
GENERALIZATION OF A FORMULA OF HAYMAN AND ITS APPLICA-
TION TO THE STUDY OF RIEMANN’S ZETA FUNCTION

BY

E. GROSSWALD

1. Introduction. In [5] Hayman considers functions f(z) =0 an z,
analytic inside z < R <_ and satisfying some additional conditions and
obtains for their coefficients an an asymptotic estimate which generalizes
Stirling’s formula 1/n (e/n)’(2rn)-l/, to which it reduces in the case
f(z) ez.

In the first part of the present paper, we obtain an asymptotic series for the
coefficients an of an appropriate class of functions f(z) this is the analog of the
well-known asymptotic series for the factorials, to which it reduces in the case
f(z) ez.

In the second part, we use the results of the first part, in order to prove that
a certain condition, necessary for the validity of the Riemann hypothesis, is in
fact satisfied.

Part

9.. llotations and main results. Let f(z) _,:o o, z be a function
analytic inside the circle zl < R (_< ), real on the real axis and such
that lim, f(x) . Set

d(log f(z)) z(f’(z)/f(z))al(z) z
dz

and define inductively for > 1,

da-(z)a(z) z.
dz

Let A be the class of real-valued functions a(x) such that, for > 3,
a(x) <_ a(x) for sufficiently large x (which might depend on ). We assume
furthermore, that there exists a function/t(x), satisfying the following con-
ditions for some a e A"

(i)
(ii)

lim. 62(x)a2(x)
lim_, 6(x)a(x) 0;
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also, setting k(x; ) maxi0,>_f(x)-1 f(xeO)l we require that

(iii) lim_,. X(x; ) O.

The functions f(z) for which such functions ti(x) can be defined will be said
to belong to the class F.
Denote by r r(n) the unique (for proof of uniqueness, see [5]) root of

(1) a(r) n,

which approaches R, when n -- , and by A A(a), the class of functions
(r), satisfying (i), (ii), (iii) for a given a(x) A.

For fixed natural integer m and a(x) A, set
2m+l --3m--5/2 --3m--3/2 2m --3m--5/2 2m+2 a-3m--T/2a2m+2}b(x) max/a a2 a2 aa a4, a a3

next, selecting also (x) e A(a), define

(2) m(x; ti, a) a2(x)l/2max {(tia.)-lexp (-1/2riga2), h(x, ), b(x)}.

Finally, denoting the greatest integer function by square brackets and the
multinomial coefficient

vv21. vI.(v+ v+ + v N) by
v ’set

(3) AN(x) (--1)N/ 1 (N)N! = v
al(X) a(x) N even, kl [N/3];

here, and in what follows, a summation without limits is understood to range
over all sets of integers v. > 3, satisfying v_ -f- -4- N. By (3), A. 0
and we agree to set A0 1. Any 0-term occurring in the paper is understood
for n -- , or, equivalently, for r -- R. With these notations we now state
the main result.

THEOREM Iff(z) :=oa,zeF and r r(n) is therootdefinedby (1),
then, for any selection of the natural integer m, of a(r) e A and (r) e A(a), the
coefficients a, off(z) admit the following asymptotic expansion"

a= f(r) r-( --1/22r a2(r))

(4)
{E  Zo e ’ra2 (r)) -+- 1/2)A2(r) - O(,(r; , a))}

f(r).r-(2’a2(r))-1/2
{1 + r-/2 3=2 (2aT(r))F(, + 1/2)A(r) + 0((r; ti, a))}.

3. Comments and a corollary. In (4), the error term depends upon the
choice of a(x) and ti(x). In many cases it is possible to choose these functions
so as to minimize the order of this term. For instance, if we set
5(x) g.l.bd.a a(x), it might happen that 5(x) A. This, e.g., is always
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the case if f(z) e F is of order less than one, because then a(x)

_
al(x) for

x -- R. In general, we shall say that f(z) e El, if f(z) e F and 5(x) A.
Clearly, F1 c F and, if f(z) e F1 one will select a(x) 5(x). Concerning
ti(x), the choice is less well defined. However, one observes that in (2) b(x) is
independent of i (x). If for some (x) e A (5) and x sufficiently large,

max {b(x), )(x; i), (ia2) -1 exp (--1/2(2a2)} b(x),

then a (x)b(x) and this result cannot be improved by any
different choice of t e A (5). If, however, for all ti e A (5) and x -- R,

b(x)

_
max {h(x; ), (tia2)- exp (-1/2ia)},

then one selects the largest possible ti, because, as ti increases, h(x; ti) and
(ta)-1 exp (- 1/2ti2a2) both can only decrease. In order to do that, we may set
i0(x) 1.u.bd.a()ti(x); but then in general t0(x) A(5). However, there
exists a sequence K(x)/, K e A (5), such that lim ti(x) i0(x), and we
may choose a specific ti(x), with conveniently large K. We shall denote by
(x) the function (x; , a), corresponding to a(x) 5(x) and the specific
choice of ti(x) described. We may formalize the result just obtained in the

COROLLARY.
O(.,(r)).

If f z F then the error term in (4) may be replaced by

For completeness we also recall that (see [5]) in (4), r-’f(r) may be replaced
by i min (l/x) suplzl= If(z)I.

Finully, it should be mentioned that the usefulness of the theorem is limited
mainly by the difficulty one has to solve (1) with sufficient accuracy. Indeed,
suppose that we obtain r(n) in the form r(n) r(n) - e(n), where
e(n) o(r(n) is an error term of which we have only limited information.

Then, when we substitute this in (4), it may happen that the uncertainty
introduced by s(n) is so large, that it wipes out any advantage obtained from
carrying along the asymptotic expansion. In these cases, (4) does not repre-
sent any effective improvement over the simpler result of Hayman as far as the
computation of the coefficients a is concerned. However, even in some of
these situations, the present theorem may lead to results not directly obtainable
by Hayman’s Theorem. One such example will be presented in Part II.

4. Proofs.

LEMMA 1. I f- e-x dx F , + 1/2)

Proof. Set x y; then I f e-y-/ dy F( - 1/2).
-x 2, c2,-le-CLEMMA 2. Let c (tia2/2)/; then w f: e x dx <

Proof. Integrating by parts and using property (i) of ti,
2--1--c _2--1^-c2 --2w= +1/2(2-1)_< +c (2-1)
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and the result follows, because, by (i), c 1/22a > 2 1 for fixed and
sufficiently large x.

LEMMA 3.

e-(1/2>Oa2<x>O2v dO (2a;l(x))V+l/F(p -t- 1/2) %’(2a;l(x))’-le

Proof. Follows from (i), Lemma 1 and Lemma 2.

Proof of the theorem. Let f(z) e F and set z xe, so that

log f(z) log f(x) - (iO) a(x);

hence,

(0 < , < 1).

Here

f(z) =f(x) exp{ (iO)" }
By Cauchy’s theorem,

(5) f( do.

We split the integral (5) into two parts" f: f + fa>. By the assump-
tionf(z) e F we can select a function a(x) A, and then (x) e A(a), such that,
using (iii), the last integral is 0{X(x; ).f(x)} and it remains to compute

f(x) exp (iO):a,(x) e

In this 1st integrl we tke for x the root r r(n) of (1); then the terms
iOa (r) ion of the exponent cncel nd the integrl becomes

(6) f(r) e-(/+ exp
(iO)" ,(r) dO f(r)I(r, )

=3

We select fixed integer m nd write, for simplicity a rther thn a(r), when
ever there is no dnger of confusion; then the exponentil in (6) may be ex
pnded s follows"
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kl 1 a a,E E E
N=3 (2m+l) kffi=2m-t-1 Yl Pk

(i0) + 1 N
ak

he symbols k, (N) and (wihou indication of limits) having he same

meaning as in . We seg S S + S S being ghe sum of ghe even powers
and S ghe sum of ghe odd powers of 0. Clearly, e dO 0 and
ig is sueien o consider only S.

al akS 1)’(2n)n=3+2 k k

(6m+4)[ (+ 1)[ (3l)4[ a a

aa
(6m + 6) (2m + 1)! (3)6

+ (6m + 6) (2m + 1)(2m)
_

aa a4 aa(3 t)-4 5

(6m + 6)’ (2m+ 1)- ’ 1 (6m + 6)’+ (3 )-(4) 3 (2m + 2) (3a a) + !)+ "+
06m+8+ 1)+’ 0(

(m + )
use having been made of (ii), 0 (which implies 0), for r
Hence, using (ii) once more,

(7) k(2m (3!)’=4 aa a (2m + 2) (3!)’=+’

+ 0(0+a+ +
As for S, ig may be rewrigen as follows:

k=l N=3k Yl. k.

where k. rain ([N/3], 2m). Hence, $1 1 + $3 + $4, with

3",ff (iO)V 1
$3 al

N=3 N! k-1 .. Y k
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and
(iO) 1 x-, YS a a

N-3" 2rant-2 N ] Pk---1 k

In $3 we separate the even and odd powers of O, so ha Sa S’a + S’, wih

B+(r)O

where the A2(r) ’s are given by (3) and the B2+1(r) ’s have similar expressions.
We do not need to know the B2r+l’s explicitly, because ,., dO O.
For later use we record that

(8) A2,(r) O(akl(r)), kl [2v/3].

One handles $4 in the same way as $2 and obtains $4 S’ + S’, where S’ is
the sum of the odd powers of 0 in S, so that fa e-(1/2)Oas dO 0, while

S (- 1)-x 0+2

(6m -+- 2)!
g(r),

aa a az a a2m- 2am(9) g(r)
(3l)_15! + (3!) - O( -4- 0(

O(a2").
Substituting in the integral of (6),

I r, e--(1/2)Oa2 1 -t- S’2 zr" S’a -t- S’ dO

and, by Lemma 3,

2 - /2 -1 +1/2rI(r, ) ra + ,= (2a) (v -4- 1/2)A,(r) 4- R,

with an error term

S’ )-le-(1/2)aa2R e-(/( + S) dO 40(a

3m

2 A,(r)( - e-(/22a2 )8- (0 < < 1).

From Lemma 3, (7), (9) and the definition of b (x) (see (2)) follows

--(1/2)02a2.t a(3m+2)+l/2 2m --(3m+3)+1/2 2m+2
0 dO O{ aa a + a2 aa

a 3m+3 +1 2m+l (8m+4)+1 2a2m+2+ + aZ O(b()),

respectively.

a t.za O(b(x)),

Also, by (ii) and (8), A22r O(a2/2) o(1); hence, the
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last two summands of R are O((a2 )-le-(1/2)a). Consequently, if

km(r; t, a) max {b(r), (a2 ()-le-(1/2)a2},
then R O(m(r; , a)) nd (5) becomes

nr (2)-lf(r)(I(r, ) + 0(k(r; )))

(2)-f(r)(2al)/{1 + -/ (2a)r( + )A(r)

+ 2-1/2. O((r; , a) + k(r, ))}
Hence, by (2),

r (2a)-/f(r) 1 + -1/ (2a#)r(, + )A:(r) + 0((r; , a))}n

and this finishes the proof of the theorem.

1/nl5. An illustration. Let f(z) e, so that R Then, a
av(z) z so that we may take a(z) 5(z) z and e e F1 also, (1) becomes
r n. Conditions (i) and (ii) require a choice of ti(x) such that x
xti -- 0 for x -- . Therefore,

ti0(x) 1.u.bd.a()ti(x) 1.u.bd.x-i/3/x(x)
where x(x) may be any function that increases monotonically to infinity slower
than x1/. Without loss of generality, we may normalize x(x) by setting
x(1) 1. Then ti0(x) x-1/a and o(x)a(x) 1 so that ti0(x) CA(x). We
may, however, select the sequence ti(x) (x1/ log x)-i where log x stands
for the K times iterated logarithm. With this choice we obtain for any
natural integer m, b (x) x-m-1/2, X(x) < exp 1/2x1/ log x} and 9(x)
a/(x)b(x) x-’. The coefficients A2q(r) Aq(n) become

so that

(--1)q 1
(2q)

n
k=l P k

(2q)! = .
and

--1/2 --I
r q= (2a)r(q + 1/2)A:q(n) q= (--1)2qqi = 1 2q n_(q_,)

with

(10) c/-
(--1)2i= 2kk!(--1)(j’t- l (2j -t- 21

k

Hence, (4) becomes

+
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It is, of course, classical, that 1/n (e/n) (2rn)-l/2G(n), where

G(n) exp
2(2- 1)

n -t- O(

Hence, it follows from the uniqueuess of the asymptotic expansion (see [3,
p. 13]), that the coefficients c., defined by (10), have as (formal) generating
function

exp
2,(2, 1)

n1-2

This result may be compared with a similar one in [4], where the eoeffieients
of the formal power series expansion of G(n) are represented by an explicit
formula different from, but somewhat similar to (10).

Part II
6. Introduction. As already mentioned in 3, a severe limitation in the use

of our theorem is the fact that (1) is, in general, a transcendental equation
and the lack of accuracy inherent in its solution wipes out any advantage that
(4) may have over the simpler result of Hayman. Here we shall see aa example
of precisely this nature, where (1) cannot be solved with the accuracy needed
to give more than the principal term in (4), for the coefficients a, but where
a significant result can nevertheless be obtained.

7. Statement of the problem and main result. We consider the function

() 1/2(- 1)-/r(1/2s)(),
where ’(s) is the Riemann Zeta function. Setting s 1/2 - it, (1/2 + it)
(t) -:=oC, is an entire function of order one of t. The Riemann
hypothesis is equivalent to the assertion that all roots of (t) 0 are real.
If this is the case, then, observing that c0 is real, one of the consequences is (see
[2]) that

nc (n + 1)Cn_ C+ > O.

Actually, this condition is satisfied rather trivially; indeed, E(t) is an even
function and the coefficients of alternate in sign, so that (see [5)

Z(t) =0(--1) at a > O,

nd one immediately checks thnt

2ma > O, + (2m + 2)a a+ > 0.

One may, however, consider (t) as function of t; still better, using Hay-
man’s notation, set z -t, so that E(t) f(-t) f(z) =oa zn, an
entire function of order . If t0 is a real zero of (t), then z0 -t is a nega-
tive zero of f(z) and the Riemann hypothesis is equivalent to the statement
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that all zeros of f(z) are negative. This means in particular that they have to
be real, which, as mentioned, implies that Dn na (n + 1 )a_l an+l must
be positive for all n _> 1. Although the proof that

(11) Dn>0

would not settle anything, the verification of (11) is of interest (if (11) fails
for some integer n > 0, then the Riemann hypothesis cannot be true) and the
problem of determining the sign of Dn has been raised by PSlya already in 1927.
(See [7, p. 16].)

It is known [5] that for f(z) defined as here above,

logf(z) 1/2zl/2 log (zl/2/2re) -- logz + 1/4log r/2 -+-o(1)

holds for lzl- , uniformlyinlargzl < r i(0 < < ) and that (nota-
tions as in Part I) if Mn infr>l r-nf(r), then an (rn)-/M (n --. ).
This asymptotic relation is, however, insufficient for the proof of (11). In
what follows, we propose to show, using our theorem from Part I, that for
n-+,

(12) D an(1 + O(log- n)).

One may observe that (12) will be obtained, although, on account of the diffi-
culties already mentioned, (4) does not lead even to an asymptotic formul
for an (only for log an). From (12) it follows that (11) holds at least for suffi-
ciently large values of n, so that this necessary condition for the validity of the
Riemann hypothesis is indeed stisfied. It may be added that (11) may be
verified directly for any specific value of n and that the present rnethod permits,
in principle, to replace the O-terms by inequalities, so that it should be possible
(although, presumably quite lborious), to prove 11 for 11 n.

8. Application of the theorem. Using the definition of f(z) and the general
Stirling formula, one may replace the previously indicated formula for log f(z)
by the sharper equality

logf(z) 1/2z/ log (z//2re) -k- log z
(13)

+ - log /2 -t-J(zl//2 + ) + Q(z),

where (see [1, p. 165] or [9, p. 218]).

J Z _1 f0 Z 1 B2 Z1-2
r u -t- Z

log
1 e_ du = 2(2 1) -t- O(Z--"),

Q(z) log f(z/ + ), and B, are the Bernoulli numbers in the even subscript
noagion. Defining

d j(_J(z) z + )
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and, inductively, for v > 1,

dJ(z) z J-(z),

(by using the formulas (44), (45), (46) on pp. 166-167 of [1]) one verifies for
argz] _< r- $ ( > 0) that

Jl(z) --1/2B= z-1/(1 z-/) + 0(z-/:),
J=(z) B z-/=(1 2z-a/) + O(z-/)

and, in general,

J,(z) (--1)B z-1/(2- (2z/)-) + O(z-v:)
1 ) z_/(2_ + o(z-).

6

Hence, if a(z) z(f’(z)/f(z)) nd, for 2, a(z) za’_(z), one obtMns
from (13) that, for ny > 0, one hs uniformly in rg z < "

zlla(z) / z-) + O(zz log + (z-/ z-/)
(14)

a(z) 1"1/2 ez/
z-/ O(z-/g log + ( 2Z-1) + );

and, in general,

a(z) 2--1z1/2 log
e"-lz1/2 1)
2r 6

Z-1/2(2-’ --g1-’-1/2) + O(Z-312)

forv > 2.
In order to apply the theorem, we set z x and select x-i/61og-1/9 x;

we also observe that R and that for every fixed v > 1, al(x) > a(x), if x
is sufficiently large. Hence we may take a(x) 5(x) a(x),andif f(z) F
then f(z) F. Next one verifies that for x - ,(15) a2 --x1/ , 3a log-i/x -- 0, tix/ x1/ log-x -- .We ilow check that all remaining assumptions of the theorem are satisfied by
f(z). Indeed, for z xe and ti < 101 < r ti, one obtains from (13) and
the remark that in this interval

Q(z)l 12-(z’+’)l < exp {--1/2(log 2)x1/ log-l/ x},

that

log If(z)[ logf(x)

< cos . x 2.1/2 7r
tix -t- logx+-log
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xl/2+ O(x-/) /x log + - log x + - log -t- O(x-1/2)

xl, -- 1 cos x/ log- x + O(x-)

X
1/2 1 --1/6--x/ log 6x/ x log- x + O(x-)

ex/2 1/6--x/ log 0(x-1/ log- x) < --by the definition of (x) and (15).
_1/6 f-1Hence, setting (x) exp( x ), (x)]f(xe) < (x) holds uni-

formly in g 0 for x . The same inequality holds, however,
also for g . Indeed, in this case one still has Re (z1 ) > ,
so that, by Stirling’s formula,

F(-zl/e + )I < (2v)/ exp {--vx/( 1 )}xx’’/s,
or, using the definition of ,

1/2 xl/6F(zl/ + )l (2)1/exp z,. + O( )}.

Also, Re (z/ + -) , Im (z1/ + ) x/ sin 0/2 g x1/, so that (see [8])

0 g [(z1/+ )[ x/, and - ReQ(z) logx;

hence,
_-1/2

_
_/2log lf(xe)l z + O(x/) + O(logx) < x

say. Therefore,

log f(J)l log f() < z/ log +
xll /2< --xlog < -- log(x)

holds uniformly also for g ]] . This finishes the verification that
(z) e F; hence, that f(z) e F. We may, therefore, use (4) for the computa-
tion of the coefficients a.

Consequently, we replace x by the root r r(n) of (1), which on account of
(14), verifies

(16) rilog (r/2) 4(n ) + (r- r-)/3 + O(r-a).
We note the following consequences of (16)"

(i) (ri/log (r1//2)) O(n-) for every m > 0;

(ii) logr-- 21ogn--21ogn;
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(17) (iii) -r1/2 (n - + 0(r-1/2))log-1 (r1/2/2r)
(n + o(1) (log n -+- 0(log2 n) )-1
n log-1 n(1 + 0( (log2 n) (log-1 n) ).

Next, we select m 2 and compute the quantities that enter in the definition
of 2(r), namely

()-e (-) 0((’ ]oI )-i e (-. ;);

k(r) exp (--r/);
--17/2_ O(r-7/4 log-7/ r);a2 al

-1/ r-/a ]og-/2a2 aa 0 r)
-17/2 r-6/a log-/2a2 0( r);
-9/6 (r-7] log-V2a2 a 0 r).

The largest of these is O(r-/ log-/ r), so that, by (14), (17) and (2),

(r) O(n-).(18)

By (4),

(19)

where

a, r-"(2ra2(r) )-l/2f(r){1 -Jc" S},

r
-1/2 Z6v=2 a2 (r)) A2(r)r( -t- 1/2) / 0(n-2).

Computing directly Z6,=4 --1 ur2a,. (u + 1/2)A.,(r) it follows from (14) and
(17), that this is 0 (n-). So, e.g., for u 4,

as a5 a3 a4 O(r log r),As(r) . + + 4! 4! 2!- (r -2a2 )aAs(r) O( log r) .r log r) 0(n-2)
and similarly for u 5 and u 6. The remaining terms of the sum are

a4 a2/8 5a] a-a/24 a6 a-3/48 ).

Of these, using (14),

a6 a 4(r log (er1/2/2r))-l(1 -+- o(1)) O(r- log-2 r) O(n-),
--2 --3and it only remains to find a4 a2 and a3 a2 By (14),

-z (rl/2 lg eri/2
a4

-[- 2r/2 "k- r-//3 8/3r + O(r-/)

( eraa2 - r/2 log -t- r-1//3 2/3r + O(r-/2)
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2(r/ log (erl//2r))-1
X {1 + 2 log-1 (er//2r) -{- (3r log (erl//2r))-2

8(3ra/ log (erl//2))-z + O(r- log

X {1 + (at log (er//2))-z 2(3ra/ log (r1//2))-

+ O(r- log- r)-2(r/ log (er//2))-
X 1 + 2 log- (er//2) (3r log (er//2))- + O(r- log

By (17), the lst bracket equals I + 2(log (er/S/2))- + O(n-logn). By
the same procedure, one finds that

a a 2(r/ log (er//2))-
{1 + 2(log (er//2))-1 + (log (er//2))-s + O(n- log n)]

the sum S in (19) becomes, therefore,

S (4r/ log (er//2))-{ 1 + 2(log (er/S/2))- + O(n- log

5(12r/ log (er//2))-{ 1 + 2(log (er//2))-
+ (log (er//2))- + O(n- log n)} + O(n-)
(6r/ log (er/2))-{1 + 2(log (er/2v))-
+ (log (erl//2))-:} + O( (n log n)-)

1 1/2
(r log (r1//2) + r/2)-1{1 + 2( log r

+ log (e/2)}-) + O((n log n)-l).
By (16) and (17),

1 + 2(log n + 0(log2 n) )-S - n(1 7/8n + O(n-2)) + (n/log n)(1 + O(log2 n/log n))

+ 0 (n log n)- )
(1/24n)(1 log-1 n + O(log2 n/log))

(1 + 2 log-in W O(logsn/log2n) + O((n log2 n)-)
(24n)- + O((n log n)-)

and (19) becomes

(20) a r-(2a2(r))-/f(r)(1 (24n)-Z + O( (n log n)-Z) ).

9. Proof of (12). In what follows, the root of al(r) x will be denoted
by r or r(x), whichever is more convenient. Replacing in

n n (n + 1)_a+ na(1 (1 +n )aa+la_)
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the coefficients a. by their values given by (20), we obtain after obvious
simplifications,

Dn na{1- (1 + n-1)h(n)[1 + O( (n log n)-l)]}
with

(n--l) +l)--2 --2h(n) r, r_ r+ (r)f(r+l)f(r__) X (a (rn)a:(r+l)a(r,._l)

Let

(21) g(x) logf(r(x)) 1/2 log a.(r(x)) x log r(x);

then, if we denote the successive finite differences by/g(i), one has

Ag(n- 1) g(n + 1) 2g(n) q-g(n- 1)

and h(n) exp {Ag(n 1) }. Consequently,

(22) Dn--na{1- (1 + n-1) exp {A2g(n- 1)}[1 + O( (n log n)-l)]}.
By (21), g(x) is twice differentiable; hence (see e.g. [6. p. 57 (19.5)]),
Ag(n 1) g"(n q- V), vl < 1. Letf’ df/dr, a: da/dr, r’ dr/dx;
then dal/dx a and, differentiating

(1’) a(r) x

r’ whencewe obtain al 1,
--1(23) r’/r ra; )-I a

Differentiating (21), we now obtain, using (23) and (1)

g’(x) (f’/f)r’ 1/2(a2/a2)r log r- x(r/r)
1 --1(a -ra. a. x)(r’/r) log r

a-- aa. (r’/r) logr
1a-- aas --logr.

Differentiating once more,

g" (z) 1/2a- (2aa a2 as a3)r’ (r’/r)

{1/2a-3(2a3.raP2- a2.raPa)- 1}(r’/r)

--(r’/r){1 1/2(2a a2 a4)a-}
=--(r’/r)(1 + O((rl/21ogr)-1)

--1
--a2 (1 -+- O(n-1))

by (17) and (23). Using (14), (17) and (1’),
2a2(r(x) al(r(x) - q- z- .) q- O(r-/2(x)
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so that

lfl12/, r-l=+. )-+0( (x))

x -t- (x log- x) (1 + O(logx’log-x)),

-1--a. --2x-(1 -- log-x -t- O(logx’log-x))---2x-(1 log- x -t- O(log.x’log-x))

A2g(n- 1) g"(n + 7)

)-(1 log- (n + v)--2(n + v

+ O(log (n + 7)"log- (n + 7))(1 + O(n-) )

2n-(1 log- n + 0(log n. log- n) ),

because [7 < 1.. It follows that

exp {ng(n 1)} 1 2n- + O((nlogn)-)
and (22) becomes

D, na{1 (1 + n-)[1 2n- + O((nlogn)-2)]

[1 + 0((n log n)-i)]}
na{1 [1 n- + O((nlogn)-l)][1 + O((nlogn)-)]}
a(1 -t- 0(log-n));

this finishes the proof of (12).
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