
PRINCIPAL SUBMATRICES OF NORMAL AND HERMITIAN MATRICES

BY

R. C. THOMPSON

1. Introduction
In this pper we obtain inequalities and location theorems linking all the

eigenwlues of all of the principal/ N k submatrices of a normal or Hermitian
n X n matrix A to the eigenvalues of A. We also obtain inequalities for cer-
tain expressions involving k N ]c subdeterminants of A. In addition we ex-
amine the possible occurrences of a multiple eigenvalue of A among the eigen-
values of the principal k X k submatrices of A. Certain of our theorems for
normal matrices hold only when/ n 1. It is an interesting and open
question to find analogues of these theorems for k / principal submatrices.
For Hermitian matrices we obtain stronger theorems than are possible for
arbitrary normal matrices. In one of our theorems (Theorem 3) we only
require that A be diagonable.

2. Notation

In this paper A (A.) denotes an n X n diagonable matrix with eigen-
values X, X,..., X. Usually A will be normal. In general the eigen-
values are not all distinct so let ,,, , , denote the distinct eigenvalues,
where the multiplicity of is e for 1 =< i =< s; e -k -k e, n.
We arrange the notation so that

(x, x., ..., x) (, ..., ,, ., ..., ., ..., , -.., ).

When A is Hermitian we assume < . < < .
For fixed integers n and k, 1 k < n, Qua, denotes the set of all sequences

[i, i,-.., i} of integers such that 1 -< i, < i. < < i -< n. We
always let

{i,,i.,-.-,i} and r {j,j,...,

be two typical elements of Q. The k X k matrix B defined by

B A, 1 <- a,/ <= k,

is denoted by A[I r]. The (n 1) (n 1) matrix obtained by deleting
row i and column j from A is denoted by A(i J). We let f(x), f(x),
f(x) stand for the characteristic polynomials of A, A[ 1], A(ili), respec-
tively. We let

X- X-f[l(h) h c1 d- c2 d- 1)c.
Here, of course, c is the sum of the principal (k j) X (k j) subdetermi-
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nants of A[0[]. The roots of f[(X) are denoted by
When A is Hermitian we arrange the numbering so that 1 <-_ n2 -<_ <= nk.
For integers k ->_ 1 and r, 0 _-< r =< k, we define E,.(a, a., a,) by the

polynomial identity

1-I=1 (X -4- a) =0 E,.(a,, a2 ,... a,)k-’.
We shall always let h h(a, a) be an arbitrary linear function of k
variables. We set

and, for reasons of compactness, we define

and
h(&,) h(E(&,), E2(&,), ..., E(A,,) ),

h(A[o Io1) h(c, c,,2 co,h).

We let G, denote the geometric mean of the positive real numbers

We set p, (e,/n)I/cs-)G, p {= II=x., I/z, /z#

The circles with center/z, and radii p,, p, G,, (t2e,)/(’-X)G, are denoted by
C,, C", ,C, "C, respectively. Here t2 4n-l(n + 2)-1 if n is even and
f 4(n + 1)-2 if n is odd.
As is usual, the transpose and complex conjugate transpose of A are indi-

cated with A r, A*, respectively. The kt compound of A is C(A). The
identity matrix is denoted by I.

3. Preliminary calculations
Let D diag(X, X2, h,) and let A SDS- for some nonsingular S.

ThenXI-- A S(XI D)S-. Hence

C(XI A) C(S)C(M D)C(S)-.
The diagonal elements of C(XI A) are the f[(X) for 0 e Q,. The
diagonal elements of the diagonal matrix Ck(XI D) are the polynomials

(1) Ilfl, (X Xo), re

Hence

(2’) fill(X) ,, det S[ r] det S-[r ],, (X X).
en S U is unitary and A is normM, (2’) becomes

(2) fill(X) , det U[ r] o,, (X X0).
We rewrite (2) in vector matrix language as
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Here, in (3), the column vector on the left has as components the f(h),
ordered lexicographiclly, and the column vector on the right has as compo-
nents the polynomials (1), ordered lexicographically. The matrix W is non-
negative and doubly stochastic; its entries are the det U[ ] , in doubly
lexicographic order. We compare coefficients of the same power of h on each
side of (3). As an easy consequence we get

The column vector on the left side of (4) has as components the numbers
h(A[o o]), ordered lexicographically, whereas the column vector on the right
side of (4) has as components the numbers h(A), ordered lexicographically.
From (4) we get on taking real parts (indicated by R) and absolute values:

W

(6) [h(A[lo])l _<_ W ]h(A)l

The inequality in (6) is componentwise.
Now let h n 1. Then, given co, r e Qn.n-1, there exist unique integers

i, j for which 1 -< i, j _<_ n, i 0, j . Since U is unitary, U-1 U*. Con-
sequently (det U)-1 det U[0 r](-1)+ ). hence

h/foreover,

and ft (h) f() (h).

(7)

and (2) becomes

(8)

det U[co Iv] U 12.

So (3) may be rewritten as

f()(X) 1 U, [f(X)(X X)-.
All our results will follow from these formulas.

zt. Normal mortices

Except in Theorem 3, A is always normal matrix in 4.
THEOREM 1. For given o e Qnk h(A[o co]) lies in the convex hull of the com-

plex numbers h(AT) as r runs over Q,,k.
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Proof. This is immediate from (4) since W is nonnegative and doubly
stochastic. This is a generalization of a result in [5] which had also been
proved independently by M. Marcus.

THEOREM 2. For fixed oo e Qn
(i) max h(A[oo
(ii) maxv R(h(A[o ]o]) max,,Q R(h(&)),
(iii) minv R(h(A[o I]) n, R(h()).

Remark. maxv, max, denote, respeetively, the maximum of the quantity
in question as U varies over all unitary matrices or as r varies over all se-
quences of Q. Similarly for the min.

Proof. That the left members of (i), (ii) are always -<_ the right members
follows from (6), (5) since W is doubly stochastic. Equality is achieved by
taking U to be a permutation matrix such that UDU* has

at the (i, i) position, 1 _-< a <- k. Then f(X) is the polynomial (1), so
that h(A[oo I0]) h(A,).

Remark. The theory of Sehur convex and concave functions [4] in combi-
nation with (5) or (6) yields many inequalities linking symmetric functions
of the real numbers R(h(A[o 0l)) (or of h(A[o as varies over Q.
for fLxed k to the same symmetric functions of real numbers R(h(A,)) (or of
h(A)], respectively) as r varies over Qn.

When A is merely diagonable it follows from (2’) that

(9) ft](X)

Ires- (n- k) ->_ 1, then

(10) (X t)e"-+

is a divisor of the right side of (9), hence of the left also. Thus is a root
of f(X) with multiplicity at least e n -t- k. If may happen that # is
a root off(X) with multiplicity >e n -- k. However we have

(11) -,ft(X) ((n k)!)-f(n-,)(,).

Here f(n--)(X) denotes the derivutive of f(h) of order n k. Formula (11)
follows by summing (2’) over o e Q and using

,en det S[0 r] det S-lit Io] 1.

(This follows from Ck(S-I)C(S) I.) In fact, however, (11) holds for all
matrices (not just diagonable ones) and can be proved in general by consider-
ing the the determinant det(tI (XI A)) and using Taylor’s theorem.
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In any event it follows from (11) that

(x- )-++
cannot be a factor of everyf[] (k). This completes the proof of Theorem 3.

THEOREM 3. Let l be fixed and let A be an n X n matrix over a field K for
which . is an eigenvalue with multiplicity e..

Suppose A is diagonable and e n t >__ 1. Then each A [o o],
o e Q,k has as an eigenvalue with multiplicity at least e. (n l).

(ii) Suppose A is arbitrary and K has characteristic zero or larger than n.
Then not every A[o Io] can have . as an eigenvalue with multiplicity at least the
larger of {e. (n /c) + 1, 1}.

Theorem 3(i) is false when A is not diagonable. A counterexample is

For the rest of 4 we suppose A is normal and/ n 1. To avoid trivial
situations we assume s >= 2 so that A is not scalar. We know that A (ill)
has g. as eigenvalue with multiplicity e. 1 or larger. Thus . with multi-
plicitye. 1is always afoot ofA(ili), 1 <- a <= s. We call these the
trivial eigenvalues of A (i i). In addition there exist s 1 additional eigen-
values of A(i[i), denoted by :, i2, "-’, ,8-1. We call these the non-
trivial eigenvalues of A (ill). It may happen that the nontrivial eigenvalues
of A (i i) are not all distinct and that some of the nontrivial eigenvalues of
A (ii i) equal some of the trivial eigenvalues. So we now have

(12) f(o(h) II.= (), g.)e-lII- (X .).

From (8) we get

(13)

where

(14) O,o :x=., U .
The sum in (14) is over all integers j for which ),. .
and

f(x) II--- (x

Now substitute (12)

into (13), cancel the common factor and then set ), .. The result is

II’- 1-I -’,(5) 0. --- (.- ) ,.= (. ) 1 < < s, 1 < i < n.

It follows from (14) that 0. >= 0, and that

(16) -’" 1 _<_a< s,i=10ia ea

(17) _-: 0. 1, 1 =< i =< n.
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Moreover we have

LEMMA 1. The n X n matrix in which the column vectors

appear exactly e times, 1 <= a <__ s, is nonnegative and doubly stochastic.

We now can improve Theorem 3 somewhat, when k n 1.

THEOREM 4. Let a be fixed. The number of integers i, 1 <- i <__ n, for which
A (ili) has as a nontrivial eigenvalue is at most n e. When this bound
is attained then for each of the remaining e integers i, the nontrivial eigenvalues
of A (i i) are 1, - t+ 8 Conversely, the number of integers
i, 1 <- i <= n, for which A (i i has tl, t-, /+, /8 as the non-
trivial eigenvalues is at most e. When this bound is attained then for each of
the remaining n e integers i, A (i]i) has t as a nontrivial eigenvalue.

Remark. The bounds are attained when A is diagonal. However they can
be attained when A is nondiagonal. An example is

1 0
0 1

Proof. By (14), (17) each of he germs in ghe sum (16) is between 0 and 1.
So there must be at least e integers i for which 0 0. By (15), 0 0
if and only if A (i[i) has/ as nontrivil eigenvalue. Hence is non-
trivial eigenvlue of A (ill) for t most n e integers i. When this bound
is achieved, 0 0 for n e vMues of i, nd hence 0 1 for e vlues
of i. But, by (17), 0 1 implies 0 0 for 11 a, nd by (15) this
cn hppen only if t, -1, +, 8 re all nontrivil eigenvlues
of A (i i). The converse follows by reversing these steps.

TIEOREM 5. A necessary and sufficient condition that an n X n normal
matrix A be diagonal is that each (n 1) X (n 1) principal submatrix of A
has as its eigenvalues an (n 1)-subset of the eigenvalues of A.

Proof. When A is diagonal the condition is obvious. Suppose the condi-
tion is stisfied. Then the nontrivil eigenvlues of A(i[i) are t,
omitting tt( Then, by (15), 0 0 except when a t(i), and then
0,t() 1. So any 0 is 0 or 1. Because of (16), there exist exactly e
integersiforwhicht(i) a. Whent(i) a, O for all a, soby
(14), U. 0 for all j for which ) t. The number of j for which ),.
is exactly e. When t(i) a, 0 and (14) then forces U. 0 for all
j for which . e. Thus U is 0 except for blocks Us lying at the inter-
section of rows numbered i for which t(i) a and columns numbered j for
which ). t. These columns j are exactly the columns j for which

e+-.. e_ 1 -<j <-el-... -e.



302 R.C. THOMPSON

(See 2.) We may find a permutation matrix P such that

PU- diag(U1, U2, ..., Us).

Now PAPr is diagonal if and only if A is. Moreover PAPr

(PU)D(PU)* D since U1, U8 are each unitary and the main diagonal
of D partitions into scalar segments. Hence A is diagonal.

THEOREM 6. For an appropriate unitary U, Ai (trace A)/n and
f() () f’()n-1, for all i, 1 <= i <= n.

Proof. Take Uo ’(i-1)-)n-/, 1 =< i, j -< n, where is a primitive root
of unity of order n. Then use (2) with h 0 and k 1, and (8).

THEOREM 7. Let a be fixed. Then either: (i) for at least one i, A (ill) has
a nontrivial eigenvalue inside C,, and for at least one i, A (i i) has a nontrivial
eigenvalue outside C, or (ii) for every i, A (i i) has all its nontrivial eigenvalues
on the boundary of C,

Proof. We use the fact that always 0, 10, I. Suppose all the non-
trivial eigenvalues of all A (i i) lie on the boundary of or outside of Ca, and
at least one A (i i) has a nontrivial eigenvalue outside C,. Then - }J
>_- p, for all i, j, with strict inequality at least once. Then (16) becomes

hence

Similarly we show that it cannot happen that allThis is a contradiction.
A (i i) have all their nontrivial eigenvalues on the boundary of or inside of
C,, with strictly inside at least once.

THEOREM 8. Let i be fixed. Then either: (i) A i i) has at least one non-
trivial eigenvalue inside one of C, C and at least one nontrivial eigenvalue
outside one of C, Cs; or (ii) each nontrivial eigenvalue of A(i i) lies on
the boundary of every one of C, C.

Proof. Suppose each nontrivial eigenvalue of A (i i) is on the boundary of,
or outside of, every one of C, C, with strictly outside at least once.
Then t. o’1 >- P for ll a, j, with strict inequality at least once. Then
(15) and (17) produce

hence p < p. Similarly we cannot have each nontrivial eigenvalue of A (i i)
inside of or on the boundary of each of C, C, with strictly inside at least
once.
The exceptional cases in Theorems 8 and 9 can happen; for an example,
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consider the matrix

2 --1 1

THEOREM 9. Let i, a be fixed. Then either" (i) A (i i) has a nontrivial
eigenvalue inside ,C or ii the nontrivial eigenvalues of A i i) are 1,
-1, t+l and each of these numbers lies on the boundary of C.

Proof. We know 0i =< 1. If all nontrivial eigenvalues of A (ili) are on
the boundary of or outside of C, and at least one nontrivial eigenvalue is out-
side ,C, then ]u iJi >- G for all j with strict inequality at least once.
Then

<0_<_ i.

This is a contradiction. So all nontrivial eigenvalues of A (ili) are on the
boundary of ,C or else at least one is inside C. If all nontrivial eigenvalues
are on the boundary of C then [ Jl G for all j; hence 0 1.
Then (17) forces 0 0 for all a, so that by (15), the nontrivial eigen-
values of A(ili) are #1, -1, +1, us.
The exceptional circumstance can happen. An example is diag(1, -1, 0).

THEOREM 10. There always exists a permutation of 1, 2, n such that
A (z (i) ((i)) has a nontrivial eigenvalue on the boundary of or outside of ’C, for
all i such that el + + e,_ + l <- i <- el + + e,and alla, 1 <= a <- s.

Proof. This follows from the known [2] fact that a doubly stochastic matrix
contains a diagonal every element of which is >= 2. The result now follows by
combining Lemma 1 with (15).

THEOREM 11. Let G denote the geometric mean of the distances from t to
the nontrivial eigenvalues of A (ill). Among the Gi for fixed j and variable i,
certain G will be zero but at least e are not zero. Suppose (for notational sire-
plicity) that G 0 for 1 <= i <= m and G 0 for i > m. Then

ej/nG <= effmG <= (_,1Gi)/m <= (e/m)l/(-l)Gj <= G.
We may write (16) as

_,=1 (G/G)-1 e.
Because 0 < G/G <- 1, the left side of the sum is increased by removing the
exponent s 1. This gives the lower bound. The upper bound is obtained
by using the fact that the function x- is concave up. Many other inequali-
ties of this nature can be proved. We do not pursue the matter further,
however.

5. Hermitian matrices

In 5, A is assumed to be Hermitian.
that X < :X < :X < < Xn--I < Xn

Recall that#l < < < so
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Let h be a real linear function. Then by Theorem 2(ii), for fixed e Q,
maxv h(A[ ]) max h(A). It is possible to sy a little more about the
sequence r e Q for which h(A) is maximal.

TEOE 12. Let h be a real linear fution of variables, let Q be
fixed. Then

maxv h(A[ []) max0tk
where

(t) {1,2,-.-,t,.n- + + 1, n k + + 2, ,n} eQ.

A similar result holds for the min.

That is, the maximizing element r e Q consists of the smallest and k
largest integers between 1 and n for some t. This is an extension of a result
in [3]. (The initial, or retinal, segments of (t) are absent if 0, or k.)

Proof. For fixed i and ed x, x_, x+, x,

h(E(x x), E(x x) )

is a linear function of x. Suppose

{1, ,j- 1, ,p+ 1, ,n}

is the element of Qn for which h(A) max h(A). In 8 we suppose j, p are
respectively the smallest, largest integers for which j, p . We show that if
an integer g e exists for which j < g p then we may increase the length
of either the initial or terminal segment in , without decreasing the length of
the other segment, and retaining the maximal property. A finite number of
repetitions of this produces the result. Now h(A) ka + where a, fl
are real numbers not depending on k, k, or . If a 0 or ifa 0 but
k then we keep the maximal property if, in , we delete g and insert j.
If a 0 but k k then we keep the maximal property if, in , we delete g
and insert p. If a 0 but k k then deleting g from and inserting
either j or p increases h(A). This contradicts the maximal property of .
We arrange the nontrivial eigenvalues of A(i]i) in increasing order.

Then the well known [1] fact that

(18) 1 il 2 i2 s--1 i, s--1 s

follows from (13) by a simple graphical argument. Conversely, for ed i,
given arbitrary real numbers 1, "", .,-1 satisfying (18) we can find
unitary U such that the nontrivial eigenvalues of A (i[ i) are 1, . ,-1.

This follows from the observation that if

H;:I (x H;=, (x-
then [6],
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Moreover 1(,)’(g,)-1 >= 0. If we put 0i, 1(g)()-1 for 1 -< a -<_ s
then (17) holds. Now use (14) to construct row i of a unitary matrix. For
any unitary U with this row i, (13) is valid with 0 as just defined. Let

(x) f(,(x) II-- (x )--" = 0, II.=, (x o).

We have to prove that (X) l(X). But (tz,) l(tz) for I <= a <= s and

degree (h) degree ql(X) s 1.

Thus we have given a new proof of the following well known theorem [1].

THEOREM 13. Let i be fixed. The inequalities (18) are necessary and
su:cient for the existence of a unitary U such that A (i i) has 1, . ,-1

as its nontrivial eigenvalues.

It is well known [1] (and easily follows)
X" -<_ rt" -< -k+ for 1 -< j -<_ k.

LEMMA 2.

(19)

(20)

(21)

that for a given e Qk,

(22) 0.

Because of (18), each of the bracketed fractions in (22) is between 0 and 1.
Hence dropping some of the fractions increases the value of the expression.
This proves (19), (20), and half of (21). We now write

0ia [(a i, ot--1)(iot dot)(]ot tl)--i(s- ]a) -1]
(23)

By (18), each of the fractions in braces in (23) is >_- 1.
other half of (21).

Notation.
n-lE

This proves the

l_<a<s

That is, ,A,+I is the arithmetic mean of the nontrivial eigenvalues of the
A (i i) belonging to the interval [,,
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(24)

If a 1, s,

()
]ia--1)(la+l- ia) <= 2in=l (la- i, a--1)(ia

For any a,

(A+- )(+- )- + L.+ (- _A)(.,- _)-
(26) (n e,)n-.
(Empty sums are defined to be zero.)

Proof. (24) follows from (19), (20), (16), using

and
((- .)(o+i- .)-i 1 (o+i- o)(p+i- .)-l.

(25) follows immediately from (21). To get (26) use

il (Oil + + Oi, a--1 + Oi, a+l + + Ois) n e.

in combination with (19) and (20).

THEOREM 15. G#en a, there exist integers i,j (i j), depending on a such
that (27), (28), (29) all hold.

(27) , _ e. n-._ + (n e.)n-. if a 1;

(28) b. e.++ (n e.),., if a s;

(u.- , _)(- ) e.n-(.- m)(- )
(29)

if a l,s.

Proof. From (16), 0. e. n- for at least one i. Then from (16) again,

0. (n 1)-(e.- 0.) e. n-
for t least one j i. The proof is now completed by use of (19), (20), (21).
We now obtain estimutes for the average wlue of the w runs over

Q., j ed.
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THEOREM 16. For fixed j and lc, l <= k <- n- 1, 1 =<j__<k,

where

(31)

(32)

Remark.

O<r<n --]c,E(n 1, n 2, ]){ ,=k+l i} -1

We remind the reader that the . are in increasing order for
fixed w e Q., so that w kn-+. Hence the average of the w
for fixed j as runs over Qnk lies between and ._+. In Theorem 16 we
obtain convex combinations of k, k+, ..., k._+ which are upper and
lower bounds for this average.

Proof. We may express (24) in the form
--1

(33)

Hence (30) is true when n- 1. Suppose the result established for
k+ 1. Thenwehave

:+1)+, 1 g j g + 1,
with

(35) oh. E.(n 1,...,/c + 1){IIik+ i} -1, 0 -<_ r _<_ n -/c 1.

Now, for a given e Qn, k+: there exist exactly ] + 1 sequences o e Qn for
which 0 c r. So by using (33) for (/ 1) X (k + 1) Hermitian matrices,

(36)
--<_ (] -J- 1)-1(? + ]Y, ’+:).

We sum (36) over all sequences e Q, k+l, and then divide by (kl). The
number of times a given w will appear in the central member of the resulting
inequality (call it .) is just the number of T e Q, + for which o c T; that is,
exactly (n-/c) times. Now

(-)/c + 1
( + 1)(n k)-1

We use (34) for j and j + 1 on the left and right sums in our inequality *.
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We then obtain (30) on recognizing that

0(]c + 1)-, I,_ k__(/ + 1)-, (k_ + ) (]c + 1)-
for 1 -< r < n-/c. That (32) holds follows immediately by setting X 1
in the polynomial identity

IIn---l (
_

j) -r-0k E (n 1, n 2, ,/c)Xn-k-.
The proof is complete.
The author wishes to thank the referee for pointing out that Theorem 3

holds for diagonable as well as normal matrices.
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