from above, and with limits at
4- . Then Q, J, and Q, is a separable Banaeh space.
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Let L or L" be the centered noise r.l.f, with spectral measure t. Then by
[5, Theorem 4.2] the functions

t--- L’(At)

may be taken in Q, with probability 1. Since (Q,, I1) is a separable
Banach space, and a function in Q, is determined, for purposes of membership
in an open ball and hence any set in S, by its values on any countable dense set
in R, there is a Borel measure a or a on Q, such that for any t(1),...

Rt(n) the joint probability law of f(t(1)), ..., f(t(n)), where f has dis-
tribution a, is the same as that of

L(At() ), L(At() ).

a can also be regarded as a Borel measure on J since Q, is a closed subspace.
Now let a a be the probability distribution of the function

V (B( ))inJforn 1 2 Then theaare, under certain mild
assumptions, not definable s (countably additive) Borel measures on J (or

V, with supremum norm). For example,any other space containing all the "
if . is not purely atomic, a gives positive measure to an uncountable set 9Z
such that Ill-- gll lforanyy, geOZwithf g. IfahadaBorelex-
tension, we would have a countably additive probability measure on all sub-
sets of 9Z (since every subset is closed), giving points measure zero, which is
impossible assuming the continuum hypothesis (Banach and Kuratowski
[]).
What we have, then, is the following" each an, n 1, 2, is defined by

mapping W of an n-fold product of R’s into J, and a is defined exactly on
those sets A such that W(A) is a measurable set in the product.
Here is my main theorem on empirical measures, whose proof will be com-

p|eted in 5"
THEOREM 2. If F is a bounded real-valued function on J, continuous almost

everywhere with respect to a, then

f, f* flim F d lim F da F d.

In particular, a, a (wealc*).
For ]c 1, Donsker [4] asserts that under the same hypotheses

f F da.-,f ’da.

There is not even a measurability assumption on F away from the support of
a, and an examination of his proof indicates that one has only convergence of
upper and lower integrals.

In order to treat unbounded functionals such as the supremum, we have

THEOREM 3. If F is a real-valued function on J, continuous for the supremum
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norm almost everywhere with respect to a, and b is a real number such that
a(f" F(f) b) O, then

limn- a*(f F(f) < b) limn- (an).(f F(f) < b) a(f F(f) b).

Proof. We use Theorem 2. Given e > 0 take continuous functions g and h
:from the real line to the unit interval with

g(x) 1, x

_
b- e

g(x) O, z >_ b;

h(x) 1, x

_
b

h(x) O, z >_ b + e.

Then we apply Theorem 2 to g F and h F. Noting that

f, F < (),(f < b) < (F < b)

f*<_ hoFda,

and

f (h g) F da---*O

the proof is complete.

s

Theorem 2 will be proved first for "continuous" measures on the unit cube.
In this case, we have an "equicontinuity" result (Theorem 4, 4) which
implies, using the abstract results in 2, that the a. form a "weak*-precom-
pact" set. The final details and the passage from a general probability meas-
ure on R to a continuous one on the unit cube will be given in 5.

4. "Equicontinuity"
A measure t on R will be called continuous if each hyperplne ts constant

has measure zero. Let C be the unit cube

{t’Ots< 1, j= 1, ,k}.

We use the notation of Proposition 2 for this choice of C.

THEOREM 4. Suppose t is a continuous Borel probability measure on C.
Then for any e > 0 there is a > 0 such that

Pr (V, eB) _< c

for all large enough n.

For the proof, we first mention a sort of Markov property of the random
measures u’. Note that and are functions of each other and of , and for
given measurable set E, (E) has only finitely mny possible values, so that

the definition of conditional probabilities is elementary.
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PROPOSITION 3. Given a probability space (S, ) and measurable sets

EicF GS

for finitely many values of i, "(G) is conditionally independent of the ’(E)
given ’(F). The conditional distribution of ,(G F) given that ,(F) r/n,
and hence also given any consistent values of ,(Ei), is exactly that of

,n-r(G F)
n

where is restricted to C F and then normalized to total mass I (or, if
(C F) O, ,(G F) is almost surely zero).

Proof. It suffices to show that the conditional distribution of u(G F),
given n,(F) r and given the (Ei), is as indicated. Taking independent
random variables X1, X with distribution defining , the conditional
distribution clearly does not depend on which set of r of the Xi is included in F.
For a given set, since the (E) are independent of the complementary set,
the conclusion follows by an elementary calculation.
Now to prove Theorem 4 we use induction on/. For lc 1, given , let

F be its distribution function:

F(x) ([0, x)).

Let be Lebesgue measure on [0, 1) I,

w,(t) x(B,), V(t) ’(Bt).
Then we can put

V,(t) W,(F(t) ).

Since F is uniformly continuous, it suffices to prove our assertion where
is Lebesgue measure. Here, Prokhorov [9, Lemmas 2.8 and 2.9, pp. 209-210
(original), pp. 187-188 (translation)] has proved the following: given > 0,
e > 0, s, e I, let A (, e, s, t) be the set of all o such that

rain (I V,(s 3) V,(t)1, V,(s q- 3) V,(t) [) >_ e.

Then there is i > 0 such that

Pr(coeA(3, e, s, t) for some 3, s, with Is t] _< 3 _< ti) _< e.

Now if o A(3, e, s, t) whenever Is
_

3 _< ti, and there are s e I and
3, 0 < 3 _< , such that

then there is at least one jump of height or more in the graph of V between
s and s + . However, tor n > 1/, since t is concentrated in n dis-
tinct points with probability one, the probability of such a jump is zero.
Thus
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P(vB) _<

for n > 1/e2, and the theorem is proved for lc 1.
Now suppose the conclusion is true for 1, ]c 1.

lattice of all points

(rl/2", ..., rk/2"},

Let Lm be the cubical

ri 0, 1, 2m, j 1, l. We put the lexical ordering on L,

(al, .-.,ak} < (bl, ...,
if and only if there is a j such that ai bi for i < j and a. < bi.

It suffices to prove the theorem inserting the condition that s. t. for all
j % i for some i, say i /c. We can also assume that s and both belong to L
for some m (of course, 8 must not depend on m). This shows in particular
that the probability which appears in the theorem is well-defined. Let

Cn(x) V(x, 1,-.., 1), 0 x _< 1.

Let > 0 be given. By the result for/c 1, there is a positive integer M
such that

Pr (e B/:) <_ el4
or n > N1 144/2.
Forj 0, 1, 2 1 let S. be the slab

j/2 < tl_< (j+ 1)/2.
We assume M is large enough so that u(Si) < 1 for all j.
By the result for/c 1 there re a 8 > 0 nd an N > 0 such that

Pr (I Vn(s) V,(t) >- e/2u+ for some s,

with s t] < and s t 1)
e/2+

Mifn N. Also, thereis,0 < < such that if is an arbitrary
probability measure on a measurable space (S, 5), A 5, and (A) < 6,
then for all r,

Pr (I x(A) > e/2+) < e/2+
(this follows e.g. from Chebyshev’s inequality). Let

b mini (C S.)

then b > 0 by assumption. Choose 84 > 0 so that

supt{s" a _< s _< a -t- 8} _<

Let 8 rain (8, 8). We shall show that this 8 satisfies the desired condition.
For the rest of the proof, not only e and 8 but m will be fixed, m >_ M.
Let r(j, n) be the set of all 0 such that for some s, Sin L,



122 . M. DUDLEY

Is- < i, si t for i

and

,(B Z) ,(B a Z) /2".
For F(j, n) let s() s(j, n, ) be the least s (lexicMly) in S a L for
which stisfying the above three conditions exists, nd then let t() be
the least such t. Let

E E(j, n, ) {ueC’j/2" < u < s()x},

and for any s C let

P(s) (1, s, ..., s).
Then, since G ,

Pr [ Vn(P(s())) V(P(t())) e/2"+] G e/2+

for ny j and n (a set defined by a condition on s(w) and t() will be regarded
as a subset of F(j, n), their domain of definition).

Let F F(j, n, ) be the set

Then F is disjoint from E, and E is determined by F, E E(F).
The conditional distribution of ’(F) given a alue F0 of F and given
(E) is the same as the conditional distribution of (F0) given (E(F0)),

by Proposition 3, since knowing that F F0 in addition yields information
only on values of on subsets of E(Fo).

Let (n) be the set of w with ( F(j, n) and)

gn(E(j, n, ) > /4

for somej. Then for n N, Pr((n)) /4. Let G CEand
r n,(G).

For given values of j, m, n, F and r, the conditional distribution of ng(F)
is exactly that of rXr(F), where is restricted to G and normMized to mass 1,
by Proposition 3. Since g(F)/g(G) ,

Pr { n(F)@ -- z(G)Z(F) F,r) e/2

Thus if a(j, n) is the set of e r(j, n) with

nttn(F)

then Pr (f:(j, n))

_
e/2M+:.

Let N max (N1, N).
tions.
Now note that

/ (F) >_ c/2’+,

We fix n >_ N and suppress "n" in some nora-
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n(F) V/(t(F) (F))

and

(G) (F) (G) (E).
(G) (G)

For r(j) but neither in nor in :(j), r n and (F)/(G) - imply

and hence
((t())) (P(s()))

If (j) is the set of F(j) for which the ltter inequality holds, then since

Pr ((j)) ( e/2+.
Thus for each j,

Pr (r(j) ) Pr (:(j)) + Pr ((j)) e/2"+.
Nowifs, tC, s- t ( , ands tforj ( , then Vn(s) V(t) is
the sum of t most 2 terms

where for any u C, f(u, q) Sq

andloruL,andm M,f(u, q) L. Thus

If(s, q) f(t, q) <
for each q, and the probability that at least one of the 2 terms exceeds
3/2+1 in absolute value is less than

Thus for n N,

Pr ( V(s) V(t) for some s, tC with s t
forj < k and Is- < )

RFor anyS>0ands, te with[s-t] < , there are u, veCwithu-v[ <
and V(s) V(u), V(t) V(v). Thus the condition "s, C" can be
removed and the proof of Theorem 4 is complete.

5. Proof of Theorem

We first complete the proof assuming is continuous and concentrated in C.
In this case, Theorems 1 and 4 and Proposition 2 show that the measures a,
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on J form a weak*-precompact set. Now suppose

anm -- (weak*)
for some subsequence {am} of {a}. Then for any (1) ()

e C the joint
distribution of f(t(1)), f(t()) for f distributed according to is the same
as for f distributed according to a, by the central limit theorem convergence
mentioned in 3. Thus a.

Suppose there is a bounded continuous function F on (J, II II) anti an
e > 0 such that

(f* f f,)max F da F da F da F

for an infinite sequence of values of n. Then taking a subsequence n, such
that a is weak* convergent, we have a contradiction. Thus

a -- a (weak*).
Applying Proposition 1, 2 the proof for continuous on C is complete.
The general case of a probability measure on Rk is easily reduced to that

of a measure on the cube

-1 < tt < 1, j 1,...,k,

by the transformation
tt (2/) arc tan

which preserves all the structure we need.
Let E be the indicator function of the set

{s" -1

_
st < tt,j 1, ...,

Then fortt>_ -1, j- 1, ...,,
At , S(F)E(t,,)

where F runs over all finite subsets of (1, ..., /), S(F) (-1) where
r / (F) and % (F) is the number of elements in F, and P(t, F) s
with st max(tt, 0) forjF and st min(tt, 0) otherwise. Since the
functions -- P(t, F) are uniformly continuous for each F, results for the
Et, obtained by an obvious linear transformation, yield corresponding results
for the At. Thus we have reduced to the case of a measure on C.

In [5, 4] the following was proved" if is any probability measure on C,
there is a continuous measure on some rectangular solid

C1"0_ tt < at, j 1, ...,
and a continuous mapping G of the closure 01 of C1 onto O, of the form

G(tl, ..., tk) (Gl(t), ...,
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a-1with each Gi (weakly) monotone increasing, such that, u. Clearly
we can assume a. 1, C1 C, and extend each G. to a monotone function
from [0, onto itself.

If X, n 1, 2, ..., are independent with distribution , then G(X,)
are independent with distribution u, so we can put

G-1

Forj 1, ...,k,O 1,1et

F(%) inf (s" G(s)

and let F(t) (F(h), ..., F(t)}.
Now for any j, s, t we hve G(s) t if and only if s F(t). Thus

At As G if and only if F(s) t, nd for any s C,

f Ay()() d,(u) V:(F(s)).

Now for ny continuous function f on , F*(f) f F Q, since F Q,
for ech j. The mp F* f f F is linenr with norm one. Since

" and an a (weak),

we have a a (weak*). Then applying Proposition 1 of 2, the proof
of Theorem 2 is complete.

Note. The supremum norm N is an g-measurable function.
Letting s Ct if and only if si ti, j 1, k, and lettingfn(t) (Ct),
it is clear that N(f,) has a well-defined distribution for each n. For lc 1
and continuous, it was shown by Kolmogorov (see e.g. [6, Chapter 5])
that the limiting distribution of N(fn) as n is

Pr (N < z) K(z) 1 + 2(--1)r exp (--2r:z).
On a k-fold product of real lines for k > 1,

Rk =1 Rj,

the limiting distribution of N will not be the same for all continuous measures. However, it will be the same for all product measures

H=I
where is continuous on R for each j. In this case,

the re independent for different j, nd if fi is function of ti only,
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Thus we have a product of n independent random variables with the same
distribution function K. I have not found the distribution of this product.
Although the funetion(al) S defined by

S(f) suptf(t)

has a simpler limiting distribution for a continuous measure in one dimension,

Pr(S < z) 1 exp (-2z)
[6, Chapter 5], the situation is more complicated in several dimensions be-

s( II=l fj( ti)
depends on the infima as well as the suprema of the fj.
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