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1. Introduction
Let F denote the 2 X 2 modular group, that is the group of 2 X 2 rational

integral matrices of determinant 1 in which a matrix is identified with its
negative. Let F (n) denote the principal congruence subgroup of level n, that
is the subgroup of F consisting of all matrices congruent modulo n to =kI where
I is the identity matrix. The factor-group F/F(n) plays a central role in the
theory of elliptic modular functions of level n in the sense of Klein [6] and
Igusa [5]. If SL(2, n) denotes the group of 2 X 2 matrices of determinant 1
over the ring of integers modulo n then the linear fractional group LF(2, n) is
defined to be LF(2, n) SL(2, n)/I where I is the identity matrix, and
it is well known [3] that r/r(n) -- LF(2, n). Since

SL(2, nm) --- SL (2, n) X SL(2, m)

when (n, m) 1 it follows that the study of the linear fractional groups
reduces essentially to the study of those which are of prime power level.
In this paper we consider LF(2, p’) where p is an odd prime (cf. [1], [2])
and n > 1. The main results obtained are Theorems 1 nd 2 of Section 3
which give, respectively, a set of defining relations for this group and the
structure of the automorphism group. In Section 2 explicit representatives
of the conjugacy classes are obtained and a simple demonstration of the
normal subgroup structure is given (cf. [7]).

For brevity we set H LF(2, p), n 1, 2, and denote a typical
element byA :i:( )or:t: (a,b,c,d). We sets tr(A) (a-l-d),
and use hn for the order of H.. It is well known that

h,- 1/2pndp(pn)(pn)

where is the Euler function and #(pn) pn-l(p -t- 1). The homomorphism
from Hn to H (n r) defined by

will be denoted by f. This homomorphism is surjective and the kernel
K has order p(n-r). In particular K_ (n > 1) consists of all elements of
H, of the form

fl + xp- yp-
zp- 1 xp-]

and so is easily seen to be abelian of type (p, p, p) (cf. [2, p. 310]).
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We shall often use a b instead of a b (rood pn) where there is no
danger of confusion.

Finally we shall write m > 0 when (mlp) 1 and m < 0 when (mlp) 1
where (mlp) is the Legendre symbol.

2. Normal subgroups and conjugacy classes

Proposition 1 (i) and Proposition 2 of this section are straight generaliza-
tions of results of Gierster [1] for H. In [2] necessary and sufficient con-
ditions were obtained for two elements of Hn to be coniugate but explicit
representatives of the coniugacy classes were not given.
The following result will be useful.

LEMMA l. Let Nr be the number of solutions of the congruence

Ax A-Bxy A-Cy=- D (modpr)

where A, B, C, D are rational integers and D 0 (rood p). Then N pr-N1

The elementary proof by induction is omitted.

PROPOSITION l. (i) If S 4 0 then A is conjugate to a diagonal
element;

(ii) If s 4 < 0 then A is conjugate to (0, -1, 1, s).

Proof. (i) Since (a d) z7 4be s 4 is a quadratic residue modulo
p, there exists one or two solutions of the congruence

cx-4- (a- d)x- b =- 0 (modpn)

according as c 0 or c 0 (mod p). Let x be a solution and

Then
X =t=(0, -1, 1, x).

XAX- : d c, 0, as)

where d d cx and a a A- cx. Since s 4 (al dl)2 it follows that
ai d is a unit rood pn and setting B :t: (0, -1, 1, --c(d al)-1) we find
B(di, c, 0, al).B-1

=i= (a, 0, 0, d).
(ii) It is required to find B +/- (u, v, w, x) in H such that

BA :i:(O, -1, 1, s)B.

For this it is sufficient to solve the congruences

w --ua vc (rood p), x --ub v d (mod p), 1 =--ux vw (mod p’).

We must therefore find u and v satisfying

cv’4- (a-- d)uv-- bu--- 1 (modpn).

Since the norm mapping from GF(p) (%/(s 4) * to GF(p) * is surjective
(here K* denotes the multiplicative group of the field K) there are (p)
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solutions of this congruence rood p and so by Lemma 1 there are k(pn) solu-
tions mod pn. This completes the proof of the proposition.
We set

n(a) =t:: ( nO_a), S(8) -4-(01 --81).
It is clear that there are 1/2(pn) pn-1 diagonal elements D(a) with the
property that s 4 > 0, and that D(a) and D(b) are conjugate if and only
if either a 4-b or --b-1. Furthermore D(a) D(a-1) if and only ff
a -1, i.e., (-lip 1. It follows easily that the elements of H for
which s 4 > 0 split into - [(p 3) p-i d- 1 -t- (- l/p)] complete classes
of conjugate elements. Furthermore the normalizer of such a D(a) consists of
all diagonal elements in H and so has order 1/2(p); however if (-1/p) 1
then D(%//- 1) is exceptional since its normalizer contains 1/2(p) additional
elements of the form 4-(0, b, -b-1, 0). In a similar fashion, one sees that the
elements of H for which s 4 < 0 split into [b(pn) - 1 (--l/p)] com-
plete classes of conjugate elements. The proof of the proposition also shows
that when s 0 the normaliser of E(s) has order 1/2h(pn); however when
s 0, so that (-l/p) -1, there are 1/2(p) additional elements of the
form 4- (a, b, --b, a) in the normalizer.
Now let u be a fixed quadratic non-residue modulo p and let

( 1 ) N(t) --( u )R 4.
1-- l - ut

where 0, p, 2p, (pn-1 1)p. These elements have the property that
s 4 0 (rood p), but they do not belong to K. Furthermore, no two of
them are conjugate in H--this is clear from consideration of the traces and
from the fact that f(R(t)) and f(N(r)) are not conjugate in H [1]. Now
let C denote the totality of elements A in H with the property that
s- 4 0(modp) butAeK. We note that irA 4. (a, b, c, d) is an
arbitrary member of C, then, by transforming first with 4.(0, -1, 1, 0) if
necessary, we may assume that b 0 (mod p).

PROPOSITION 2. If A belongs to C then A is conjugate in H,, to R(s 2) or
N (s 2)/u) according as b > 0 or b < O.

Proof. It is required to find B 4-(y, v, w, x) in Hn such that
BA 4- (1, r, t, 1 + rt)B where r loruandt (s 2)/r. This yields
the congruences

w---- r-[y(a-- 1) d-vc] (modp)

x r-l[v(d 1) - yb] (mod p)

1---- yx vw (modp)
which in turn give

by -- (d- a)yv-- cv =- r (modp).
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A solution of this is v 0, y =- v/(rb-1) (rood pn). This completes the proof
of the proposition.
The proof shows that the order of the normalizer of +/- (1, r, t, 1 + rt) is half

the number of solutions of

ry + rtgv tv r (rood pn).

By Lemma 1 this order is therefore p and consequently C splits into 2p-1

complete classes of conjugate elements, each class containing 1/2(p)(p)
elements.

It only remains to determine representatives of the conjugacy classes in
K. Since K is normal in H and Kr+ c K, 1

_
r

_
n 1, the set-

theoretic difference K Kr+l splits in Hn into complete classes of conjugate
elements. The following matrices belong to this set"

M(w, r) 4-(1, wpr, wup, 1 + w2up2r)
D(1 + wp) +/-(1 - wp, 0, 0, (1 - wpr)-)

where 1 < w p,--r and (w, p) 1,

P(m, r) +/-(1, pr+, mpr+, 1 + mpr+’)(1, p, O, 1)

Q(m, r) +/-(1, pr+, mpr+l, 1 + mpr+)(1, up, O, 1)

where 1

_
m

_
pn-r-1.

In these expressions, u is, as before, a fixed quadratic non-residue mod p.
We note that +/- (1, pr, 0, 1 and +/- (1, up, 0, 1 are not conjugate in H+ and
therefore no P(m, r) is conjugate in Hn to a Q(m, r). In the following proposi-
tion [A] denotes the conjugacy class represented by A.

PnOPOSITION 3. (a) [M(w, r)] [M(w, r)] if and only if
w +/-w (mod pn-r);

[M(w, r)] contains dp(p2n-2r) elements.
(b) [P(m, r)] [P(ml r)]/f and only if m - ml (mod pn--r--1); [P(m, r)]

contains 1/2(pn--r)b(pn--r) elements. An identical statement holds with P re-
placed by Q.

(c) [D(1 + wpr)] [D(1 + wpr)] if and only if D(1 + Wp)
D 1 - w pr) or D 1 + w pr)--I [D 1 + wpr) contains b(p’-) elements.

Proof. (a) If +/-(a, b, c, d)M(w, r) +/-M(w, r)(a, b, c, d), then

(i) bwu =- cw (mod p--r)
(ii) d(w- w)upr-- bwl u- cw (mod pn-r)
(iii) dwupr dw aw (mod p--r)
(iv) CW p dw aw (mod pn-r).

Combining (i) and (ii) gives

dw(w w)p=- b(w w) (rood pn--r)
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and therefore if w w 0 (rood pn-r) then b 0 (mod p). Combining
(i) and (iv) gives

bw2up =- dww- aw (mod pn-r)

and using (iii) we get

d(w- w) =-- 0 (mod

pn-r) ;butConsequently if w wl - 0 (rood then d 0 (rood pn-)
b d 0 (rood p) is impossible and so w -= w (rood pn-r). Since w and
w are relatively prime to p this implies that w --- w (rood pn-r). :Now using
the above four congruences with w w it is clear that :i:(a, b, c, d) e H is in
the normalizer of M(w, r) if and only if c bu, d =- a -+- bwup (rood pn-r)
and a - wuprab ub 1 (rood pn--r). By Lemma 1 this congruence has
b(pn-r) solutions and using the fact that K_r hs order par it is seen that the
normaliser of M(w, r) has order 1/2(pn+2r). This proves (a).

(b) If :i:(a, b, c, d)P(m, r) ::l:P(m r)(a, b, c, d) then

(i) bmp c(1 + p) (rood pn--r)
(ii) brnp’+ d- a (mod pn-r)
(iii) (dm am)p cm(1 + p)pr+l (mod
(iv) bm. p c(1 + p) + d(1 --[- p)(m m)p’+ mod pn-r).

Combining (i) and (iii) gives

d(1 + p)(m ml)pr+ bp(ml- m) (mod pn-r)

and therefore if m m 0 (mod p,-r--) then b 0 (mod p). Combining
(ii) and (iii) gives

pa(m- m) =- bmpr+2 cm(1 -[-- p)p’+ (mod pn--r)

and using (i) we get

pa(m- ml) =-- c(1 + p)p’+(m m) (mod pn-r).

If m-- m 0(modpn-r-)thena--- 0(p). Buta---b--- 0(modp) isim-
possible.

Using the above four congruences with m m shows that =t= (a, b, c, d) e H
is in the normalizer of P(m, r) if and only if

c =-- bmp(1 + p)- (mod pn--), d =-- a bmpr+ (mod pn--r)
and

a mpr+ab mp(1 + p)-Ib ---- 1 (mod pn-,).

By Lemma 1 there are 2p solutions of this congruence. The rest of the
argument proceeds as in (a).
The proof of (c) is similar and is omitted.
A simple computation gives p(-r) p(--) elements in the conjugacy

classes represented by the non-conjugate M(w, r), D(1 + wpr), P(m, r),
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Q(w, r). But this is exactly the number of elements in the set K
This completes the discussion of representatives of the conjugacy classes
of H.

It has already been remarked (see Section 1), that K_I is abelian of type
(p, p, p) from which it follows by an easy induction argument, that the order
of any element of K is a divisor of pn-r; We shall make use of the fact that

(1, pr, 0, 1) belongs to K and has precisely the order pa-r. On the other
hand if A does not belong to K and m is the order of f(A) then (cf. [1])
m pifs2-4-0(modp),ml(p-1)/2ifs2-4 > 0 and m (p -- l)/2 if
m < 0. It follows that the order of A divides pa or 1/2(pn) or 1/2h(pn). More
precise information concerning the order of elements in the set C is given by
the following lemma, which is stated without proof since it is a special case of
a result proved in [2, pp. 316-7].

LEMMA 2. If p > 3 then R( t) has order p and

R(t)pn-1 pn--1,(1 0, 1).

If p 3, then R(t) has order 3 if and only if t/3 =-- 0 or 1 (mod 3) and then

R(t)-1 (1, (1 - t/3)3-1, 0, 1).

As a corollary to this lemma and the preceding remarks we can state

LEMMA 3. Elements in H which have order p belong to C.

When p > 3 the group H1 is simple [1] so that K is a maximal normal sub-
group of Hn. However, when p 3, H is just the alternating group of four
letters, and hence the elements of order 2, namely

together with the identity form a normal subgroup of order 4, say V4. There-
fore the inverse image of V4 under ]’ is a maximal normal subgroup of H of
order 4.33- and will be denoted by M..
LEMMA 4. K_ is the center ofK No proper subgroup of K_ is normal

in Hn

where

and

The group K’ consists of all elements in Ha of the form

A :i: (1 - ap, bp, cp, 1 - dp)

a,b,c - 0, 1,2, -..,p’-- 1 (mod

d =- (-a + bcp)(1 - ap)- (mod

It is easily verified that Kn_ is in the center of K. On the other hand, if A
is in the center then A commutes with :i: 1, p, 0, 1 and :i: 1, 0, p, 1). These
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conditions give

b c 0 (mod pn-2) and a d (mod pn-2).

But since d =-- (--a - bcp)(1 - ap)- (mod pn-2) it follows that

a(2 - ap) =- 0 (mod pn-2)
and so

a d 0 (mod pn-2).

Therefore A belongs to Kn_. Now if N is proper subgroup of K_ which
is normal in Hn then the order of N is either p or p and it splits in H, into
complete conjugacy classes. It is easy to see from Proposition 3, with
r n 1, that this is impossible.

PROPOSITION 4. The set {K}r0 gives all normal subgroups of H when
p > 3. When p 3, there is one other, namely Mn. In particular, every
normal subgroup is a characteristic subgroup.

Proof. Let N be normal in Hn and suppose first thatf(H) {1} so that
N c K. We prove by induction that N K for somer, 1 r n;
the casen lisknown. Nowifn> lndf_(N) {1}thenN Kor
K_ by the preceding lemm. Otherwise by the induction hypothesis,
fn_(N) K-, 1 r n 2, nd therefore N K nd

N/N K_ -
We show that N a K_ {1} brings contradiction. In that case by con-

n--1sidering orders it follows that N.K_ K nd N K, However this
is impossible since by Lemm 4 nd previous remark the mximum order of
elements in N.K_ is pn-r- while K contains elements of order p-. If
p 3 ndf(N) V then N M nd we prove by inductino that N M.
Again the cse n 1 is known. When n > 1 then f_(N) M,_. by the
induction hypothesis nd if N K K_ it follows that N M. Other-
wise by the preceding prt of the proof N a K {1} so that N M._.
By compuring orders it is clear that N.K M,, n 2 nd hence N V.
However the remarks following Proposition 1 concerning normlizersshow that
this is impossible.

There remains only the possibility that f (N) H. In that cse it is
esy to see by induction that N H. Indeed the cse n 1 is trivial;
if n > 1 then f_(N) Hn_ by the induction hypothesis nd if N K_
then N H,. Otherwise, by the preceding prts of the proof, N K 1
nd NaM {1} (p 3), nd thereforeN H._. If p 3 this is
impossible since R(t) e N for some nd this element hs order p. If p 3
then clearly N.M H and the order of N is 3 by one of the isomorphism
theorems. This is a contradiction. The proof is complete.
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3. The automorphisms of H.
It is well known that the elements

S0-- 4-(1,1,0, 1) and T0 4-(0, --1,1,0)

generate H,. The orders of these elements are p and 2 respectively while
T0 So 4-(0, -1, 1, 1) has order 3. The following theorem is analogous
to a result for LF(2, GF(pn) ); we use the notation Zn for the ring of integer
modulo p’.
THEOREM 1. Let the group G be generated by the elements S and T, which a

subject to the sole defining relations

(i) S= 1, T2= 1,

(ii) M r-- M(1 rs)M
rsrs--

where M a TS and rs 1 is a unit in Z

(iii) M(r)M(s)M(u)M (rsu-rS u

M(rsu--r--u)M(rsu_SUr_ u) 1

where rs su 1 (rood p) but r u s-1 (rood p) is excluded.
Then H is isomorphic to G under the map which sends So and To to S and

T respectively.

Proof. Taking T To, S So it is easily verified that the above relations
are consistent. From this it also follows that the theorem is proved if we
show that the order of G is not greater than the order of H.. For clarity
in printing we shall write S(a) for Sa. We first show that the excluded
case in (iii) above follows from (ii). The relation to be verified is

TS(r-1)TS(r)TS(r-1) S(r)TS(r-I)TS(r)T
or equivalently (by rearrangement)

S(-r)TS(r-I)TS(r)T TS(r-1)TS(r)TS(-r-).
Putting s -r-1 in (ii) we obtain

M(I_ r.)M(2)M(.l r-)2 2
TM(r-)M(r)M(-r-) 1

and so our relation is verified if

M()M(2)M(,1- r-)2
TS(-r)TS(r-1)TS(r)T- 1.

However this is verified if we replace r by -r and s by r- in (ii).
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We consider now the following subsets of G:

A {TS(x)TS(y)TS(z)} and B {S(x)TS(y)TS(z)}

where x, y, z run through all members of Zn with the restrictions that y is a
unit and, in the set B, xy 1 (mod p). It will be shown that A u B con-
rains all members of G by proving that A and B are permuted among them-
selves in multiplying on the left by T and each S(u). Now TB is contained
in A. A typical member of TA has the form S(x)TS(y)TS(z) and if
xy 1 (mod p) this belongs to B. If xy 1 is a unit in Zn then take r -x
s y in (ii), solve for S(x) TS(y) TS(z) and obtain this element in the form
of an element of A. Next multiply on the left by S(u), u O. The argu-
ment used on TA now applies to S(u)B. Finally consider S(u)A, which
consists of elements of the form

R S(u)TS(x)TS(y)TS(z).

Ifxy- lisaunitinZnputr 1 xyands (1 y)/(1 xy) in(ii)
and get

( 1--y) TS(xy--I)TS(x ---z- 1-xyz)R=S u
1- 1-xy

Again the argument used on TA shows that R belongs to A u B. Suppose
now that xy 1 is a non-unit but that ux 1 is a unit. Then from (ii)
we obtain

TR-S x--1 TS(ux- 1)TS x- 1 - y TS(z).

Now

(ux-- 1) /x-- 1 + y 1 ------ --y (modp)

and is therefore a unit in Z so that making use of (ii) once more we obtain

TR S(a)TS(b)TS(c) for some a, b, c with b --- y (rood p)

and hence is a unit. It follows that R is in A. Finally suppose that
ux =- xy 1 (mod p). Then from (iii) we obtain

R TS(a)TS(b)TS(c)

where a is a unit. Hence R is in A.
We have therefore shown that G A u B. The number of elements in

this union is p2’4(p) -[-- p2n-l(p) pndp(pn)(pn). The order of Hn
is just half of this while the order of G is a multiple of that of H and is not
greater than p(p’)g,(p’). Hence G and H are isomorphic if two nota-
tionally distinct members of A, say, are equal. This is true of (TS) and
(TS-1) which can be seen by taking r 1, s 0 in (ii). This completes
the proof of the theorem.
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Now the center of H reduces to the identity and therefore the group I
of inner automorphisms has order h, n 1, 2, .... Let u be once more
a fixed quadratic non-residue modulo p and let U (u, 0, 0, 1). The
element U does not belong to H and the map f from H, to Hn defined by

f(A)- UAU-
is an outer automorphism with the property that f belongs to I,. It follows
that

Gn I,tI,f

is group of automorphisms of order 2h, (cf. [1]).

LEMMA 1. If a is an arbitrary automorphism of H then there is an automor-
phism in G, such that

-a(So) R(t)

(c0
where =-- 0 (rood p) and c + bt - E1 (rood p).

Proof. Since z(S0) has order pn it belongs to C by Lemma 3 of Section 2 and
hence by Proposition 2 there is an inner automorphism which sends it to
R(t) or N(t). Howeverf(N(t)) :i=(1, u, u-it, 1 + ut) and by Proposition
2 again there is an inner automorphism which sends this element to R(ut).
Consequently there is an automorphism p in G such that pz(So) R(t)
for some 0 (rood p). We now prove that there is an integer m with the
property

R(t)-’p(r(To).R(t): (co :)
where c + bt +1 (rood pn). This is true by a lemma of Hecke [3] when
n 1 and so we proceed by induction. Since K_I is a characteristic sub-
group of H. the automorphism pz induces an automorphism po of H_ and

p- So (mod pn-1) ----> R mod pn-1.

If we now use the induction hypothesis, go back up to H and recall that an
element of H of order 2 has trace zero, we get

R(t)-r.po-(To) .R(t)= :i: (: -ab )
where a 0 (p-l), c is a unit rood pn, and r is an integer. Now if v is an
arbitrary integer then

R(t)v-= :1:
ev
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by Lemma 2 of Section 2, where e 1, and therefore

c --a + cvp’-1

n--IWe can clearly choose v so that a =- scvp If then m r -- ypn- and i
is the inner automorphism induced by R(t) we have

The relation c zr bt -= 1 (rood pn) follows at once from the fact that
ipa(So. To) has order 3 so that its trace is +1. Finally, setting r ip, we
obtain the statement in the lemma.

If 0 (rood pn) then ra is identity and so a belongs to G,.. Otherwise
supposet--- 0(modpV) butt 0(modpV+)wherel _v_n- 1. We set
v(t) v and make the following

DEFINITION. An automorphism p of H will be said to have weight v
if p(So) R(t), p(To) :i:(0, b, c, 0) wherec + bt-- 1 (modpn), and
v(t) .
PROPOSITION. When p > 5 there are no automorphisms of H, of weight
n 1 (n > 1). When p 3 or 5 there are no automorphisms of H, of weight
n- 2 (n > 2).

Proof. Let p be an automorphisms of H of weight v. The element
A To S To S] has order 2 when rs 2 (mod pn) (cf. Theorem 1), and
therefore B p(A) has trace zero. Since

R(t)

it follows easily that tr (B) (a + a ) (mod ) where

and

2(r 1)(r 4) (mod pn)a ------ 3r

(r 1)(r 4) _. (r 1) (r 4) (rood p’).a.
15r 18r

Now ifv(t) n 1 (n > 1) thentr (B) 0 (modp) for allunits r (modp)
if and only if p 3 or 5. If v(t) n 2 with n >_ 4, (so that -= 0 (rood p)
there are always units r (rood p) such that tr (B) 0 (rood p’) no matter
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what the value of p. Finally when n 3, v(t) 1 and p 3 or 5 we have
tr (B) pt (rood p3). This completes the proof of the proposition.

COnOLLAnY 1. When p 5 there are no automorphisms of H, of weight v
where1

_
v

_
n- l (n 1). When p 3 or 5 there are no automorphisms

Of Un Of weight v where 1

_
v

_
n 2 (n > 2).

Proof. Let p be an automorphism ofH of weight v and suppose that p > 5.
Then, since Kvi is characteristic subgroup of Hn, p induces an auto-
morphism of H+ which hs weight v. This contrudicts the proposition.
The statement concerning p 3 or 5 is proved similarly.

ConoAnV 2. Aut (Hn) G, when p > 5.

Proof. This is immediate from the previous corollary and Lemma 1.
It only remains to consider the case v(t) n 1 when p 3 or 5. The

conditions c bt 1 (rood pn) nd bc --1 (rood pn) imply now that
b --1 tnndc 1 + t. We therefore set

S R(t) and T
1+ 0

and verify that the assignment S0 S, T0 T induces an automorphism of
H. For this it is sufficient to verify the relations of Theorem 1. The
following remark will simplify the calculations. We write

M(r) TS Mo(r) + tA (r)
here

Mo(r) To So and A(r)

whereb(r) 1- r(r + 1),c(r) 1 + r(r 1)andd(r) r(r + ).
I is clear from ghis ghag ghe germs involving in M(r) depend only on ghe

value of r modulo p, exeepg ghag when p ghe germ d(r) depends on he
value of r modulo . Leg now F(r, ) and L(r, , ) denoge ghe expressions
on ghe lefg in relagions (ii) and (iii) respeeively of Theorem 1, and F0(r, ),
Lo(r, , ) ghe same expressions wigh S and T replaced by S0 and T0.

LEMMA 2. Let w r, x s, and y u (mod p). Then

(i) F(w, x) I implies F(r, s)
(ii) L(w, x, y) I implies L(r, s, u) I.

Proof. (i) Let w (w 1)/(wu 1), w 1 wx, wa
(u 1)/(wu 1), w4 w, w u and define rsimilarly in terms of r

ands, i 1,2, ..-,5. Since
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it follows from the remark preceding the lemma that, when p 5

II=l M(r) II= [M0(r) + tA(w)]

II= [M0(w) + tA(w)]

When p 3 we can write

since

I M(r) Mo(r) + tA(wi) -4- 0,0,0, r w
i=l i=l 3

d(r) d(w) (ri- w)/3 (mod 3).

Using the fact that H=-I Mo(r,) II= Mo(w)
we get

II= M(w,)

IX M(r,)
i=1 i=1

Mo(w,) + tA (w) (0, O, O,

II [M(w) -4- o, o, o, ri Wi

i=l 3

t(O,O,O, r
3

The proof of (ii) is similar.
Now if r, s, u satisfy rs =- su -= 1 (mod p) one can choose w, x, y congruent

respectively to r, s, u (rood p) and satisfying w = y x-1 (mod p"). It
follows from the preceding lemma and the remark made at the beginning of
the proof of Theorem 1 that relation (iii) of that theorem follows from rela-
tion (ii) in the present special case. Now in relation (ii) let rs d (mod p)
0 <_ d < p 1, d # 1. One can choose w, x congruent respectively to
r, s(mod p) and satisfying wx d(mod pn), and then F(w, x) I
will imply F(r, s) I. When d 2 the proof of Lemma 1 shows that
F(w, x) =t=I. When d 0 the relation to be verified is

TSw. TS STSwT, wx =- 0 (mod pn).

However, an easy calculation shows that TSw. TS TS-. TS-)- and
this gives the required relation.
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It therefore only remains to verify relation (ii) for d 3 or 4 when p 5.
Putting k-1 1 wu (mod 5n) the relation can be written

M(k(1 w))M(k 1) [M(k(1 u))M(w)M(u)]-1.
A straightforward calculation yields the following congruences"

(w2-{-u2)(3]2- 2]-- 1) --= 0

w3(1 k) - 2uk-l(k +k2- ]-- 1) (mod5)

w]c(]:- 1) + 2w(k 1)(/c + ]c - 1)

--2u(lc- 1)(/c + 1) u2/(/ -t- 3)(] 1).

Bearing in mind that ]c -= 2 or 3 (rood 5) and w 1 k-)u- it is a simple
matter to verify that these congruences are satisfied.

Finally, relation (i) is satisfied when p 5 but when p 3 we have the
condition t/3 0 or 1 (rood 3) from Lemma 2 of Section 2. We have proved
the

PROPOSITION. When p 3 or 5, and v( t) n 1 there is an automorphism
of H, which sends

1
and To to

1 0So tO -+-
1 -with the condition that t/3 =- 0 or 1 (rood 3) when p 3.

Now if p and are automorphisms of weight n 1 the cosets Gn p and
Gn are distinct. We can therefore collect our results in

THEOREM 2. The order of Aut (Hn) is d, h, where hn is the order of H,
d 2, and, when n 1,

d, =2, if p>5,

10, if p= 5,

6, ifp 3, n > 2,

4, ifp 3, n 2.
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