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1. Introduction

In 1960 Thron and this author [1] studied the continued fraction

al a2(.) 1 + i- + -f + ---’
whose elements am satisfy the conditions

a2n--1 C2n--1

a2n C2

c2- :k: ia <- p

c2 :t= i(1 -t- a)l >_- 0,

where a is a colnplex number and a and p satisfy the inequality

lal < o < Jl-tal.
It was shown in [1] that the element regions for the a2-1 and the a2 defined
by conditions (1.2) form a set of best twin convergence regions for the con-
tinued fraction (1.1). It was also shown in [1] that the continued fraction
converges uniformly for the real values of the parameter a. However, the
problem of proving that the continued fraction converges uniformly for the
non-real values of a was at the time unsurmountable. Even to prove ordinary
convergence in this case, the authors had to rely on the use of the Stieltjes-
Vitali theorem [5, p. 142]. As Perron [3, vol. 1, p. 82] has pointed out, the
use of a deep function-theoretic result to obtain a convergence theorem of this
nature is aesthetically undesirable. Another disadvantage of this function-
theoretic argument is that it gives no information as to how fast the approxi-
mants of the continued fraction approach their limiting value.

In this article we are finally able to completely settle the problem for all
permissible complex values of a. We are able to prove that the continued
fraction (1.1) whose elements satisfy conditions (1.2) converges uniformly,
even though the elernents a be functions of an arbitrary number of variables.
In addition, we have obtained in the key inequalities (3.12) and (3.13) usable
estimates of the error committed if the continued fraction is replaced by one
of its approximants. The methods of proof are elementary in the sense that
only fundamental concepts of complex analysis are used.

In the proof we employ a nested circle argument similar to the one given in
[1] for real values of a. The success of this method depends on obtaining a

sharp enough estimate of B2,_I/B,_. for complex values of a. This problem,
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dealt with i1 the next paragraph, turns out to be considerably more difficult
than it was in the real case. For a further illustration of the method of proof
sec Thron [4, pp. 745-749].

For definitions of the fundamental sets and a listing of the basic formulas
used throughout this paper refer to [1, pp. 296-297].

2. Three fundamental lemmas
LEMMA 2.1. Let a a e" be a complex number and p be a positive real

number such that a < P < 1 + a . If
an-1 El(ia, ) and z M ma, m),

where m 1, then

t_,(z) N(1 + ka, kp) N(1 + a, p),
where k 1/m.

Proq. We shall first dispose of the assertion that

N(1 + a, Ip) N(1 + a, p)

by shoving that every element of the first set is an element of the second set.
LetwN(1 + ka, kp). Thenw 1 + la+ kpeo,whereO land
0 2. Since,

it follows that w N(1 + a, p).

We sha]l now prove that

t_(z) e N(1 + ]ca,

if a E(ia, p), z M(--ma, rap). This is equivalent to showing that

[lea a2n-1/z ];p.

If ka a_/z is considered as functio of a_ alone, then [lca a_l/Z[
assumes its lgrgest vglue for point a:_ on the boundary of E(ia, p). The

* 2inboundary of El(ia, p) consists of M1 points a,_ e (-- all + peie),
where 0o 0 00 und 0 is defined by the equations

sin Oo a I/p, cos 00 (p a )//
If we set r r(0) 2(p sin 0 a ), where 0 r 2(p a [), then using
the above expression for a,_ simple culcultions will show that

* 2in p2a,_ e a +lore)
(2.1)

Now z e M(--ma, rap) implies that z M(-ma, amp) for some a 1.
Hence
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ka a-/zl _<-_ mxt,,0 ca a2*-l/(--ma -- mpe)l(2.)
mx,,o a a_/( a + ape)

where 0 2. The set of M1 points 1/(-a ape’S), for given z, is
the image of the circle K(-a, zp) under the transformation 1/z. It is esily
verified that this image set is the circle

K(d/(q2p2 ]a ]2), zp/(ffp2 [a ])),
where d ]al e-" is the conjugate of a. Using this result and inequality
(2.2) we obtain

[a a-/z] k max ]a a-

, p ]a
where 0 ’ 2.
We now employ formulas (2.1) in inequality (2.3) nd rrive t

lall- lal + lal- iret + --lal- ta]r>/mx

_< /cmx

_</c mx

oP a

lal (p(a 1) -t- pr) - o’p(p --lal --lair)

o’p+ lal
This completes the proof of the lemm.

LEMMA 2.2. Let a a ei" be a complex number and let p be a positive real
number such that la < p < 1 + a [. Let , be defined by the equations

and let

p cos (p a sin a)1/2
p sin / a sin ,

(2.5) b 1 -t-- lalcosa -- pcos

if
a2 E2(i( l -- a), p) and z

where 0 <= t <- 1, then

t,(z) M(--ma, mp) c M(-a, p),
where

1 --t+b >1m=
l l + tb
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Since 0 =</c _< 1 it is a simple matter to see that rn >_ 1 if b > 0. Hence we
first verify the inequality

(2.6) 0 < b 1 +]a[cosa + ocos3’ < 1.

The condition a P 1 A- a insures thut

--pcos, > 0 and 1-t-lalcosa > -} > 0.
Furthermore,

(1 + ]aicosa)2 1 + a]2 ]a[sina >
and

-la + la cos > a cos

Therefore, 1 + a cos a > -p cos and -p cos > a cos a, from which
inequality (2.6) follows immediately.
We shall now prove that M(--ma, rap) M(-a, ). If w is an arbitrary

element of M(-ma, rap), then w --ma + zmpe, where 1 and
0 2. Making use of the fact that m lweobtain

a + w a ma + zmpe zmp a (m 1)

Therefore, w M( a, p) and the assertion

M(-ma, rap) M(-a,
is true.

Later on in the proof of this lemma we shall need the inequality

(2.7) m[ 1 + ka lc 1 + ma.
To verify (2.7) it is sufficient to show that

m 1+ ka [l+ma O.

Recalling that 1 + a cos a > , we obtain

2m [l+ka[ 1 +ma[
2m(l+21c]acosa+lc[a[) (1+2m la]cosa+m [a])

(m ])(m + ] + 2] a cos ) (m )(m + ] m) 0.

Equality can occur if k m 1.
The principal task is to prove that, if

aeE2(i(l+ a), p) and z
then

t,(z) M(-ma, np).

This is equivalent to proving that 1 + ma + a/z mp if a2" and z satisfy
the above conditions. For fixed z and variable a the function
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assumes its minimum for some point a2 on the boundary of E2(i(1 -k a), p),
provided 1 q- ma q- a2,,/z O. We shall first prove that

I1 q- ma q- a2n/Z mp,

where *a2n is any boundary point of E2(i(1 q- a), o). Then we shall show that

1 q- ma d- a,Jz 0;

so that 1 d- ma d- a2,/z >= mp for all a2 in E(i(1 d- a), p).
If z e N(1 d-/ca,/cp), then z e K(1 -4-/ca, elcp) for some e, where 0 _-< e _-< 1.

The set l/K(1 d- lca, e/cp) is the image of the circle K(1 d-/ca, e/cp) under the
transformation 1/z. By Lemma 2.1 N(1 d- c N(1 d- a, p). Hence
1 d-/ca[ > /cp >= elp. With this result simple computations will show that

the desired image set is the circle

where
K((1 d-/cd)/d,

d I1 q-/ca 12 2/C > O.

It follows that if z is any element of N(1 d-/ca,/cp), then 1/z can be expressed
as

1/z (1 q- /c q- elcpei)/d,

where 0 <- _<_ 2r.

we obtain

Thus setting

d= Ild-kal

where

(2.9)

, *+ ma + a=/zl I1 q- ma q- a,n(1 + /ca + elpe)/d

>= I1 q- ma q- a2*n(1 d-/ca)/d *a,.,, ek,/d

--I 1 -[-ma -a2n (1 q-
,

a,, l,/d
a=, l/cp/d

a 1 + a i(1/d 1/d)

+l*
=H+HH,

,
H 11 q-na q- a2n(1 -k /ca)/d *a2nl/cp/d

(2.10) H *a., I[1/(1 1 q-- /ca lq-- /cep) 1/(I 1 nt- /ca -t- /cp)].
,

Thus we will have shown that 1 d- rna d- a,/zl >= mp if we can prove that
H >= too. For this purpose we employ the fact that a2, can be expressed in
the form

a (1 q- a q- pe
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where 0 _<- 0 =< 2. After making this substitution for a2*n in formula (2.9) it
follows that

H d- mp d d(1 -{-ma)- (1 + a-{-- pe)(1 + led)

p[lc l -- a -- pei 12 -- m d]

e-iO (1 -+- a - peSO)2(1 + led) de-(1 - ma)l
p[lcl l - a -- pe 12 - m d]

>= ([e-(1 -+- a -- peiO (1 + kd de- 1 -- map[/cll + a + pe12 + rod]

2p sin 1/2(, 0)(1 1)2(I a cos a p cos ,).

The last expression on the right is obtained from the preceding expression by
making repeated use of formulas (2.4). For example these relations allow us
to write

d (1 --/cla cos a lop cos ,)(1 -- l a cos a -- /cp cos

md= (lZTlc]alcosa-/pcos)(2+l alcosa-pcos/-lc).

By formula (2.4), p cos , (p2 a 12 -t- a 12 cos2a)l/2. Therefore,

]alcosa- pcos, > ]a]cosa + ]acosa[ ->_ 0

and it follows from the preceding inequality that H >= rap.
It remains to prove that

1 - ma -- a./z 0

for a2 e E2(i(1 -- a), p) und z e N(1 -- ta, lcp). It is sufficient to show that

[(1 + ma)(1 -[- lea) + a. > lcPl l + ma ].
Now

[(1 -}-ma)(1 -]-/ca) + a2, I(1 - a)+ a2, + (1 + ma)(1 -]-/ca)

>= I(1 + +
--1(1 -t-ma)(1 --la)- (1

Simple calculations will show that

I(1 -na)(1 - lca) (1 - a) alp(1 lm).

Furthermore, since i(1 - a) E2(i(1 + a), p), it is true that

(1 -}- a) -t- a2, # 0.

Thus I(1 - a) -t- a2 assumes its minimum for a point

a2 --(1 + a-i- pe
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on the boundary of E2(i(1 -t- a), p). Hence,

I(1 / ma)(1 - ka) + a2, >= I( 1 + a)- (1 -- a + peO)

--[a]p(1 tcm)

>= p(2]l -t-a]- p)- [a[ p(1-

>= p(2 I1 -t-a[- p--[a]) > 0.

Since (1 -- ma) (1 - lea) - a2 O, it follows that

I(1 -t- ma)(1 -- ka) + a2 >-- mina. I(1 -- na)(1 - tea) -- a2,

mina. I1 +/ca II 1 + ma -- a.,/(1 -- ka

By taking 0 in inequality (2.8) nd formul (2.10) nd using the fct that
H mp we rrive t the inequality

a /

> mp 1 + lcal + lcp( 1 + a p)/

From inequMity (2.7) we hve mp 1 + lca kp 1 + ma . Thus by con-
sidering the cases k 0 nd 0 < l 1 separately it finally follows from this
inequality nd the lst inequMity bove that

With this our proof is complete.

LEM 2.3. Let a ale be a complex number and p be a positive real
number such that la < p 1 + a . If

a_ e E(ia, p), a E(i(1 + a), p), and s B_/B_,
then

where

(2.11) lc (n- 1)/(n- 1 + b)

and b is given by formula (2.5).

Proof.

Clearly

It follows from the recursion formulas for the Bn that

sl 1 and s+l t2n+(t(s)).

By inequality (2.6), 0 < b < 1. Hence

0_<_ / (n-- 1)/(n-- l--b) _<_ 1

s e N(1 -- a/, p/c) N(1, 0) c N(1 - a, p).
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for all n 1, 2, .... It follows from Lemma 2.2 that

t(N(1
where

1--+b > 1m
1 k, + bk

Therefore, by Lemm 2.1

t+[M amn pm
where

k’ 1/mn-I

We shll now show that lc+ k+.

1 + (b- 1)(n- )/(n- 1 + b)
(1 + b) (n 1)/(n- 1 + b)

n/(n + b) k+.

Thus, since s+ t+(t(s)), it follows that, if

then
Sn+ N(1 + a+ pk+).

By induction s N(1 + ainu pith) for ll n, nd the proof is complete.

3. Proof of the main theorem
The pproximnts T(1) A/B of the continued frction (1.1) lie in

nested circular disks whose rdii R re given by

(a. -
(3.2) R

All of these circular regions are contained in the closed disk N(1 + a, p). For
the sake of brevity the proofs of these statements and formulas will not be
given here since they are, with a few obvious modifications, identical to the
ones given in [1, pp. 303-305] for the real case. It should be pointed out that
these arguments depend principally on the three lemmas given in the preced-
ing paragraph.
We now set Q R/R_ and proceed to obtain an upper bound for Q.
By Lemma 2.3, s e N(1 + alc, pk) N(1 + a, p), where k is given by
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formula (2.11). An application of Lemma 2.2 gives a t2(s)l > p.

Therefore, using the relation s(a - t2n (s)) (1 -t- a)s - a., it follows
from formulas (3.1) and (3.2) that

n )(3.3) V (1 + a)s + a p]s"
As a first step towards getting an estimate for Q let us consider the function

f(a, w) a
((1 + a)s + a) + ws

where a eEl(i(1 + a), p) andw 1.
It is easily seen that

maXa, f(a, w)] maXa,,,= [f(a, w).
If we denote the boundary of E(i(1 + a), p) by P and make use of the
Maximum Modulus Principle we also have that

a2ne,’2.w=l a2neP.w]=l I((l + a)s + ae) + wpes

alX
a I(1 + a) + a 1

Thus in order to determine the mximum of Q we need to tke into con-
sidemtion only those vlues of a which lie in P.
The boundary of E(i(1 + a), p) consists of ll points of the form

(i(1 + a) pe),where O =< 0 =< 2. Ifwesetl + a he nd introduce
the function

where

then

r(O) 2(h + o sin (0 )),

2(h- o) -<_ r N 2(h -t- p),

(i(1 + a) -t- oe) ei(ih + pe(-))
(3.4)

e2i p h + ipre(O_)
and

(3.5)
i(1 +a) + pel lib + pe(-)l

p

We shall also need an expression for s,. It follows from Lemma 2.3 that

Thus we can write

(3.6) s, 1 + a + ge he- g.e,
where
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(3.7) 0 _<- g _<_ [a -t- (p- a I)/c =< p.

Employing formulas (3.3) through (3.6) we now hve that

Q < max
(P h + hr) (p g

O.r.n.n hei(he + gn en) + e2(p h + ipre(-)) phe + g e

max
(p2 h + hr)(p2 g)

O.r.n.on hgn ei(:-) + p2 + iprei<O-)12 p21h + gn ei<.,-)12.
We set the denominator in the last expression equal to P and obtain

P p + hg cos ) or sin(0- ))2

+ (hg sin (ti- ) + or cos (0- ))2
p:(h + 2hg cos (- ) + g)

(g p2)(h. p2) + p2r2 2pr sin (0- ) + 2hprgsin (,- O)

(g p2)(h2 p2) + 2p2hr + 2hprg. sin (i- 0).

Clearly,
P __> min,, [(gn p2)(h2-- 02) + 2ohr(o- g)].

It follows that
(0 h + hr) (p2 g)Q _<_ max, (gn O) (h p) + 2phr (p g)

1
mx

( )(: )"h o

The inequalities a < p < h, 2 (h p) r 5 2 (h + p), and inequMity (3.7)
mke it Mmost immediately clear that the last expression above increases
with increasing r and increasing g. Therefore, after replacing r by 2(h + p)
.d gn by a + (P a I)k in this expression we obtain

2h(o --lal)(1QI-
2p(h + p) + (p -a)(h p)(1 kn)"

Formula (2.11) gives us 1 k b/(n 1 b). Aftersubstituting this
vMue for 1 k in the inequality above we arrive ut

(3.s) Q 1 -c/(n- + g)

where

(3.9)

(3.10)

h(o al)b
o(h -!- o)

d
[2h(p -la]) nt- (o -Jr-la])(h -t- p)]b

2p(h -t- o)
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Since 0 < b < 1 by inequality (2.6) and [a[ < p < h, it is easily seen that

(3.11) 0 < c < d.

Since the approximants T(1) of the continued fraction (1.1) lie in nested
circles of radii R we have T(1) T+m(1)l =< 2R for all m => 0. There-
fore, since {R} is a monotone non-increasing sequence, convergence of the
continued fraction (1.1) will be established if it can be shown that lira R2 0.
With these statements in mind we proceed to obtain an estimate for R2.
Employing the fact that R.,+I/R2 1 for all n >_ 1, the following is seen

to be true
2nR2 R1 II,,=2 R,/R,,_I <-_ R1 II=l R2,/R2,_ R1 II,=1 q,.

Using formula (3.1) it is easily verified that R1 p, and by inequality (3.8),
Q, <__ 1- c/ m l + d Therefore,

(3.12) R2 -<_ p =1 (1 c/(m 1 -- d)),

where c and d are given by formulas (3.9) and (3.10).
inequality (3.11), we can write

m-- 1-t- d m- 1-t- d

1
m-- 1-t--d

It follows that

Since0 < c < dby

dt.

1--
c <(1+ 1 )m-- l+d m-- 1-t--d

If we apply this result to inequality (3.12) we can obtain a more usable esti-
mate for R than (3.12).

R2n<pII:=I(1+=
m

1 )-l+d =’ (1+ m--l+l d))-o
or

(3.13) R2n <-_ p(1 + n/d)-.
Clearly, the sequence P(1 -- n/d)-l has the limit zero and furthermore it is
independent of the elements a of the continued fraction (1.1). Thus we
have shown that the continued fraction (1.1) converges uniformly if

a2_ E(ia, p) and a2 e E(i(1 - a), p),

where[a[ < p < 11 +a].
One proof showing that the twin convergence regions

E(ia, p), E(i(1 -- a), p)
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must also be best twin convergenceregions is given in [1] and amore detailed proof
of this fact can be found in [2]. The arguments for bestness are based upon a
consideration of certain periodic continued fractions of periods 2 and 4. With
this result and the other results of this paragraph, the following theorem is
proved"

THEOREM. Let a be a complex number and p be a positive real number such
that a < P < 1 + a I. If the elements of the continuedfraction 1.1 satisfy the
conditions

a2-1 e El(ia, p), a2 e E(i(1 + a), p)

for all n >= 1, then the continued fraction converges. Its value lies in the circular
disk N (1 -+- a), p). If the elements a are functions of an arbitrary number of
variables, then the continued fraction converges uniformly provided only that the
domains of the variables be chosen such that the a satisfy the above conditions for
all values of the variables. The twin convergence regions

E(ia, p), E(i(1 + a), p)

are best twin convergence regions. Finally, if the limit of the sequence of
approximants {Tn(1)} of the continued fraction (1.1) is L, then[ T(1) L __<
2p and for n >=_ 1

T+(1) L <_ ITs,(1) L[ _<_ 2p(1 -t- n/d)-,
where c and d (given by formulas (3.9) and (3.10), respectively) are constants
depending only on a and .
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