ON A FAMILY OF TWIN CONVERGENCE REGIONS FOR
CONTINUED FRACTIONS

BY
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1. Introduction
In 1960 Thron and this author [1] studied the continued fraction

an IR S

whose elements a, satisfy the conditions

(12) U1 = G, |Cmatida|=p
=i,  Jenxi(l+a)| 2

where @ is a complex number and @ and p satisfy the inequality
la] <p<|[l+al

It was shown in [1] that the element regions for the as,—; and the a,, defined
by conditions (1.2) form a set of best twin convergence regions for the con-
tinued fraction (1.1). It was also shown in [1] that the continued fraction
converges uniformly for the real values of the parameter a. However, the
problem of proving that the continued fraction converges uniformly for the
non-real values of @ was at the time unsurmountable. Even to prove ordinary
convergence in this case, the authors had to rely on the use of the Stieltjes-
Vitali theorem [5, p. 142]. As Perron [3, vol. 1, p. 82] has pointed out, the
use of a deep function-theoretic result to obtain a convergence theorem of this
nature is aesthetically undesirable. Another disadvantage of this function-
theoretic argument is that it gives no information as to how fast the approxi-
mants of the continued fraction approach their limiting value.

In this article we are finally able to completely settle the problem for all
permissible complex values of a. We are able to prove that the continued
fraction (1.1) whose elements satisfy conditions (1.2) converges uniformly,
even though the elements a, be functions of an arbitrary number of variables.
In addition, we have obtained in the key inequalities (3.12) and (3.13) usable
estimates of the error committed if the continued fraction is replaced by one
of its approximants. The methods of proof are elementary in the sense that
only fundamental concepts of complex analysis are used.

In the proof we employ a nested circle argument similar to the one given in
[1] for real values of a. The success of this method depends on obtaining a
sharp enough estimate of Bz,—1/Ba,—s for complex values of a. This problem,
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98 L. J. LANGE

dealt with in the next paragraph, turns out to be considerably more difficult
than it was in the real case. For a further illustration of the method of proof
sec Thron [4, pp. 745-749].
TFor definitions of the fundamental sets and a listing of the basic formulas
used throughout this paper refer to [1, pp. 296-297].
2. Three fundamental lemmas

Lemva 2.1. Let a = |a|e™ be a complex number and p be a positive real
number such that |a| < p < |1+ a|. If

Qou—1 € B1(ia, p) and ze M(—ma, mp),
where m = 1, then

t2n——l(z) GN(l + ka; ’Cp) c N(l + a, p)v
where k = 1/m.

Proof. We shall first dispose of the assertion that
N1 + ka, kp) < N(1 + a, p)

by showing that every element of the first set is an element of the second set.
Let we N(1 + ka, kp). Then w = 1 + ka + kepe™, where 0 £ ¢ < 1 and
0= ¢ =27 Since,

|14+ a—w|=]a(l —k) — kepe | < |a|(l — k) + kp
it follows that w e N(1 + a, p).

IIA

P,

We shall now prove that
ton(2) e N(1 + ka, kp)
if @on1 € K1(ta, p), 2 e M(—ma, mp). This is equivalent to showing that
lka — @si/z2| £ kp.

If ka — as.—1/z is considered as a function of @,y alone, then | ka — as,1/z |
assumes its largest value for a point as,—; on the boundary of E;(ia, p). The
boundary of E,(ia, p) consists of all points asm_y = €%( —la|i 4+ pe”),
where 8y < 6 =< © — 6, and 6 is defined by the equations

sinfy = |al|/p, cosb = (o= |al)"/p.

If wesetr = r7(0) = 2(psind — |a|), where0 < r < 2(p — | a|), then using
the above expression for as,_; simple calculations will show that
tyns = (0" — |a | + ipre”)
(2.1) ; ,
@] = o' = [al = |al|n.

Now ze M(—ma, mp) implies that z e M(—ma, einp) for some ¢ = 1.
Hence
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(22) | ka — Gzo1/2 | < maxg,o | ka — a3n_s/(—ma + ompe®)|

Il

maxg,, k | a — a;‘n_l/(—a -+ apeiﬁ)l

where 0 £ 8 £ 2r. The set of all points 1/(—a + ope®), for a given o, is
the image of the circle K(—a, op) under the transformation 1/z. It is easily
verified that this image set is the circle

K(a/ (0" — |al"), op/ (s’ — | a|D)),

7

where @ = |a|e

* is the conjugate of a. Using this result and inequality
(2.2) we obtain

lak — am—r/z|= max | — @@ + ape™) / (a0’ — |al") |

2.3 =y
@8 o alle = ol = 6] + oplatun
7,0 0'2p2 —_— |a|2

where 0 £ 8 < 27.
We now employ formulas (2.1) in inequality (2.3) and arrive at

lak — asn—1/z |

< k max la|lo®" = |a* = p" + |a|” = dpre” | 4+ op(p” — |a|’ — |a]r)
= o 02P2 —_ |a|2
< [P = D) + o) + 00" — |al’ = [a]r)
= oy a.2p2_lalz
< kmaxPlUolo o)
. op+|al

This completes the proof of the lemma.

Lemma 2.2. Leta = | a|e™ be a complex number and let p be a positive real

number such that | a | < p < |1 4 a|. Let v be defined by the equations
pcosy = —(p’ — | a| sin’ a)"?

(24) . o
psiny = — |a|sina,

and let

(2.5) b=1+4|a|cosa+ pcosy

If

Qo € Eo(i(1 + @), p) and zeN(1 + ka, kp)
where 0 = k = 1, then

tan(2) € M(—ma, mp) C M(—a, p),
where

1—k+b
—_ - >
mET T r
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Since 0 < k = 11t is a simple matter to see that m > 1if b > 0. Hence we
first verify the inequality
(2.6) 0<b=1+4|alcosa+ pcosy < 1.
The condition | @ | < p < |1 4 a | insures that

—pcosy >0 and 14 |a]cosa>3>0.

Furthermore,
(14 ]alcosa) =1 +al>—|al’sina>p — |a]’sin’a = p* cos’y
and

peos’y =p — |al’+ |al|’cos’a > |al cos’a

Therefore, 1 4+ |a|cosa > —pcosyand —pcosy > |a| cos a, from which
inequality (2.6) follows immediately.

We shall now prove that M (—ma, mp) € M(—a, p). If wis an arbitrary
element of M(—ma, mp), then w = —ma + ompe®, where ¢ = 1 and
0 < ¢ £ 2r. Making use of the fact that m = 1 we obtain

la +w|=|a— ma-+ ompe®| = omp — |a|(m — 1)

zm(p—la]) +a] Z »
Therefore, w e M(—a, p) and the assertion

M(—ma, mp) < M(—a, p)

is true.
Later on in the proof of this lemma we shall need the inequality
(2.7) m|l+ka|zZk|1l 4 mal.

To verify (2.7) it is sufficient to show that
m’ |14+ kal’ — K |1+ mal’ = 0.
Recalling that 1 + | a | cos a > 4, we obtain
m* |1+ ka|® — K |1+ ma |’
m*(1+2k|a|cosa+|al’) =k (1 +2m|alcosa+m’|al)
=(m—k)(m+k+2km|a|cosa) = (m—FEk)Y(m-+k—Fkn)=0.

I

Equality can oceur if £ = m = 1.
The principal task is to prove that, if
0o € Bo(3(1 4+ @), p) and zeN(1 + ka, kp),
then
ton(2) € M(—ma, mp).

This is equivalent to proving that | 1 4+ ma 4 a2/2 | = mp if @, and 2 satisfy
the above conditions. Tor fixed z and variable ag, the function

|1+ ma + aw/z |
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assumes its minimum for some point a,, on the boundary of Es(i(1 + a), p),
provided 1 4 ma + as/z % 0. We shall first prove that

|1+ ma + a3./2| = mp,
where a3, is any boundary point of Ey(i(1 + @), p). Then we shall show that
1 4+ ma + as/z # 0;

so that | 1 4+ ma + as/2 | = mp for all ay, in Ex(¢(1 + a), p).

If ze N(1 + ka, kp), then 2z e K(1 + ka, ¢kp) for some ¢, where 0 < ¢ =< 1.
The set 1/K (1 + ka, €kp) is the image of the circle K(1 4 ka, ckp) under the
transformation 1/z. By Lemma 2.1 N(1 4 ka, kp) < N(1 4+ a, p). Hence
|1+ ka| > kp = ekp. With this result simple computations will show that
the desired image set is the circle

K((1 + ka)/d. , ekp/d.),
where
de = |1+ kal” — & > 0.

It follows that if 2 is any element of N (1 + ka, kp), then 1/z can be expressed
as

1/z = (1 + ka + ckpe®)/d.,
where 0 < 6 < 27. Thus setting

d=]1+ka|" = k0
we obtain

|1+ ma + a;kn/z[ =114+ ma + asn (1 + ka + SICpeis)/de]
2|1 4 ma + asn(1 + ka)/d. | — | &3y | ekp/d.
|1 + ma + a3, (1 + ka)/d
+ a3 (1 + k@) (1/d. — 1/d)| — | agu | ekp/d.

I

(2.8) . .
= 1 4+ ma + a2 (1 + ka)/d| — | asn | kp/d
— |as, | |1+ kal(1/d — 1/d,)
+ [a;kn l(kp/d — ¢kp/d.)
=H+ H, =z H,
where
(2.9) H = |1+ ma+ a5, (1 + ka)/d| — | a3y | kp/d
and

(2.10) H, = |as, |[1/(|1 + ka| + kep) — 1/(|1 + ka | + kp)].

Thus we will have shown that | 1 4 ma -+ a3,/2| = mp if we can prove that
H = mp. For this purpose we employ the fact that as, can be expressed in
the form

&n = —(1 +a+ p)
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where 0 £ 0 < 2r.  After making this substitution for a5, in formula (2.9) it
follows that

Hd —mpd = |d(1 + ma) — (1 + a + pe”)*(1 + ka)|
— ok |14+ a+ pe” |+ md]
= e + a + pe”)’(1 + ka) — de”"(1 + ma)]|
— ol |14 a4+ pe” [P+ md]
= ®le (1 + a+ pe”)’ (1 + ka) — de”"(1 + ma)]

— k|14 a+ pe” | + md]
= 2psin’ 3(y — 0)(1 — k)*(|a|cosa — pcosry).

The last expression on the right is obtained from the preceding expression by
making repeated use of formulas (2.4). For example these relations allow us
to write

d=(1+k|a|cosa—kpcosy)(1 + k|a|cosa -4 kpcosy)

md= (14+Fk|a|cosa—Fkpcosy)(2+]|a|cosa-+ pcosy — k).

By formula (2.4), —pcosy = (p* — |a > + | a|* cos’a)’. Therefore,
|a|cosa — peosy > |a|cosa + |acosa| =0

and it follows from the preceding inequality that H = mp.
It remains to prove that

1+ ma + asz/2z # 0
for agy, € Ea(i(1 + @), p) and ze N(1 + ka, kp). It is sufficient to show that
[(1 4+ ma)(1 + ka) + azu| > kp |1 4+ ma|.

Now

|(1 + ma)(1 + ka) + az |

Il

[(1 4+ a)® + asu + (1 + ma)(1 + ka)
- (1+a)|

v

(1 + a)" + as |
— (1 + ma)(1 + ka) — (1 + a)’|.

Simple calculations will show that
(1 + ma)(1 + ka) — (1 4+ a)’| = |a]|p(l — km).
Furthermore, since =4=¢(1 + a) ¢ F2(2(1 4 a), p), it is true that
(1 + a)® + as, = 0.
Thus |(1 4 @)® + as, | assumes its minimum for a point

an = —(1 + a + pe)’
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on the boundary of E:(¢(1 4+ a), p). Hence,
[(1 4 ma)(1 4+ ka) + as | 2 [(1 4 )" — (1 4+ a + pe”)"|
— lalp(l — km)
p(2]1+a] —p) — |a]|p(l — km)
zp2|1l+al—p—]a]) >0.
Since (1 + ma) (1 + ka) + az # 0, it follows that
[(1 4+ ma)(1 + ka) + @z, | = ming,« |(1 + ma)(1 + ka) + a5y |
ming,+ | 1+ ka || 1 + ma + a3./(1 + ka)|.

By taking ¢ = 0 in inequality (2.8) and formula (2.10) and using the fact that
H = mp we arrive at the inequality

[(1 4 ma)(1 4 ka) + @z, | = ming,,» | 1 + ka |[mp + | asy | kp/
UL+ ka4 kp| L+ kal]
=mp|l + ka| + ko(|1 + a| — p)%/

(|14 ka| + kp).
From inequality (2.7) we havemp |1 4+ ka| = kp |1 4 ma|. Thus by con-
sidering the cases k = 0 and 0 < k = 1 separately it finally follows from this
inequality and the last inequality above that

[(1 4+ ma)(1 + ka) + az| > kp|1 + mal.

With this our proof is complete.

Y

i

Levma 2.3. Let a = | a|e™ be a complex number and p be a positive real
number such that |a| < p |1 4+ a]|. If

Ggn1 € Br(ia, p), @ eE2(i(1 4+ @), p), and 8, = Boy1/Bons,
then
S, e N(1 + ak, , pk,)
where

(2.11) kn=(n—1)/(n—14+0b)
and b s given by formula (2.5).
Proof. It follows from the recursion formulas for the B, that

S = 1 and Spr1 = t2n+1(t2n(8n)).
Clearly
sie N(1 4+ aky, pky) = N(1,0)  N(1 + a, p).

By inequality (2.6),0 < b < 1. Hence
0<k,=(n—-1)/(n—1+4+0b) =1
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foralln = 1,2, ---. It follows from Lemma 2.2 that

tn(N(1 4 ak,, pkn)) € M(—am,, pm,) C M(—a, p)
where
1 —k,+0
=t s
M= T ok, =
Therefore, by Lemma 2.1

tonpal M (—amy, pm,)] © N(1 4+ aknyy, pkuiy) © N(1 + @, p)

where
k;-l-l = 1/mn .
We shall now show that lcth = ki1 -
e = 1 — k&, + bk,
n+1 1 _'-_kn + ‘—b“‘

1+ G -Dm =1/ —1+b)
(I1+0b)—Mm—=1)/(n—1+0b)

n/(n —I— b) = kn—i-l-
Thus, since s,11 = loni1(f2a(8a)), it follows that, if

Sne N(1 + ak, , pk.),

then
Snt1 € N(l + akn+1 N pkn+1).

By induction s, ¢ N(1 + ak., , pk,) for all n, and the proof is complete.

3. Proof of the main theorem

The approximants 7,(1) = A,/B, of the continued fraction (1.1) lie in
nested circular disks whose radii R, are given by

2n—1
p\ i1 o
3.1 Rop— = i
3.1 "= Byl — |1+ a = sif]
2n
P Ham
(3.2) Ron m=1

T [BualPl]a 4 tu(sn) P — 9]

All of these circular regions are contained in the closed disk N(1 + a, p). For
the sake of brevity the proofs of these statements and formulas will not be
given here since they are, with a few obvious modifications, identical to the
ones given in 1, pp. 303-305] for the real case. It should be pointed out that
these arguments depend principally on the three lemmas given in the preced-
ing paragraph.

We now set @, = Rsu/Ran— and proceed to obtain an upper bound for Q,, .

By Lemma 2.3, s, e N(1 + ak,, pk.) € N(1 + a, p), where k, is given by
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formula (2.11). An application of Lemma 2.2 gives |a + fw(s.)| > p.
Therefore, using the relation s,(a¢ + tan(s.)) = (1 + a)s. + az,, it follows
from formulas (3.1) and (3.2) that
_ lanl (= |14+ a —sl)

[ (1 + a)sn + az|* — p?|sn[?

As a first step towards getting an estimate for @, let us consider the function

(3.3) Qn

Qan

(1 4 a)sn + 02.)% + wp?s?’

where ag, € E5(i(1 + a), p) and |w | < 1.
It is easily seen that

f(a%a w) =

MAXay emy,w<t | f(Q2n , W)| = MAXay,emy, w1 | [(Q2n , ).

If we denote the boundary of E:(7(1 + a), p) by P and make use of the
Maximum Modulus Principle we also have that

max | f(m,w)| = max el
el |w|=1 agnep, o=t | (1 4 a)sp + a2.)? + wp?s}, |
= max | dan |

amep | (1 + @)sn + aon|? — p?[8a[?”

Thus in order to determine the maximum of @, we need to take into con-
sideration only those values of as, which lie in P.

The boundary of E.(i(1 + a), p) consists of all points of the form
(i(1 + a) + pe”)’, where 0 < 6 < 2r. If weset 1 + a = he” and introduce
the function

r(8) = 2(h + psin (6 — B)),

where
2(h — p) =1 = 2(h + p),
then
(i(1 4+ a) + pe”)* = &P (ih + pe’®P)’
(3-4) _ 273 2 9 . i(0—B)
=¢"(p — h" + 2pre )
and
(3.5) |1 + a) + pe” [* = | ah + pe" PP

= — 1+ hr.
We shall also need an expression for s, . It follows from Lemma 2.3 that
[1+a—s|=lal+ (o~ |a]h.
Thus we can write
(3.6) $n =14+ a4 g,e™ = he® + g, ™,

where
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(3.7) 0=gn=lal+ (p—laDks = p.
Employing formulas (3.3) through (3.6) we now have that

Q. < max (0" =B+ hr)(p* — g%)
"= brdusn | heP(he® + g, en) + €¥8(p? — h2 + tprei@P) |2 — p?| het® + g,, eitn |2

— max . G + hr) (0" — g2) '
0,1 Oatin lhgn ez(&,,——ﬂ) + p2 + ip,rez(e—ﬂ) |2 _ p2|h + In et(6n~ﬂ) 12

We set the denominator in the last expression equal to P, and obtain
P, = (p" + hgucos (8, — B) — prsin (6 — B))°
+ (hgn sin (8, — B) =+ prcos (6 — B))*
— p*(h* + 2hg, cos (8, — B) + ¢>)
= (g% — PV — p") + p" — 26'rsin (0 — B) + 2hprgasin (8, — )
= (gn — P V(B — p*) + 20 + 2hprga sin (b, — 6).
Clearly,

P, z min, ,, [(g7 — 0°) (B — p°) + 2007 (p — gu)]-
It follows that

(08 = B+ hr) (p" — g%)
@» = max
ron (g — pP) (W' — p°) + 20hr(p — gu)

1
= max .
Tydn hZ - P2 p — gn)
v (e ) G
The inequalities | a | < p < b, 2(h — p) 7 = 2(h + p), and inequality (3.7)
make it almost immediately clear that the last expression above increases

with increasing r and increasing ¢, . Therefore, after replacing r by 2(h + p)
and g, by | a| + (p — | @ |)k» in this expression we obtain

0.1 — 2h(p — |a|) (1 — kn)
= 20(h + p) + (o — [a)(h — p)(1 — kn)’

Formula (2.11) givesus 1 — k, = b/(n — 1 4+ b). After substituting this
value for 1 — k, in the inequality above we arrive at

(3:8) Q=1—c¢/(n—1+d)
where
_ b = la)b
®9 T ot + p)
(3.10) d = 2h(p — |a]) + (p + |a])(h + p)]b.

2p(h + p)



TWIN CONVERGENCE REGIONS FOR CONTINUED FRACTIONS 107

Since 0 < b < 1 by inequality (2.6) and |a| < p < &, it is easily seen that
(3.11) 0<e<d

Since the approximants 7',(1) of the continued fraction (1.1) lie in nested
circles of radii R, we have | (1) — Tum(1)| £ 2R, for allm = 0. There-
fore, since {R,} is a monotone non-increasing sequence, convergence of the
continued fraction (1.1) will be established if it can be shown that lim R,, = 0.
With these statements in mind we proceed to obtain an estimate for R, .

Employing the fact that Re.y1/Ren = 1 for all n > 1, the following is seen
to be true

Royy = Ry H?nn=2 Ru/Rut £ Ry [Lo=1 Ron/Roms = R1 H::Fl Qnm .

Using formula (3.1) it is easily verified that B; £ p, and by inequality (3.8),
Qn=1-—c¢/(m—1+d). Therefore,

(3.12) Row S p 2om=s (1 — ¢/(m — 1 + d)),

where ¢ and d are given by formulas (3.9) and (3.10). Since 0 < ¢ < d by
inequality (3.11), we can write

c 1 -
l*m“<1+m>

1/ (m—1+d) 1 —c—2

It follows that

c 1 -
m—l+d"<1+m—l+d> )
If we apply this result to inequality (3.12) we can obtain a more usable esti-
mate for Ry, than (3.12).

Ry < p I 0 (1 + 1?7:11—+—d) (Hm‘l (1 o T d>)_c

or
(3.13) Ron < p(1 4+ n/d)™".

Clearly, the sequence {p(1 4 n/d)"°} has the limit zero and furthermore it is
independent of the elements a, of the continued fraction (1.1). Thus we
have shown that the continued fraction (1.1) converges uniformly if

Qon—1 eEl(ia, p) and agneEg(i(l + a), p),
where |a| < p < |1+ al.

One proof showing that the twin convergence regions

El(ia, P), E2(7’(1 + a)’ P)
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must also be best twin convergenceregionsis given in [1] and amoredetailed proof
of this fact can be found in [2]. The arguments for bestness are based upon a
consideration of certain periodic continued fractions of periods 2 and 4. With
this result and the other results of this paragraph, the following theorem is
proved:

THEOREM. Let a be a complex number and p be a positive real number such
that |a| < p < |1+ al|. Ifthe elements of the continued fraction (1.1) satisfy the
conditions

Aon—1 eEl(/I;a) p)a Q2n 5E2(z(1 + a)a P)

for all m = 1, then the continued fraction converges. Its value lies in the circular
disk N((1 + a), p). If the elements a, are functions of an arbitrary number of
variables, then the continued fraction converges uniformly provided only that the
domains of the variables be chosen such that the a, satisfy the above conditions for
all values of the variables. The twin convergence regions

El(ia7 P), E2(7’(1 + a)y P)

are best twin convergence regions.  Finally, if the limit of the sequence of
approximants {T,(1)} of the continued fraction (1.1) is L, then | T:(1) — L| <
2p and form = 1

| Tenia(1) — L| = | Ten(1) — L[ £ 2p(1 + n/d)™",

where ¢ and d (giwen by formulas (3.9) and (3.10), respectively) are constants
depending only on a and p.
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