FURTHER REMARKS ON NONLINEAR FUNCTIONAL EQUATIONS

 $\mathbf{B}\mathbf{Y}$

Felix E. Browder

Introduction

In three preceding papers under a similar title, [5], [6], [7], the writer has studied mappings T from a reflexive complex Banach space X to its dual X^* which we shall call *complex-monotone*. If (w, u) is the sesquilinear pairing between w in X^* and u in X, we shall call T complex-monotone if it satisfies the two conditions:

(I) For each positive integer N, there exists a continuous, strictly increasing real function c_N on R^1 with $c_N(0) = 0$ such that

(1)
$$|(Tu - Tv, u - v)| \ge c_N(||u - v||)$$

for all u and v with $||u|| \leq N$, $||v|| \leq N$.

(II) There exists a real function c on R^1 with $c(r) \to +\infty$ as $r \to +\infty$ such that for all u,

(2)
$$|(Tu, u)| \ge c(||u||) ||u||.$$

It is the object of the present paper to sharpen and extend these results in several significant respects.

In the first place, in [5], [6], and [7], we discussed operators of two types, either $T = T_0 + C$ or $T = L + T_0 + C$, where T_0 is a nonlinear operator continuous from the strong topology of X to the weak topology of X^* , (demicontinuous), C is a nonlinear completely continuous operator from X to X^* , and L is a closed densely defined linear operator from X to X^* such that L^* is the closure of its restriction to $D(L) \cap D(L^*)$. As compared with the best results in the theory of monotone operators from X to X^* where comparable assumptions are made on Re (Tu - Tv, u - v) and Re (Tu, u), (cf. [9]), these classes of operators seem too narrow in at least two respects. The continuity requirement on T_0 ought to be reduced to the assumption that T_0 is continuous from finite-dimensional subspaces of X to the weak topology of X^* . In addition, the perturbing completely continuous operator C should be allowed to intertwine itself with T_0 in a suitable sense rather than be merely an additional summand.

In Section 1, we carry through this weakening of requirements to obtain the following results:

THEOREM 1. Let T be a nonlinear complex-monotone mapping of the reflexive complex Banach space X into its dual space X^* . Suppose that T is continuous

Received January 20, 1965.

from finite-dimensional subspaces of X to the weak topology of X^* . Then T is a one-to-one mapping of X onto X^* with a continuous inverse from X^* to X.

THEOREM 2. Let T be a nonlinear mapping of the dense linear subset D(T)of X into X^{*} such that $T = L + T_0$, where L is a closed densely defined linear operator from X to X^{*} such that L^{*} is the closure of its restriction to $D(L) \cap D(L^*)$, T_0 is continuous from finite-dimensional subspaces of X to the weak topology of X^{*} and maps bounded sets of X into bounded sets of X^{*}. Suppose that T is complex-monotone on D(T). Then T is a one-to-one mapping of D(T) onto X^{*} and has an inverse T^{-1} mapping X^{*} continuously into X.

THEOREM 3. Let T be a mapping of the reflexive space X into X^* , $(\dim X \ge 2)$ where T(u) = S(u, u) for a mapping S of $X \times X$ into X^* for which:

(a) For fixed v in X, $S(\cdot, v)$ satisfies condition (I) with function c_N independent of v for ||v|| < N.

(b) For fixed u in $X, S(u, \cdot)$ is completely continuous from X to X^* (i.e. continuous on bounded subsets of X from the weak topology of X to the strong topology of X^*) uniformly for u on bounded subsets of X.

(c) T is demicontinuous and satisfies condition (II).

Then T maps X onto X^* .

THEOREM 4. Let T be a mapping of the dense linear subset D(T) of X into X^* , where X is a reflexive complex Banach space of dimension ≥ 2 . Suppose that $T = T_0 + L$, where:

(a) L is a densely defined closed linear operator from X to X^* such that L^* is the closure of its restriction to $D(L) \cap D(L^*)$.

(b) For each u in X, $T_0(u) = S(u, u)$, where S is a mapping of $X \times X$ into X^* such that for fixed v in X, $S(v, \cdot)$ is completely continuous from X to X^* uniformly for v on bounded subsets of X. T_0 is demicontinuous and maps bounded subsets of X into bounded subsets of X^* .

(c) There exists a continuous strictly increasing function c_N on \mathbb{R}^1 for each N > 0 such that for all u and v in D(T) with $|| u ||, || v || \leq N$,

 $|(Lu - Lv + S(u, v) - S(v, v), u - v)| \ge c_N(||u - v||).$

(d) T satisfies condition (II) for all u in D(T). Then T maps D(T) onto X^* .

In Section 2, we give the following analogue of a theorem for monotone operators established by the writer [8] and T. Kato [10]:

THEOREM 5. Let T be a mapping from the reflexive complex Banach space X to its dual X^* . Suppose that T is continuous from finite-dimensional subspaces of X to the weak topology of X^* and that there exists a demicontinuous mapping U of X into X^* (i.e. continuous from the strong topology of X to the weak topology

of X^*) such that T + U is complex-monotone and T + U is locally bounded (i.e. maps some neighborhood of each point into a bounded set).

Then T is demicontinuous from X to X^* .

A related partial result in Hilbert space is given in Theorem 2 of Petryshyn [14].

In Section 3, we discuss the computability of the solution u of the equation Tu = w under the hypotheses of Theorems 1 and 2 in separable spaces X, obtaining stronger forms for convergence results of [14] in the more general context of Banach spaces. (Sequential approximations to such solutions in Hilbert space were discussed in detail by Zarantonello in [15] for the case of operators T satisfying one-sided Lipschitz conditions.)

In Section 4, we discuss an interesting application in Hilbert space of the writer's result in [6] given by Petryshyn in [14] to yield a nonlinear generalization of the theory of the Friedrichs extension. We reformulate and reprove Petryshyn's result and give an analogous result for Banach spaces X.

The writer is indebted to W. Petryshyn for having made a preliminary draft of [14] available to him.

Section 1

We proceed to the proofs of Theorems 1 through 4 as stated in the introduction.

Proof of Theorem 1. Let Λ be the directed set of finite-dimensional subspaces of X ordered by inclusion. For each F in Λ , let j_F be the injection map of F into X, j_F^* the dual projection map of X^* onto F^* . We set

$$T_F = j_F^* \circ T \circ j_F : F \to F^*.$$

The hypothesis that T is continuous from finite-dimensional subspaces of X to the weak topology of X^* implies that each T_F is continuous. Moreover for u and v in F,

and

$$(T_F u, u) = (Tu, u)$$

$$(T_F u - T_F v, u - v) = (Tu - Tv, u - v)$$

Hence T_F satisfies the hypotheses of Theorem 1 with X replaced by F. Since T_F is continuous, we may apply Theorem 1 of [5] to obtain the fact that T_F maps F one-to-one onto F^* .

To prove Theorem 1, it suffices to show that 0 lies in R(T), the range of T, since for every w in X^* , the mapping $T_w u = Tu - w$ will satisfy the hypotheses of Theorem 1 if T does.

Let u_F be the unique solution in F of the equation $T_F u_F = 0$. We know that

$$0 = (T_F u_F, u_F) = (T u_F, u_F) \ge c(||u_F||) ||u_F||.$$

Since $c(r) \to +\infty$ as $r \to +\infty$, there exists a constant M > 0 independent of F in Λ such that $||u_F|| \leq M$ for all F in Λ .

Since X is reflexive by hypothesis, the closed ball of radius M about the origin in X is weakly compact. Hence there exists u_0 in X such that for every F_0 in Λ , u_0 lies in the weak closure of the set

$$V_{F_0} = \bigcup_{F_0 \subset F} \{u_F\}.$$

Let F, F_1 be elements of Λ with $F \subset F_1$. Then

$$c_{M}(||u_{F_{1}}-u_{F}||) \leq |(Tu_{F_{1}}-Tu_{F}, u_{F_{1}}-u_{F})|.$$

On the other hand,

 $(Tu_{F_1} - Tu_F, u_{F_1} - u_F) = (Tu_{F_1}, u_{F_1} - u_F) - (Tu_F, u_{F_1}) + (Tu_F, u_F),$ while

$$(Tu_{F_1}, u_{F_1} - u_F) = (T_{F_1}u_{F_1}, u_{F_1} - u_F) = 0,$$

 $(Tu_F, u_F) = (T_Fu_F, u_F) = 0.$

Hence

$$c_{M}(||u_{F} - u_{F_{1}}||) \leq |(Tu_{F}, u_{F_{1}})|.$$

Let $q_M(r)$ be the continuous strictly increasing function which is the inverse of $c_M(r)$. (We may assume without loss of generality that $c_M(r) \to +\infty$ as $r \to +\infty$ and that $c_M(r) \to -\infty$ as $r \to -\infty$.) Then

 $|| u_{F_1} - u_F || \le q_M(| (Tu_F, u_{F_1}) |).$

Let f(v) be defined for v in X as

$$f(v) = ||v - u_F|| - q_M(|(T_{u_F}, v)|.$$

Then f is weakly lower semi-continuous in v. We know by the preceding argument that $f(v) \leq 0$ for v in V_F . Hence $f(v) \leq 0$ on the weak closure of V_F , and in particular $f(u_0) \leq 0$. Thus

$$|| u_0 - u_F || \le q_M(| (Tu_F, u_0) |).$$

Suppose now that F is an element of Λ which contains u_0 . Then

$$(Tu_F, u_0) = (T_F u_F, u_0) = 0,$$

and hence

$$|| u_F - u_0 || \le q_M(0) = 0,$$

i.e. $u_F = u_0$ for such F.

Finally, for any v in X, let F be an element of Λ which contains both u_0 and v. Then

$$(Tu_0, v) = (T_F u_0, v) = (T_F u_F, v) = 0,$$

so that $(Tu_0, v) = 0$ for all v in X. Hence $Tu_0 = 0$, Q.E.D.

Proof of Theorem 2. In this case, we let Λ be the directed set of finite-

dimensional subspaces of D(T) = D(L) ordered by inclusion. As in the proof of Theorem 1, we let j_F be the inclusion map of F into X, j_F^* the dual projection map of X^* onto F^* , and

$$T_F = j_F^* T j_F : F \to F^*$$

which is well defined for F in Λ since $F \subset D(T)$.

Since T_0 is continuous from finite-dimensional subspaces of X to the weak topology of X^* and since every linear map L is always continuous on finitedimensional subspaces of D(L), T_F is continuous from F to F^* for every F in A. Moreover, it satisfies conditions (I) and (II) by the same argument as in the preceding proof. Hence T_F maps F one-to-one onto F^* .

It suffices as in the proof of Theorem 1 to prove that there exists u_0 in D(T) such that $Tu_0 = 0$. For each F in Λ , there exists a unique $u_F \epsilon F$ such that $T_F u_F = 0$. As before, there exists a constant M > 0 independent of F such that

 $|| u_F || \leq M$

for all F in Λ . Hence by the weak compactness of closed balls in X, there exists u_0 in X such that for each F_0 in Λ , u_0 lies in the weak closure of the set

$$V_{F_0} = \bigcup_{F_0 \subset F} \{u_F\}.$$

We shall show first that u_0 lies in D(T) = D(L). Let v be an arbitrary element of $D(L) \cap D(L^*) = D(L) \cap D(L^*)$, and let F be an element of Λ which contains v.

Then

$$0 = (T_F u_F, v) = (T u_F, v) = (L u_F, v) + (T_0 u_F, v).$$

Since $v \in D(L^*)$,

$$(Lu_{F}, v) = (u_{F}, L^{*}v).$$

Since $|| u_F || \leq M$ while T_0 maps bounded sets of X into bounded sets in X^* , there exists a constant M_1 independent of F in Λ such that for all F in Λ ,

 $|(T_0 u_F, v)| \leq M_1 ||v||.$

Hence

$$|(u_F, L^*v)| \leq M_1 ||v||.$$

Let F_0 be an element of Λ containing v. For u in V_{F_0} , it follows by the preceding argument that

$$|(u, L^*v)|| - M_1||v|| \le 0.$$

Since the term on the left of the inequality is weakly continuous in u, it follows that the inequality persists on the weak closure of V_{F_0} , and, in particular, that

$$|(u_0, L^*v)| \leq M_1 ||v||$$

for all v in $D(L) \cap D(L^*)$. Since L^* is the closure of its restriction to

 $D(L) \cap D(L^*)$, it follows that

$$|(u_0, L^*v)| \leq M_1 ||v||, \qquad v \in D(L^*),$$

i.e. $u_0 \in D(L^{**}) = D(L) = D(T)$, (since L being closed implies that $L^{**} = L$).

Let F and F_1 be two elements of Λ with $F \subset F_1$. Then as in the proof of Theorem 1, we have

$$|| u_F - u_{F_1} || \le q_M(| (Tu_F, u_{F_1}) |)$$

and

 $|| u_0 - u_{F_1} || \le q_M(| (Tu_F, u_0) |).$

Since u_0 has been shown to lie in D(T), there exists an element F of Λ which contains u_0 . For such F,

$$(Tu_F, u_0) = (T_F u_F, u_0) = 0$$

and it follows that $||u_F - u_0|| = 0$, i.e. $u_F = u_0$. Finally, for an arbitrary v in D(T), let F be an element of Λ which contains both u_0 and v. Then

$$(Tu_0, v) = (T_F u_0, v) = (T_F u_F, v) = 0.$$

Since D(T) is a dense linear subset of X while Tu_0 annihilates every v in D(T), it follows that $Tu_0 = 0$, Q.E.D.

Proof of Theorem 3. It suffices as before to show that $0 \in R(T)$. We now let Λ be the directed set of finite-dimensional subspaces F of X of dimension ≥ 2 . Let j_F , j_F^* , and $T_F = j_F^* T j_F : F \to F^*$ be as before. Then T_F maps F continuously into F^* , and for each u in F,

$$|(T_F u, u)| = |(Tu, u)| \ge c(||u||) ||u||$$

where $c(r) \to +\infty$ as $r \to +\infty$. Since F is of dimension ≥ 2 , we may apply Theorem 1 of [6] to obtain the existence of at least one element u_F of F which is mapped by T_F onto 0. For such u_F , we have as before $||u_F|| \leq M$, where M is a constant independent of F in Λ .

By the reflexivity of X, there exists an element u_0 which lies in the weak closure of the set

$$V_{F_0} = \bigcup_{F_0 \subset F \in \Lambda} \{u_F\}$$

for every F_0 in Λ . Let F and F_1 be two elements of Λ with $F \subset F_1$. Then

$$c_{M}(||u_{F_{1}} - u_{F}||) \leq |(S(u_{F_{1}}, u_{F_{1}}) - S(u_{F}, u_{F_{1}}), u_{F_{1}} - u_{F})|$$

while,

$$(S(u_{F_1}, u_{F_1}) - S(u_F, u_{F_1}), u_{F_1} - u_F) = (Tu_{F_1} - Tu_F, u_{F_1} - u_F) + (S(u_F, u_{F_1}) - S(u_F, u_F), u_{F_1} - u_F).$$

For the first summand on the right, we have as before

$$(Tu_{F_1} - Tu_F, u_{F_1} - u_F) = -(Tu_F, u_{F_1}).$$

280

Hence, if as in the proof of Theorem 1, $q_M(r)$ is the inverse function of $c_M(r)$, we have

$$|| u_{F_1} - u_F || \le q_M(| (Tu_F, u_{F_1}) | + | (S(u_F, u_{F_1}) - S(u_F, u_F), u_{F_1} - u_F)|).$$

Let g be the function on X given by

$$g(v) = ||v - u_F|| - q_M(|(Tu, v)| + |(S(u_F, v) - S(u_F, u_F), v - u_F)|).$$

Since $||v - u_F||$ is weakly lower semi-continuous in v, q_M is continuous, and the argument of q_M in the definition of g is weakly continuous on bounded subsets of v by hypothesis (b) of Theorem 3, it follows that g(v) is weakly lower semi-continuous in v on bounded subsets of X. Since $g(v) \leq 0$ on V_F , it follows that $g(u_0) \leq 0$, i.e.

$$|| u_0 - u_F || \le q_M(| (Tu_F, u_0) | + | (S(u_F, u_0) - S(u_F, u_F), u_0 - u_F) |).$$

Let F be an element of Λ which contains u_0 . Then $(Tu_F, u_0) = 0$. Since $||u_F|| \leq M$, there exists a weak neighborhood V of u_0 in X such that for all w in V and all F in Λ , we have

$$||S(u_F, u_0) - S(u_F, v)|| < \varepsilon$$

for a prescribed $\varepsilon > 0$. We may find $F_1 \text{ in } \Lambda$ which contains F and such that $u_{F_1} \epsilon V$. Hence

$$|| u_0 - u_{F_1} || \le q_M(M\varepsilon) \to 0 \text{ as } \varepsilon \to 0.$$

Hence u_0 lies in the strong closure of the set V_F . Since T is demicontinuous, Tu_0 lies in the weak closure of the set $T(V_F)$ for each F in Λ which contains u_0 . However, $(Tu_F, v) \rightarrow 0$ on Λ for each v in X. Hence the intersection over F in Λ of the weak closures of $T(V_F)$ consists only of the single element 0. Hence $Tu_0 = 0$, Q.E.D.

Proof of Theorem 4. We take Λ to be the directed set of finite-dimensional subspaces of D(T) of dimension ≥ 2 . We obtain u_0 as in the proof of Theorem 3 and show that it lies in D(T) as in the proof of Theorem 2. By the same argument as in the proof of Theorem 3, we then show that for every F in Λ which contains u_0 and for each $\varepsilon > 0$, there exists F_1 in Λ with $F \subset F_1$ such that $|| u_0 - u_{F_1} || < \varepsilon$. Since T_0 is demicontinuous, this implies that for each $\varepsilon > 0$, we may obtain F_1 as above so that

$$|(T_0 u_{F_1} - T_0 u_0, v)| < \varepsilon ||v||.$$

Now let v be any element of $D(L) \cap D(L^*)$, where by the hypothesis on $L, D(L) \cap D(L^*)$ is dense in X. Since $v \in D(L), (Tu_F, v) \to 0$ on Λ . Hence

$$(u_F, L^*v) + (T_0 u_F, v) \rightarrow 0$$

on Λ . For F_1 as above, we have

$$|(u_{F_1}, L^*v) + (T_0 u_{F_1}, v) - (u_0, L^*v) - (T_0 u_0, v)| < \varepsilon_1$$

281

where ε_1 can be made arbitrarily small by suitable choice of F_1 . Hence

 $(Tu_0, v) = 0$

for all v in $D(L) \cap D(L^*)$, and since this latter set is dense, $Tu_0 = 0$, Q.E.D.

Section 2

In the present section, we give the simple proof of Theorem 5, as stated in the introduction.

Proof of Theorem 5. Since T = (T + U) - U, and U is assumed to be demicontinuous, it suffices to prove that T + U is demicontinuous, i.e. to replace T by T + U. Hence we may assume without loss of generality that T satisfies conditions (I) and (II) of the introduction and is locally bounded. By Theorem 1, we know that T is a one-to-one mapping of X onto X^* .

Let $u_k \to u$ strongly in X. Since $\{Tu_k\}$ is a bounded sequence by the local boundedness assumption and since X^* is reflexive, to prove that $Tu_k \to Tu$ weakly in X^* , it suffices to show that if Tu_k converges to w in X^* , then w = Tu. Since T is onto, there exists v in X such that Tv = w. Let M be an upper bound for $|| u_k ||$ and || v ||. Then

$$c_M(||v - u_k||) \leq |(Tv - Tu_k, v - u_k)|.$$

Since $Tu_k \to w = Tv$ weakly in X^* while $v - u_k \to v - u$ strongly in X, we know that

$$(Tv - Tu_k, v - u_k)
ightarrow (0, v - u) = 0.$$

Hence

$$||v - u_k|| \to 0,$$

i.e., u = v. Finally Tu = w, Q.E.D.

The proof of Theorem 5 can obviously be combined with Theorem 2 to yield conclusions on the demicontinuity of T in that theorem on D(T). More generally, an examination of the argument yields the following conclusion:

THEOREM 6. Let T be a mapping defined on a subset D(T) of X and satisfying condition (I) of the introduction on D(T). Suppose that T maps onto X. Then T is demicontinuous on D(T).

Section 3

It is our purpose in the present section to present a simple result on the computability of the solutions u of the equation Tu = w under hypotheses like those of Theorem 1 in the case in which the Banach space X is separable.

THEOREM 7. Let X be a reflexive, separable, complex Banach space, T a mapping of X into its dual space X^* which is continuous from finite-dimensional subspaces of X to the weak topology of X^* . Suppose that T maps bounded

282

subsets of X into bounded subsets of X^* . Suppose also that T is complexmonotone. Let $\{\Psi_k\}$ be a dense linearly independent set of elements of X, w an element of X^* . For each integer $j \ge 1$, let F_j be the subspace of X spanned by $\{\Psi_1, \dots, \Psi_j\}$. Then:

(a) For each $j \ge 1$, there is a unique solution u_j in F_j of the system of equations

$$(Tu_j, \Psi_k) = (w, \Psi_k), \qquad 1 \le k \le j.$$

(b) As $j \to +\infty$, $||u_j - u_0|| \to 0$, where u_0 is the unique solution of the equation $Tu_0 = w$ in X.

(c) If $M = \sup_{i} || u_{i} ||$, then M depends only upon || w || and the function c(r) of condition (II), and

$$c_{M}(||u_{j} - u_{0}||) \leq M ||Tu_{j} - w||.$$

If T is also assumed to be continuous, then the right-hand side of the inequality will converge to zero, as well as the left.

Proof of Theorem 7. Without loss of generality, we may assume that w = 0. The system of equations in part (a) is precisely equivalent to the equation $T_{F_j} u_j = j_{F_j}^* w = 0$, which we have already remarked to have a unique solution in F_j . Hence the conclusion of (a) follows.

For the proof of (b), we remark first that the existence and uniqueness of the solution u_0 of $Tu_0 = w$ is assured to us by Theorem 1. We next observe that $M = \max \{ || u_0 ||, \sup_j || u_j || \}$ depends only upon || w || and the function c(r) of condition (II) of the introduction which we hypothesize for T. Applying condition (I), we obtain

$$c_{M}(||u_{0} - u_{j}||) \leq |(Tu_{0} - Tu_{j}, u_{0} - u_{j})|$$

= |(w - Tu_{j}, u_{0}) - (w - Tu_{j}, u_{j})| = |(w - Tu_{j}, u_{0})|

since $(w - Tu_j, u_j) = 0$. For every v in the dense union of the F_k , $(w - Tu_j, v) = 0$ for $j \ge k$, where $v \in F_k$. Hence

$$(w - Tu_j, v) \rightarrow 0$$

for a dense set of elements v in X. Since $w - Tu_j$ is uniformly bounded in norm for all j because of $||u_j|| \leq M$ and the assumption that T maps bounded sets into bounded sets, it follows that $Tu_j - w$ converges weakly to zero. Hence $|(w - Tu_j, u_0)| \to 0$ as $j \to \infty$. Thus

$$c_M(\parallel u_0 - u_j \parallel \to 0$$

and hence

$$\| u_0 - u_j \| o 0, \qquad \qquad j o \infty.$$

For the proof of (c), we observe that

$$c_{M}(||u_{0}-u_{j}||) \leq |(w-Tu_{j}, u_{0})| \leq M||w-Tu_{j}||, \quad Q.E.D.$$

Section 4

In his forthcoming paper [14], Petryshyn has given an interesting application of the writer's results in [5] and [6] to the study of extensions of nonlinear operators satisfying generalized monotonicity conditions. It is the object of the present Section to reformulate the problem treated by Petryshyn in [14] and to establish results of the same type in a more general context.

Let H be a complex Hilbert space, T and K two linear operators with a common dense domain D(T) in H and with range in H, with K closeable and R(K) dense in H. Then T is said to be K-positive definite if there exist positive constants α_1 and α_2 such that

$$\|(Tu, Ku) \geq \alpha_1 \| u \|^2, \qquad \| Ku \|^2 \leq \alpha_2(Tu, Ku)$$

for all u in D(T). On D(T), we may define a Hermitian inner product [u, v] by

$$[u, v] = (Tu, Kv)$$

since (Tu, Kv) = (Ku, Tv) by polarization. The first inequality above tells us that the inner product [u, v] defines a pre-Hilbert space structure on D(T)with a bounded injection J into H. Let H_0 be the completion of D(T) with respect to the inner product $[\cdot, \cdot]$. Then J may be extended by continuity to a bounded linear mapping of H_0 into H. Moreover, J is one-to-one and identifies H_0 with a linear subset of H. (Indeed, suppose $\{u_k\}$ is a sequence from D(T) such that $u_k \to u$ in H_0 while $u_k \to 0$ in H. Since $||Ku_k||$ is uniformly bounded, we may assume that Ku_k converges weakly to an element w of H. Since the weak and strong closures of the graph of K coincide, it follows that w = 0. Hence for every v in D(T), $[u_k, v] = (Ku_k, Tv) \to 0$, which implies that u = 0.)

The second inequality $||Ku||^2 \leq \alpha_2(Tu, Ku)$ implies that the mapping $u \to Ku$ of D(T) into H is bounded from the H_0 -norm to H and therefore can be extended uniquely by continuity to a bounded linear mapping K_0 of H_0 into H. Let K_0^* be the adjoint mapping of H into H_0 . Since the range of K is dense in H by hypothesis, K_0^* is one-to-one.

In [14], Petryshyn considers a nonlinear mapping P from D(T) into H which satisfies the conditions:

$$|(Pu - Pv, K(u - v))| \ge \alpha_3 ||u - v||^2_{H_0}, \qquad u, v \in D(T),$$

 $(Pu, K_0 v)$ is continuous in u on H_0 for each v in H_0 .

He shows the existence of an unique extension P_0 of P whose domain lies in H_0 with range in H, whose range is all of H, and which also satisfies both of the above conditions. This result may be obtained as a special case of the following simple generalization:

THEOREM 8. Let X and Y be two complex Banach spaces, with X reflexive. Let P be a (possibly) nonlinear operator with domain D(P) a dense subset of X (1) For each integer N > 0, there exists a continuous strictly increasing function c_N on \mathbb{R}^1 with $c_N(0) = 0$ such that for all u and v in D(P) with $||u|| \leq N$, $||v|| \leq N$,

(4.1)
$$|(Pu - Pv, K_0 u - K_0 v)| \ge c_N(||u - v||).$$

(2) There exists a real function c on \mathbb{R}^1 with $c(r) \to +\infty$ as $r \to +\infty$ such that for all u in D(P),

(4.2)
$$|(Pu, K_0 u)| \ge c(||u||) ||u||.$$

(3) For each v in X, $(Pu, K_0 v)$ is continuous in u on X.

Then there exists a unique extension P_0 of P mapping from its domain in X to Y^* such that P_0 maps one-to-one onto Y^* and for each v in X, $(P_0 u, K_0 v)$ is continuous in the X-norm for u running through $D(P_0)$. For this extension, (4.1) and (4.2) hold with P replaced by P_0 .

Proof of Theorem 8. Since K_0 is a bounded linear map of X into Y, K_0^* is a bounded linear mapping of Y^* into X^* . The function $u \to K_0^* Pu$ is demicontinuous from X to X^* since for each v in X,

$$(K_0^* Pu, v) = (Pu, K_0 v)$$

is continuous in the X-norm for u running through D(P). Since X is complete in the strong topology and X^* is complete in the weak topology, the mapping $K_0^* P$ may be extended uniquely to a demicontinuous mapping Q from the whole of X into X^* .

For u in D(P), we have from (4.1)

$$(4.3) |(Qu - Qv, u - v)| = |(Pu - Pv, K_0(u - v)| \ge c_N(||u - v||)$$

and from (4.2),

$$(4.4) |(Qu, u)| = |(Pu, K_0 u)| \ge c(||u||) ||u||.$$

Extending Q by demicontinuity, we observe that both sides of the inequalities (4.3) and (4.4) are continuous on the graph of Q in $X_s \times X_w^*$, where X_s is X in the strong topology and X_w^* is X^* taken with the weak topology. Hence (4.3) and (4.4) hold for all u and v in X.

Applying Theorem 1, above, or the corresponding results of [5], we see that Q maps X onto X^* . Let $D_0 = Q^{-1}(R(K_0^*))$. Since K_0 has a dense range in Y, K_0^* is an injective map of Y^* into X^* and has an inverse $(K_0^*)^{-1}$ mapping $R(K_0^*)$ onto Y^* . We define P_0 by

$$D(P_0) = D_0$$
, $P_0 u = (K_0^*)^{-1}Qu$, $u \in D(P_0)$.

Since $R(Q) = X^*$ and $R((K_0^*)^{-1}) = Y^*, R(P_0)$ must be all of Y^* . Since

Q is one-to-one and $(K_0^*)^{-1}$ is one-to-one, P_0 is one-to-one. Since

$$(P_0 u, K_0 v) = (K_0^* (K_0^*)^{-1} Q u, v) = (Q u, v)$$

 $(P_0 u, K_0 v)$ is continuous in u for fixed v by the demicontinuity of Q. Since the last equation would be true for any P_0 satisfying the conditions of the theorem, P_0 is uniquely determined by the conditions of the theorem. We observe that (4.1) and (4.2) go over to P_0 by the demicontinuity of Q. To complete the proof of Theorem 8, we need only show that P_0 is really an extension of P.

For u in D(P), however, $Qu = K_0^* Pu$ does lie in $R(K_0^*)$. Hence u lies in $D(P_0)$ and

$$P_0 u = (K_0^*)^{-1} Q u = (K_0^*)^{-1} K_0^* P u = P u,$$
 Q.E.D.

Bibliography

- F. E. BROWDER, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc., vol. 69 (1963), pp. 862–874.
- Nonlinear elliptic problems, II, Bull. Amer. Math. Soc., vol. 70 (1964), pp. 299– 302.
- Strongly nonlinear parabolic boundary value problems, Amer. J. Math., vol. 86 (1964), pp. 339–357.
- 4. ——, Nonlinear elliptic boundary value problems, II, Trans. Amer. Math. Soc., vol. 117 (1965), pp. 530–550.
- *Remarks on nonlinear functional equations*, Proc. Nat. Acad. Sci. U.S.A., vol. 51 (1964), pp. 985–989.
- *Remarks on nonlinear functional equations*, II, Illinois J. Math., vol. 9 (1965), pp. 608–616.
- 7. ——, Remarks on nonlinear functional equations, III, Illinois J. Math., vol. 9 (1965), pp. 617-622.
- 8. ——, Continuity properties of monotone nonlinear operators in Banach spaces, Bull. Amer. Math. Soc., vol. 70 (1964), pp. 551–553.
- *Existence and uniqueness theorems for solutions of nonlinear boundary value problems*, Proceedings Amer. Math. Soc. Symposia in App. Math., vol. 17 (1965), pp. 24–49.
- T. KATO, Demicontinuity, hemicontinuity, and monotonicity, Bull. Amer. Math. Soc., vol. 70 (1964), pp. 548-550.
- 11. G. J. MINTY, On a "monotonicity" method for the solution of nonlinear equations in Banach spaces, Proc. Nat. Acad. Sci. U. S. A., vol. 50 (1963), pp. 1038-1041.
- W. V. PETRYSHYN, Direct and iterative methods for the solution of linear operator equations in Hilbert space, Trans. Amer. Math. Soc., vol. 105 (1962), pp. 136–175.
- ——, On a class of K-p.d. and non-K-p.d. operators and operator equations, J. Math. Anal. Appl., vol. 10 (1965), pp. 1-24.
- 14. ——, On the extension and the solution of nonlinear operator equations, Illinois J. Math., vol. 10 (1966), pp. 255-274, (this issue).
- E. ZARANTONELLO, The closure of the numerical range contains the spectrum, Bull. Amer. Math. Soc., vol. 70 (1964), pp. 781–787.

THE UNIVERSITY OF CHICAGO CHICAGO, ILLINOIS