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Introduction

In [13] I. Vidv ingroduces the following generalized notion for an arbit,rary
complex Banaeh Mgebra A wigh identity of norm 1" ghe elemeng h A is said
to be hermiLian if and only if for treM, 1 + ith 1 + o(t) as -+ o.
This notion of hermiticiy coincides wiLh bhe usual one on C -algebras (fora
proof of Lhis faeL see [9, proof of Theorem 21]). Leb H be Lhe seg of hermi-
ian elemengs of he Banaeh Mgebra A. In [13] Vidav shows he following
Lheorem" if (a) A H +iII, :rod (b) for every h H, h can be expressed
in Lhe form h u + iv wiLh u, v e H and uv vu, hen bhere is an involu-
t,ion on A and a certain Ba,nach algebra norm equivMent to the given one so
that in terms of this involution and this new norm A becomes a C -algebra.
In the present paper it is shown, first in the commutative case (2) and then
in general (4), tha,t if A satisfies these hypotheses, then A is, with its origi-
tal norm and the involutiot produced by Vidav, a C-algebra. Since
C*-Mgebra satisfies the conditions (a) a,nd (b), we thus obtain a metric
characterization of those Banach algebras which c’an be made into *C -algebras
by introduction of some suitable involution. The transition from the egm-
mutative case to the geeral case is aided by establishing in Theorem (4.2)
a generaliztion of a well known characterization of C*-Mgebra,s [6; Theorem
11.].
Our resulg concerning he heorem of Vidav enables us to establish in 5

sren.ghening of a gheorem of Lumer [9, Theorem 21]. This gives a charac-
terization of hose Banach *-algebras which are C* in terms of a local differ-
eniM condition.
The author wishes to express his appreciation o W. G. Ba,de for helpful

conversations.
In wha follows, all spaces are over the complex field, M1 Bmach algebras

possess m identity of norm 1, and he term opera,or will signify a bounded
linear ransformaion wih range eongMned in is domain. The algebra of all
operagors on a Banaeh space X will be designaged by [X]. We shall denote
the speegrum of he elemen of a Banaeh algebra A by 8p(), and ghe spee-
t.ral radius by r() (in this notation for specCrM radius we suppress menion
of A, since he specrM radius remains invariang under extension or eongrae-
tion of A). By he erm semi-closed rectangle we shall mean a Cartesian
produeg of real inerwls of he form (a, b] X (a, d].
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1. Preliminaries
In this section we reproduce some machinery from [9] and [13] which will

be needed in the sequel. We first discuss definitions and results from [9].

DEFINITION. Let X be a vector space. A semi-inner-product (abbreviated
s.i.p.) for X is a mapping of X X X into the field of complex num-
bers such that:

(i) [x -4- y, z] [x, z] -4- [y, z] for x, y, z e X.
(ii) [kx, y] k[x,y] for x, yeX, kcomplex.
(iii) [x,x] > 0 for x 0.
(iv) I[x,y]]_< [x,x][y,y] for x, yeZ.

When a s.i.p, is defined for X, we call X a semi-inner-product space (abbre-
viated s.i.p.s.).

If X is a s.i.p.s., then [x, x]1 is a norm on X. On the other hand, every
normed linear space can be made into a s.i.p.s. (in general, in infinitely many
ways) so that the s.i.p, is consistent with the norm--i.e., [x, x]1/ ]1 x 11,
for each x e X. By virtue of the Hahn-Banach theorem this can be accom-
plished, by choosing for each x e X exactly one bounded linear functional fx
such that 11 fx ]1 x and f(x) x 2, and then setting [x, y] f(x),
for arbitrary x, y e X.

DEFINITION. Given a linear transformation T mapping a s.i.p.s, into
itself, we denote by W(T) the set, {[Tx, x] [x, x] 1}, and call this set the
numerical range of T.

An important fact concerning the notion of numerical range is the follow-
ing:

(1.1) Let X be a Banach space and T an operator on X. Although in
principle there may be many different semi-inner-products consistent with
the norm of X, nonetheless if the numerical range of T relative to one such
semi-inner-product is real, then the numerical range relative to any such
semi-inner-product is real. If this is the ease, we call T a hermitian operator.

It is shown in [9; 9] that an operator T on a Banach space X is a hermi-
tian operator if and only if it is hermitian in the sense of Vidav’s definition
--i.e., if and only if i + itT 1 + o(t) for real, where I is the identity
operator. Thus we have at our disposal two equivalent formulations of the
notion of hermitieity for operators on Banaeh spaces.

There is a device for carrying general results concerning hermitian opera-
tors over to results concerning hermitian elements of an arbitrary Banaeh
algebra. For, given a Banaeh algebra A, let L be the left regular representa-
tion of A (i.e., Lax ax, for a, x e A). Then L can be used to represent A
isometrically as an algebra of operators on A, and a A is hermitian if and
0nly if La is a hermitian operator. For example, it is easy to see from the
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s.i.p, formulation in (1.1) that a real linear combination of hermitian opera-
tors is hermitian, and then to obtain the same result for hermitian elements
of any Banaeh algebra. It should be mentioned, however, that the powers
of a hermitian operator are not, in general, all hermitian, even on a reflexive
space [10, 8].
For greater eonvenienee, we list the theorem of Vidav [131 in more detail

than in the introduction.

(1.2) THEOREM. Let A be a Banach algebra, and let H be the set of hermi-
tian elements of A. If A H ill, and if for every h e H, h can be expressed
in the form h u iv with u, v e H and uv vu, then"

(i) For each x e A, the decomposition x u iv, u, v e H, is unique.
(ii) The map * which assigns to each element x u iv (where u, v H)

the element x* u iv is an involution on A (note that the self-adjoint ele-
ments relative to this involution are precisely the elements of H).

(iii) II0, defined by x llo x*x 1/, is a Banach algebra norm on A
equivalent to the given norn, and moreover, h Iio h for every he H.

(iv) The algebra A with the involution * and the norm [10 is a C*-algebra.
When a Banach algebra A satisfies the hypotheses of (1.2), we shall refer

to the involution in (ii) as the Vidav involution, and employ the notation

As is well known, the Gelfand representation of a commutative C*-algebra
B is an isometry onto C()B), the algebra of all continuous complex-valued
functions on the maximal ideal space B (see, for example, [8, 26A]). Thus
we have"

(1.3) If A is a commutative Banach algebra to which (1.2) applies, the
Gelfand representation of A is a bicontinuous isomorphism of A onto the
algebra C(A), and for each x e A, x 110 r(x).

2. Vidav’s theorem in the commutative case

(2.1) THEOREM. Let A be any Banach algebra, and let el, e, e (n
arbitrary) be non-zero, hermitian idempotents which are disjoint (i.e., ejek 0
ror j t). Then for M, , , complex,

E"n--1 x. e;l- maxl<<n [)k" l"
Proof. We first observe that it suffices to prove the theorem under the

additional assumption that ]_- e 1. For if this sum is not 1, then one
uses

So we assume i_-e 1. The linear span B of el, e,..., e is a sub-
algebra of A, and being finite-dimensional is closed. Clearly B is eommuta-
rive and satisfies the hypotheses of (1.2). Eet X. iXilei, and put
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x ’=1 X.e.. Then

x

where "exp" stands for "exponential of." Thus x is expressible in B ia the
form x eiUh, where u and h are hermitian. From the discussion atop page
126 of [13] we have x x It0 (ll II0 being defined on B by (1.2)). Hence
from (1.3) we have
We next consider some aspects of scalar type operators. It is shown in

[2] that if S is a scalar type operator on
unique decomposition S R iJ, where RJ JR, and where, relative to
some norm on X equivalent to the given norm, the operators R’J are her-
mitian for m, n 0, 1, 2, .... The operators R and J are called, respec-
tively, the real and imaginary parts of S, and are, in fact, given by
R f Re X dE(X), J f Im X dE(X), where E denotes the resolution of
the identity for S.

In what follows prime superscripts will be used to denote adjoint spaces
and adjoint operators.

(2.2) THEOREM. Let S be a scalar type operator of class X’ on the Banach
space X, let E be its resolution of the identity, and let R and J be its real and
imaginary parts, respectively. Then E(a) is hermitian for every Borel set a in
the complex plane if and only if the operators RnJ are all hermitian
(m,n O, 1,2, ...).

Proof. If each E(a) is hermitian, then clearly so is each product
R’J f (Re X) (im X) dE(X), since real linear combinations and uni-
form limits of hermitian operators are hermitian. Conversely, suppose for
each polynomial p in two variables having real coefficients, p(R, J) is her-
mitian. Choose a s.i.p, consistent with the norm of X. Let ti be a semi-
closed rectangle in the complex plane. There is a sequence {p} of poly-
nomials in two variables with real coefficients tending pointwise to the
characteristic function of on spExl(S) and uniformly bounded on spExl

(S). Clearly

p,(R, J) j p,(X) dE(h).

For eachxeXofnorml,[ x] is in X’ and so

lim [p,(R, J)x, z] lim f p(X) d[E(X)z, z] [E()x, z].

Since [p,(R, J)x, x] is real, for each n, so is [E()x, x]. Thus E(i) is her-
mitian. Now let C be the semi-ring of subsets of the complex plane consist-
ing of the semi-closed rectangles and the empty set. Then the class D con-
sisting of all sets expressible as a finite union of disjoint sets from C is a ring
of subsets of the complex plane, generating the a-ring of Borel sets. For
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any x e X of norm 1, the measure [E( )x, x] coincides with the measure
Re [E( )x, x] on D. It is now easy to see from [7, Theorem 13.A] that
these measures coincide on the class of Borel sets. Hence the numerical
range of each E() is real, and E() is hermitian.
Before proving the next theorem we take note of the well-known fact that

if 2 is a compact Hausdorff space, then C(2)’ is weakly complete (see, for
example, [4, Theorem IV. 6.2 and Theorem IV. 9.9]). Hence if A is a com-
mutative Banach algebr whose Gelfand representation is a bicontinuous
isomorphism onto C(JA), then A’ is weakly complete. We also observe
the following known fact which does not appear explicitly in the literature:
if T is a scalar type operator of class F on a weakly complete Banach space
X, F being a total linear manifold in X’, then T is automatically of class X’.
For, if E is the resolution of the identity of T, and /Zn} is a sequence of dis-
joint Borel sets of the complex plane with union z, then it follows from [1,
Lemma 2.3 and Corollary 2.10] that for x e X, =E(O-n)X converges in
the norm topology. The value of each x* e F at the sum of this series is the
same as at E(a)x, and so =E(a) converges strongly to E().

(2.3) TEOnEM. Let A be a commutative Banach algebra, and let H be the
set of hermitian elements of A. If A H - ill, then r(t) llo
for each A, and so A is, with the given norm and the Vidav involution, a
C*-algebra.

Proof. Let teA, with r - ij, where r, jell. Let L denote the
regular representation of A, and set T L, R L, J L. It is clear
that the map which assigns to each a e A the operator La’ is an isometric
isomorphism of A onto a closed subalgebra W of [A’]. By (1.3) the image
of A under the regular representation is an algebra of operators on A equiva-
lent to C(). It follows by [3, Theorem 18, conclusion (iii)] that W con-
sists of scalar type operators on A’ of class A. By (1.3) and the remarks
preceding this theorem, we conclude that every operator belonging to W is
of class A". In particular T’ is a scalar type operator of class A". Since
the products r3 (m, n 0, 1, 2, are self-adjoint with respect to the
Vidav involution, they belong to H, and hence the operators RJ are her-
mitian operators on A. It is obvious from the Vidav formulation of hermi-
ticity that an operator is hermitian if and only if its adjoint is. Thus the
operators (R’) (J’) are hermitian. Clearly the operators R’ and J’ are,
respectively, the real and imaginary parts of T’. By (2.2) the resolution of
the identity for T’ is hermitian-valued. It is clear from (2.1) that a scalar
type operator whose resolution of the identity is hermitian-valued has norm
equal to its spectral radius. Hence

lltll T’ ]] lim (T’) 111/ lim. r(t).

This completes the proof.
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(2.4) COROLLARY. Let A be a commutative Banach algebra, and let H be the
set of hermitian elements of A. The following are equivalent"

(i) A H + iH.
(ii) There is an involution on A relative to which A becomes a C*-algebra.
(iii) The algebra A is isometrically isomorphic to an algebra C(), for some

compact Hausdorff space .
3. Normal elements

DEFINITION. Let A be an arbitrary Banach algebra. An element x e A
will be called a normal element of A if and only if x can be expressed in the
form x u iv, where uv vu and the products u’% are hermitian for
m,n 0,1,2,....

It is worth noting that if an element x is merely expressible in the form
x u iv, u and v hermitian, then such a representation is unique [13,
Lemma 2(c)]. We observe that since the powers of a hermitian element are
not always hermitian, it is not superfluous in the preceding definition to re-
quire more than the hermiticity of u and v together with their commuta-
tivity. However, if the Banach algebra A satisfies the hypotheses of (1.2),
then an element x is normal in the above sense if and only if x can be expressed
in the form x u iv, where u and v are commuting hermitians, or, alter-
natively, if and only if xx* x*x.

(3.1) LEMMA. Let A be a Banach algebra, and let B be a subset of A such
that every b e B can be expressed in the form b u iv, where u and v are
hermitian elements of A lying in B. Then every element c of [ (-denotes clos-
ure) can be expressed in the form c Uo ivo, where Uo and Vo are hermitian
elements of A belonging to [.

Proof. The first paragraph in the proof of [2, Theorem (3.1)] is easily
adapted to prove the lemma for the case where A is the Banach algebra IX]
of operators on an arbitrary Banach space X. The general case where A is
an arbitrary Banach algebra follows by using the left regular representation
to map A isometrically onto a closed subalgebra of [A].

(3.2) THEOREM. Let A be an arbitrary Banach algebra, and let x be a normal
element of A having the (necessarily unique) decomposition x u - iv, u and
v hermitian. Let C be the closed subalgebra generated by 1, u, and v. Then for
every y C, Y r(y). In particular, if A satisfies the hypotheses of Vidav’s
theorem, and xx* x’x, then x r(x) X llo.

Proof. Since x is normal, u and v commute and the products uv" are
hermitian for m, n 0, 1, 2, .... Let B be the class of polynomials with
complex coefficients in u and v. Then B is a commutative subalgebra of A,
nd C /. C is commutative. Clearly Lemma (3.1) applies to B, and it
follows that (2.3) applies to the Banach algebra C. To complete the proof
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we observe that if A satisfies the hypotheses of Vidav’s theorem
and xx* x’x, then by [11, Lemma (4.8.1), conclusion (ii)] applied to A
(regarded as a C*-algebra with * and If0), we get x II0 r(x).

4. The general case

We shall call a Banach algebra satisfying the hypotheses of Vidav’s theo-
rem and equipped with the Vidav involution a V*-algebra. Clearly a Banach
-algebra is V* if and only if the set S of elements self-adjoint with respect

to its involution coincides with the set H of elements hermitian in the sense
of Vidav; moreover, it is easy to see with the aid of [13, Lemma 2(c)] that
S H is equivalent to S

___
H. In this section we show that every V*-

algebra is C*.
In [6, Theorem 11] C*-Mgebras are characterized as those Banach *-alge-

bras such that x*x x* x for each x. Let A be a Banach *-alge-
bra such that x*x x* x whenever x and x* commute. In [5], J.
Feldman has observed that with only slight modification all but the last
step in the proof of [6, Theorem 11] remains valid for A, and the following
conclusions result"

(i) A has an equivalent Banach algebra norm such that,
relative to [, A is a C*-algebra.

(4.1) (ii) x x*x for each x.
(iii) Ix] _< ]lxllforeachx.
(iv) x Ix if x is invertible or if x*x xx*.

Recently B. Russo and H. A. Dye have shown [12, Theorem 1] that the
unit ball of an arbitrary C*-algebra B is the closed convex hull (in the norm
topology) of the unitary elements of B (i.e., of the elements u such that,u u uu 1). As an immediate consequence of this fact and (i), (iii),
and (iv) of (4.1) we have"

(4.2) THEOREM. A Banach *-algebra is C* if and only if

whenever x and x* commute.

It is clear from (3.2) that in a V*-algebra x*x x* x whenever
x and x* commute. Hence

(4.3) THEOREM. A Banach *-algebra is V* if and only if it is C*.

(4.4) Cononv. A Banach algebra A satisfies the hypotheses of Theorem
(1.2) if and only if there is an involution on A relative to which A becomes, with
its given norm, a C*-algebra.

We remark that since, in a V*-algebra, x 11 x*x II, it is now clear
that 110 and coincide. This also now follows from the well-known
fact that a *-algebra has at most one C*-norm.
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5. C* as a local differential condition

Suppose A is a Banach *-algebra. In [9, Theorem 21] it is shown that if
the condition

holds near 1, then A is, within equivalent renorming, a C*-algebra. The
method of proof employed in [9] is to show that the set S of elements self-
adjoint with respect to the given involution is the same as the set H of ele-
ments hermitian in the sense of Vidav, and then to employ the theorem of
Vidav. Thus such an algebra is V*, and hence by (4.3) we can state:

(5.1) THEOREM. A Banach *-algebra is C* if and only if the condition

holds near 1.

Added in proo]: It has just come to the author’s attention that, in essence, Theorem
(2.3) was announced earlier by Mr. B. W. Glickfeld in the A. M. S. Notices, col. 11
(1964), p. 51. His proof, by a different method from the one in this paper, was incor-
porated in his April 1964 doctoral dissertation at Columbia University. Also, other
results of this paper are announced by him in the A. M. S. Notices, col. 13 (1966), p. 52.

REFERENCES

1. W. G. BADE, On Boolean algebras of projections and algebras of operators, Trans.
Amer. Math. Sou., vol. 80 (1955), pp. 345-360.

2. E. BERKSON, A characterization of scalar type operators on reflexive Banach spaces,
Pacific J. Math., vol. 13 (1963), pp. 365-373.

3. N. DUNFORD, Spectral operators, Pacific J. Math., vol. 4 (1954), pp. 321-354.
4. N. DUNFORD AND J. T. SCHWARTZ, Linear operators--Part I: General theory, New

York, Interscience, 1958.
5. J. FELDMAN, Seminar notes, University of California, Berkeley, 1962, dittoed.
6. J. G. GLIMM AND R. V. KADISON, Unitary operators in C*- algebras, Pacific J. Math.,

vol. 10 (1960), pp. 547-556.
7. P. R. HALMOS, Measure theory, New York, Van Nostrand, 1950.
8. L. H. LOOMIS, An introduction to abstract harmonic analysis, New York, Van

Nostrand, 1953.
9. G. LUMER, Semi-inner-product spaces, Trans. Amer. Math. Sou., col. 100 (1961),

pp. 29-43.
10. m__, Spectral operators, Hermitian operators, and bounded groups, Acta Sci. Math.,

vol. 25 (1964), pp. 75-85.
11. C. E. RCKART, General theory of Banach algebras, New York, Van Nostrand, 1960.
12. B. Rvsso AND H. A. DYE, A note on unitary operators in C*-algebras, to appear in

Duke Math J.
13. I. VDAV, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math.

Zeitschr., vol. 66 (1956), pp. 121-128.

UNIVERSITY OF CALIFORNIA
Los ANGELES, CALIFORNIA

UNIVERSITY OF CALIFORNIA
BERKELEY CALIFORNIA


