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1. Introduction
An integral domain o* is an ajne ring over a subdomain o in case o is a

Noetherian domain and o* is finitely generated over o. The Noetherian
domain o is said to satisfy the condition (F) in case each affine ring o* over o
is such that the integral closure of o* in its quotient field is a finite o*-module.
o is said to satisfy the condition (SF) in case each separably generated affine
ring o* over o is such that the integral closure of o* in its quotient field is a
finite o*-module. It is known that a pseudo-geometric integral domain (for
example, a field or a complete local (Noetherian) domain) satisfies the
condition (F) [1, p. 133], and a regular Noetherian domain satisfies the con-
dition (SF) [3].
The terminology used in this note will be the same as that in [6, pp. 156-160

and 347-352]. Let o be a Noetherian domain, let K be a finitely generated
extension field of the quotient field of o, and let M be a finite (finitely gener-
ated) o-module contained in K. In [4] it is proven that if o is a field, then the
integral closure M’ of M in K is a finite o-module, and in [5] it is proven that
there exists a non-negative integer k such that (Mk+) (Mk)’M for all
i _> 0 (where M o). It will be shown in this note that these two theorems
can be generalized to the case where o is a Noetherian domain which satisfies
the condition (F) (or (SF)) and where K is a finitely generated (respectively
a finite separable) extension field of the quotient field of o. It will also be
shown that if o is furthermore a local domain, then every finitely generated
o-module M contained in K has a minimal reduction N (see Section 3 for the
definition), and, without the assumption that o is local, that if N is a reduction
of M, then N’ Mt.
The methods used in Section 2 are similar to those used in [4] and [5].

2. Finiteness of the integral closure of a finite 0-module
Throughout this section the following notation will be used. 0 is a Noetherian

domain which satisfies the condition (F) (or (SF)), K is a finitely generated
(respectively a finite separable) extension field of the quotient field E of o,
and M (m, m) is a finite o-module contained in K. Let be an
element which is transcendental over K. Set M* tM, and regard M* as an
o-module contained in the field K(t). Let M*’ be the integral closure of M*
in K(t), and set R* o[tm tm] q=o M*q (where M* o). Let
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F be the quotient field of R*, let m be a nonzero element in M, and set
Fo E(ml/m, mr/m). Let F be the algebraic closure of F0 in K, and
let R*’ be the integral closure of R* in F’o(t). The following remark is a state-
ment of results proved in [6, pp. 351-352].
Remark 2.1. (1) R* (R*’) is a graded subdomain of Kit], M* (respec-

tively R*’ n tF) being the set of homogeneous elements of degree q (q _> 0).
(2) R*’ is the integral closure of R* in K(t). (3) (M) (1/t)(M*)
(1/t)(R*’ n tF). (If A is an o-module contained in K, then the integral
closure of A in K is equal to the integral closure of A in K(t). Hence if A
is an o-module contained in K(t), then A’ will consistently be used to denote
the integral closure of A in K(t).)
To prove that the integral closure of M in K is a finite o-module, it is suffi-

cient by (3) of Remark 2.1 to prove that R*’ n tF is a finite o-module. Since
K(t) is finitely generated over E (and is a finite separable extension of E if
K is), F’o(t) is a finite algebraic (respectively finite separable algebraic) ex-
tension field of F. Hence, since o satisfies the condition (F) (respectively
(SF)), R*’ is a finite R*-module.

THEOREM 2.1. Let M be a finite o-module contained in K.
closure M’ of M in K is a finite o-module.

Then the integral

Proof. Since R*’ is a finite R*-module, there exist elements xl, xo in
R$ $ $!R*’ such that R*’ x + + x R Since R is a graded subring of

F’o(t) (Remark 2.1), xi fi0 + -]- fh, where fj e tJF. Since R* is the
graded ring =oM*, if y eR*’ n tF, then y -_ (m*fo + mof),
where mi*. e M*. Therefore tM’ R*’ n tF is contained in the o-module
generated by (o, M*)(fio, f, f.o, f., "’, fo, f). Since M* is a finite
o-module, and since o is Noetherian, tM’ is a finite o-module, hence M’ is a
finite o-module, Q.E.D.

COROLLARY 2.1. If M is a finite o-module contained in K, then the integral
closure in K of M (k >_ O) is a finite o-module.

Proof. M is finite o-module, Q.E.D.
Let P denote the prime ideal tK[t] n R*. Since R* is a graded Noetherian

subdomain of K[t], and since an element x in K is in (M) if and only if xt is
in M*’

_
R*’ (Remark 2.1), P (r , r t)R*’, where r e (M) ’.

Therefore an element x in K is in (M) (q _> 1 if and only if xt is in P, hence
if and only if xt f r + +f r TM, wheref e R*’. It may clearly be
assumed thatf ’- if q _> u, and thatfi 0 if q < u. Hence
xe(M") if and only if x srl + + s,r,, where re(M"’) and
s (M"-U) (s 0 if q < u). Let u be the maximum of the ui.

IEMMA 2.1. With the preceding notation if q _> /u (k _> 1), then
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(=Nq.k, say) where the sum is over all non-negative integers kl, k, such
that kl - k, k.

Proof. The case ]c 1 is true by the preceding paragraph. Hence let k*
be greater than one and assume that the statement holds for values of k k*.
:Now (-/]q)’ Nq,k,, since (AB)’ A’B’ and (A + B)’ A’ + B’ holds
for all o-modules A and B [6, pp. 348-349]. Hence let x e (Mq) ’. Then

X 81rl - - 8nrn

where si e (Mq-u) ’. Since q ui >_ q u >_ (tc* 1)u, by induction each
si e Nq_u.._ Since ri e (Mu)’, x e Nq.. Q.E.D.

COROLLARY 2.2 If q > kU, then (M’q) is contained in the ideal p+l.

Proof. If xtq e (M’q) ’, then xtq e P. Therefore

xtq (81 rl - - s r, q,
where si e (Mq-’)’, hence si

q-u’ (M*q-ui )’. Since

q- ui >_ q- u> (k 1)u,

the conclusion follows by induction on/, Q.E.D.

LEMMA 2.2. If M is a finite o-module contained in K, then there exists a
positive integer q (depending on M) such that M’ q+ M’ aMi, for all
i>0.

Proof. If x e M’, then x satisfies an equation of the form

Xg m Xg-1 W-..-[-mg 0,
where m e M, hence

x e M(= M-I(M’)-) M(M’)-.
Let M’ (x,..-, x) (Theorem 2.1), let g be an integer such that
x e M(M’)-, and let g be the maximum of the g Since (M’) is gener-
ated by the power products of degree r of the x, if q /(g 1), then each
power product of degree q - 1 is in M(M’)q. Hence (M’)+ (M’)qM,
and the conclusion follows immediately, Q.E.D.

THEOREM 2.2. If M is a finite o-module contained in K, then there exists a
positive integer q (depending on M) such that (Mq+i) (Mq)’M, for all i >_ O.

Proof. Given M, the ring R* can be constructed, hence a basis

(r , r TM)

of tK[t] R*’ can be found. By Lemma 2.2 let g. (j 1, n) be positive
integers such that (Mu)’g+ (Mu)’(M). Let g be the maximum of
the g., and let be a positive integer such that if kl, ..., k are positive
integers which sum to k, then k. g - 1 for at least one j. Let q ]u 1,
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and let i

_
1. By Lemma 2.1, (M’) q+ Nq+.k, and each summand of

Nq+,k has a factor (Mul)’1 (MU),k,. Since/

_
g -J- 1

_
g. 1 for

some j, each summand of Nq+, has M as a factor (since u. >_ 1). Therefore
(Mq+i) AM, where A is Nq+i, with M factored out of each summand.
By the properties of the integral closure of a sum of products, A is clearly
contained in (Mq+i-1)’. Hence

Mq+i MA c_ M Mq+i- Mq+ ’,
SO (Mq+i) M(Mq+i-I) (i

_
1). Therefore by induction on i >_ 0,

(Mq+) (Mq)’M, Q.E.D.

COnOLLAaY 2.3. Let q be such that (Mq+i) (Mq)’M for all i >_ O, and
set N (Mq) ’. Then (N) N for all j >_ 1.

Proof. (Mq+q) (Mq) tiq
_

(Mq)t(Mq)
__

(iqMq) (M2q)’, hence
(M2q) (Mq) ’2, and by induction (Mq’) (Mq) ’’. Therefore
Nn== (Man)’: ((Mq)’n) ’-- (Nn) ’, Q.E.D.

3. ieductions of 0-modules
In [2] a reduction of an ideal A in a Noetherian ring Q was defined to be an

idealBinQsuchthatB _A and BA An+l for some n

_
1. Bwasde-

fined to be a minimal reduction of A in case B is a reduction of A and B is
minimal with this property. It was proved in [2] that if Q is a local ring, then
every ideal A in Q has a minimal reduction B, and that if A contains an element
which is not a zero-divisor in Q, then the integral closure A of A in Q is equal
to the integral closure B of B in Q. Further B is a reduction of B’ A’, and
if B is a reduction of C, then C

_
B’. In this section it will be proved that,

with the same domain o and field K of Section 2 these results can be extended
to a finite o-module M contained in K. However, to prove the existence of a
minimal reduction of M it was necessary to assume that o is a local domain.

Let 0 and K be as in Section 2, and let M be a finite 0-module contained in K.
An o-module N M is a reduction of M in case Mn+ NM, for some n > 0.
N is a minimal reduction of M in case if L is a reduction of M which is contained
in N, then L N. It should be noted that if N is a reduction of M, then N
is a finite o-module (since o is Noetherian), and that M is a reduction of M.
Further, if N is a reduction of M, then N is a reduction of every 0-module L
such that N

_
L
_
M. (That L is also a reduction of M follows immediately

from the next paragraph.) Finally, if N is a reduction of M, say M+ NM,
then Mn+ NM,foralli_> 0.
By Lemma 2.2, M is a reduction of M’ (where A’ denotes the integral

closure in K of an -module A). Also, if N is a reduction of M, then
NM MM, for some n, therefore (NM)’ (MMn)’. Hence, since M is
a finite -module, N M [6, p. 348]. Further N M’ is the largest
o-module for which N is a reduction, for if N is a reduction of L, then
N _L _L N’. In summary,
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THEOREM 3.1. If M is a finite -module contained in K, then M is a re-
duction of M’. If 1V is a reduction of M, then N’ M’, N is a reduction of L,
where N L N, and L is a reduction of N’ L’.

If is a local domain (which does not necessarily huve the property (F)
(or (SF))), then the proof given in [2] that every ideal has a minimal reduction
carries over with minor changes to proof of

Tnon 3.2. Let ) be a local domain, and let K be an extension field of the
quotient field of . If M is a finite -module contained in K, then there exists a
minimal reduction of M.
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