HYPERHOMOLOGY SPECTRA AND A MULTIPLICATIVE KUNNETH THEOREM

BY
Thomas W. Hungerford

1. Introduction

Throughout this paper we deal exclusively with chain complexes of abelian groups. If K is a torsion-free complex, the homology spectrum of K consists of: the groups

$$
H(K), \quad H(K, m)=H\left(K \otimes Z_{m}\right) \quad(m>0)
$$

the coefficient homomorphisms induced by the canonical projections and injections

$$
Z \rightarrow Z_{m}, \quad Z_{m k} \rightarrow Z_{m}, \quad Z_{m} \rightarrow Z_{m k} \quad(m k>0) ;
$$

and the connecting homomorphisms induced by the exact sequences

$$
0 \rightarrow Z \xrightarrow{m} Z \rightarrow Z_{m} \rightarrow 0 \quad(m>0)
$$

The "multiplicative" Kunneth Theorem given in [2] states that for K and L torsion-free differential graded rings, the ring $H(K \otimes L)$ is completely determined by the homology spectra of K and L. A natural question then is: What is required to determine the ring $H(K \otimes L)$ if K and L are not necessarily torsion-free? The purpose of this note is to give a (partial) answer to this question. In particular, we shall show that the results of [2], suitably modified, can be extended to give a more general multiplicative Kunneth Theorem (Theorem 3.2) for which we need only require that $H(\operatorname{Tor}(K, L))=0$, instead of the condition that both K and L be torsionfree. Finally, we indicate briefly how these results can be carried over to the case of any finite number of complexes.

The chief difficulty with an arbitrary complex K is that the short exact coefficient sequence

$$
0 \rightarrow Z \xrightarrow{m} Z \rightarrow Z_{m} \rightarrow 0
$$

does not remain exact (on the left) when tensored with the complex K, and hence no connecting homomorphism $H(K, m) \rightarrow H(K)$ is defined. The basic idea needed to remedy this defect and to produce an analogue for the homology spectrum of a torsion-free complex (which reduces to the homology spectrum in case K is torsion-free) is to move from the homology spectrum to the hyperhomology spectrum of a complex.

2. The hyperhomology spectrum

We shall assume that the definition of the hyperhomology group of the complexes K and $L, \&(K \otimes L)$, and the definition and properties of free double
complex resolutions of complexes are known. This information may be found in Chapter XVII of Cartan-Eilenberg [1]. In addition we assume a familiarity with the main results of [2].

If K is a complex and G is any abelian group, G can be considered as a complex (in dimension zero). Then the hyperhomology group of K with coefficients in G is the group $\mathscr{L}(K \otimes G)$. In particular if $G=Z_{m}(m>0)$, we denote by $\mathfrak{L}(K, m)$ the group $\mathfrak{L}\left(K \otimes Z_{m}\right)$. We shall occasionally denote $H(K)=\mathscr{L}(K \otimes Z)$ by $\mathscr{L}(K, 0)$.

Since $\mathfrak{L}(K, m)=H\left(\bar{K} \otimes Z_{m}\right)(\bar{K}$ free resolution of $K)$, the canonical maps $Z \rightarrow Z_{m}, Z_{m k} \rightarrow Z_{m}$ and $Z_{m} \rightarrow Z_{m k}$ induce coefficient homomorphisms:

$$
\begin{aligned}
\lambda_{m}^{m k}: \mathscr{L}(K, m k) & \rightarrow \mathscr{L}(K, m) & & (m, k \geq 0) \\
\mu_{m k}^{m}: \mathscr{L}(K, m) & \rightarrow \mathcal{L}(K, m k) & & (m, k>0)
\end{aligned}
$$

Since \bar{K} is free, the exact sequence

$$
0 \rightarrow Z \xrightarrow{m} Z \rightarrow Z_{m} \rightarrow 0
$$

induces a connecting homomorphism of degree -1 :

$$
\mu_{0}^{m}: \mathfrak{L}(K, m)=H\left(\bar{K} \otimes Z_{m}\right) \rightarrow H(\bar{K}) \cong H(K)=\mathscr{L}(K, 0)
$$

The hyperhomology spectrum of the complex K consists of the groups $\mathscr{L}(K, m)(m \geq 0)$ together with the maps $\lambda_{m}^{m k}, \mu_{m k}^{m}(m, k \geq 0)$. It is denoted $\{\mathcal{L}(K, m)\}$. It follows from the definition of $\mathfrak{L}(K, m)$ that for K torsion-free $\mathfrak{L}(K, m) \cong H(K, m)=H\left(K \otimes Z_{m}\right)$; i.e. in this case the hyperhomology spectrum reduces to the homology spectrum (which was used in [2]).

If K an L are complexes, then the tensor product of their hyperhomology spectra, denoted $\{\mathcal{L}(K, m)\} \otimes\{\mathcal{L}(L, m)\}$, is the abelian group

$$
\left[\sum_{m \geq 0} \mathscr{L}(K, m) \otimes \mathscr{L}(L, m)\right] / S
$$

where S is the subgroup generated by all elements of the form:
(i) $\lambda_{m}^{m k} u_{m k} \otimes v_{m}-(-1)^{\operatorname{deg} \mu_{m}^{m} k \cdot \operatorname{deg} u_{m k}} u_{m k} \otimes \mu_{m k}^{m} v_{m} \quad(m k \geq 0) ;$
(ii) $\mu_{m k}^{m} u_{m} \otimes v_{m k}-u_{m} \otimes \lambda_{m}^{m k} v_{m k} \quad(m k \geq 0)$;
where $u_{i} \in \mathscr{L}(K, i)$ and $v_{j} \in \mathscr{L}(L, j)$. If $u \otimes v \in \mathscr{L}(K, m) \otimes \mathscr{L}(L, m)$ represents an element x of $\{\mathcal{L}(K, m)\} \otimes\{\mathcal{L}(L, m)\}$, then the degree of x is $\operatorname{deg} u+\operatorname{deg} v-1$ if $m>0$ and $\operatorname{deg} u+\operatorname{deg} v$ if $m=0$.

If K is a complex and \bar{K} a free resolution of K, then the hyperhomology spectrum of $K,\{\mathcal{L}(K, m)\}$, is by definition the homology spectrum of \bar{K}, $\{H(\bar{K}, m)\}$. Hence as a special case of Theorem 2.2 of [2] we have

Theorem 2.1. If K and L are complexes, then there is a natural isomorphism of graded groups:

$$
\{\mathcal{L}(K, m)\} \otimes\{\mathcal{L}(L, m)\} \cong \mathcal{L}(K \otimes L)
$$

3. Products

A differential graded ring K is a complex of abelian groups together with chain maps $\pi_{K}: K \otimes K \rightarrow K$ and $I_{K}: Z \rightarrow K$ such that the following diagrams are commutative:

$$
\begin{align*}
& K \otimes K \quad K \quad K \otimes K \xrightarrow{\pi_{K}} K \xrightarrow{\pi_{K}} \otimes K . \tag{3.1}
\end{align*}
$$

The first diagram asserts that the product $u v=\pi_{K}(u \otimes v)$ is associative and the second that $I_{K}(1)=1_{K}$ is a two sided identity for this product. (cf. MacLane [4], Chapter 6).

If \bar{K} is a free double complex resolution of K, then the maps π_{K} and I_{K} can be lifted to double complex maps $\pi_{\bar{K}}: \bar{K} \otimes \bar{K} \rightarrow \bar{K}$ and $I_{\bar{K}}: Z \rightarrow \bar{K}$. This fact follows from Proposition 1.2 in Chapter XVII of Cartan-Eilenberg [1]. The statement of this proposition requires that both X and Y be projective resolutions; the proof, however, uses only the fact that Y is a projective resolution and that $B_{p, *}^{I}(X), H_{p, *}^{I}(X)$ are free complexes over $B_{p}(A), H_{p}(A)$, for each p. This is exactly the situation here: $B^{I}(\bar{K} \otimes \bar{K})$ is free since $\bar{K} \otimes \bar{K}$ is, and by the Kunneth Theorem

$$
H^{I}(\bar{K} \otimes \bar{K}) \cong H^{I}(\bar{K}) \otimes H^{I}(\bar{K})
$$

which is free since \bar{K} is a free double complex resolution.
In general, however, \bar{K} (with the maps $\pi_{\bar{K}}, I_{\bar{K}}$) is not a differential graded ring. The fact that the diagrams (3.1) commute for K implies only that the corresponding diagrams for \bar{K} are homotopy commutative It is true, therefore, that $H(\bar{K})$ is a graded ring and that the augmentation $\bar{K} \rightarrow K$ induces a ring isomorphism $H(\bar{K}) \cong H(K)$.

Similarly if L is a differential graded ring and \bar{L} a free resolution for L, then it follows that $H(\bar{K}, m), H(\bar{L}, m), H(\bar{K} \otimes \bar{L}, m), H(K \otimes \bar{L}, m), H(\bar{K} \otimes L, m)$ ($m \geq 0$) are all graded rings. This involves showing that the diagrams (3.1) with $\bar{K} \otimes Z_{m}, \bar{L} \otimes Z_{m}, \bar{K} \otimes \bar{L}$, etc. in place of K are homotopy commutative. These facts are consequences of standard arguments about homotopic maps and their tensor products. Therefore if K and L are differential graded rings, $\mathscr{L}(K \otimes L)$ is a ring with π being the composition:

$$
\begin{aligned}
& \mathscr{L}(K \otimes L) \otimes \mathscr{L}(K \otimes L) \\
& =H(\bar{K} \otimes \bar{L}) \otimes H(\bar{K} \otimes \bar{L}) \xrightarrow{\infty} H(\bar{K} \otimes \bar{L} \otimes \bar{K} \otimes \bar{L}) \\
& \quad \xrightarrow{\tau} H(\bar{K} \otimes \bar{K} \otimes \bar{L} \otimes \bar{L}) \xrightarrow{\left(\pi_{\bar{K}} \otimes \pi_{\bar{L}}\right)_{*}} H(\bar{K} \otimes \bar{L})=\mathscr{L}(K \otimes L),
\end{aligned}
$$

where α is the usual homology product and τ the obvious interchange of factors. The identity in $\mathcal{L}(K \otimes L)$ is given by

$$
Z=Z \otimes Z \xrightarrow{\left(I_{\bar{K}} \otimes I_{\bar{L}}\right)_{*}} H(\bar{K} \otimes \bar{L})=\mathfrak{L}(K \otimes L) .
$$

Note that essentially the same product will be defined if one uses $H(\bar{K} \otimes L)$ or $H(K \otimes \bar{L})$ in place of $H(\bar{K} \otimes \bar{L})$, since the augmentation maps $\bar{K} \rightarrow K$ and $\bar{L} \rightarrow L$ induce ring isomorphisms

$$
H(K \otimes \bar{L}) \leftarrow H(\bar{K} \otimes \bar{L}) \rightarrow H(\bar{K} \otimes L) .
$$

If K and L are differential graded rings, then so are $\mathcal{L}(K, m)$ and $\mathfrak{L}(L, m)(m \geq 0)$. We would like to put a product structure on the spectra tensor product $\{\mathcal{L}(K, m)\} \otimes\{\mathcal{L}(L, m)\}$ in such a way that the isomorphism of Theorem 2.1 becomes a ring isomorphism. The fact that this can be done is again a consequence of Section 3 of [2].

For convenience we indicate briefly how this product is defined. First a product is defined on $\sum_{m \geq 0} \mathscr{L}(K, m) \otimes \mathscr{L}(L, m)$ (it is non-associative and has other peculiarities) ; this induces the desired product (associative, etc.) on the quotient

$$
\left[\sum_{m} \mathfrak{L}(K, m) \otimes \mathscr{L}(L, m)\right] / S=\{\mathscr{L}(K, m)\} \otimes\{\mathscr{L}(L, m)\}
$$

If x and y are homogeneous generators of $\mathscr{L}(K, i) \otimes \mathscr{L}(L, i)$ and $\mathscr{L}(K, j) \otimes \mathscr{L}(L, j)$ respectively, then a product $*$ is given in $\sum_{m \geq 0} \mathscr{L}(K, m) \otimes$ $\mathcal{L}(L, m)$ by

$$
\begin{aligned}
& x * y=x \cdot\left[\left(\lambda_{i}^{0} \otimes \lambda_{j}^{0}\right) y\right], \text { if } j=0 ; \\
& x * y=(-1)^{\operatorname{deg} x}\left[\left(\lambda_{j}^{0} \otimes \lambda_{j}^{0}\right) x\right] \cdot y, \text { if } j>0 \quad \text { and } i=0 ; \\
& x * y=a\left[\left(\lambda_{c}^{i} \otimes \lambda_{c}^{i}\right) x\right] \cdot\left[\left(\lambda_{c}^{j} \otimes \lambda_{c}^{j}\right)\left(D_{j} y\right)\right] \\
&+(-1)^{\operatorname{deg} D_{i} x} b\left[\left(\lambda_{c}^{i} \otimes \lambda_{c}^{i}\right)\left(D_{i} x\right)\right] \cdot\left[\left(\lambda_{c}^{j} \otimes \lambda_{c}^{j}\right) y\right], \\
& \text { if } i>0 \quad \text { and } j>0,
\end{aligned}
$$

where \cdot is the product in (each) $\mathfrak{L}(K, m) \otimes \mathscr{L}(L, m) ; c=(i, j)$ and $a i+b j=c$; and

$$
D_{m}: \mathscr{L}(K, m) \otimes \mathscr{L}(L, m) \rightarrow \mathscr{L}(K, m) \otimes \mathscr{L}(L, m)
$$

is the map given on $u \otimes v \in \mathscr{L}(K, m) \otimes \mathscr{L}(L, m)$ by

$$
\left[\left(\lambda_{m}^{0} \mu_{0}^{m} \otimes 1\right)+(-1)^{\operatorname{deg} u}\left(1 \otimes \lambda_{m}^{0} \mu_{0}^{m}\right)\right](u \otimes v)
$$

We can summarize these results in
Theorem 3.2. If K and L are differential graded rings, then there is a natural isomorphism of graded rings:

$$
\{\mathscr{L}(K, m)\} \otimes\{\mathcal{L}(L, m)\} \cong \mathscr{L}(K \otimes L)
$$

Thus the ring $\mathfrak{L}(K \otimes L)$ is completely determined by the hyperhomology spectra of K and L. Furthermore, if

$$
H(\operatorname{Tor}(K, L))=0
$$

then the theorem remains true with $H(K \otimes L)$ in place of $\mathfrak{L}(K \otimes L)$.
The proof of the last statement is a consequence of the fact that there is an exact triangle (cf. [1]) :

$$
\begin{gathered}
\mathscr{L}(K \otimes L) \\
H(K \otimes L) \rightarrow H(\operatorname{Tor}(K, L)) .
\end{gathered}
$$

Thus we have obtained a much more general multiplicative Kunneth Theorem than the one given in [2].

4. A multiple multiplicative Kunneth Theorem

If $K^{1}, K^{2}, \cdots, K^{n}$ are complexes, then the tensor product of theirhyperhomology spectra

$$
\left\{\mathscr{L}\left(K^{1}, m\right)\right\} \otimes\left\{\mathcal{L}\left(K^{2}, m\right)\right\} \otimes \cdots \otimes\left\{\mathcal{L}\left(K^{n}, m\right)\right\}
$$

is again a certain quotient of the group

$$
\begin{equation*}
\sum_{m \geq 0} \mathscr{L}\left(K^{1}, m\right) \otimes \cdots \otimes \mathscr{L}\left(K^{n}, m\right) \tag{4.1}
\end{equation*}
$$

The precise definition is given in [3]. The only relevant fact needed here is the observation that if K^{1}, \cdots, K^{n} are differentially graded rings, a $*$ product (analogous to the one defined in Section 3) can be defined on (4.1) and induces a product in the spectra tensor product.

It is clear that all the other products defined in Section 3 extend without difficulty to the case of n differential graded rings; in particular,

$$
\mathscr{L}\left(K^{1} \otimes \cdots \otimes K^{n}\right)
$$

is a graded ring. If we so denote by $\operatorname{Mult}_{i}\left(A^{1}, \cdots, A^{n}\right)$ the i-th left derived functor of the functor $A^{1} \otimes A^{2} \otimes \cdots \otimes A^{n}$, then we have

Theorem 4.2. If K^{1}, \cdots, K^{n} are differential graded rings, then there is a natural isomorphism of graded rings:

$$
\begin{equation*}
\left\{\mathscr{L}\left(K^{1}, m\right)\right\} \otimes \cdots \otimes\left\{\mathscr{L}\left(K^{n}, m\right)\right\} \cong \mathscr{L}\left(K^{1} \otimes \cdots \otimes K^{n}\right) \tag{4.3}
\end{equation*}
$$

Thus the ring $\mathscr{L}\left(K^{1} \otimes \cdots \otimes K^{n}\right)$ is completely determined by the hyperhomology spectra of K^{1}, \cdots, K^{n}. Futhermore, if

$$
\begin{equation*}
H\left(\operatorname{Mult}_{i}\left(K^{1}, \cdots, K^{n}\right)\right)=0 \quad \text { for } \quad i>0 \tag{4.4}
\end{equation*}
$$

then the theorem remains true if $\mathfrak{L}\left(K^{1} \otimes \cdots \otimes K^{n}\right)$ is replaced by

$$
H\left(K^{1} \otimes \cdots \otimes K^{n}\right)
$$

The existence of an isomorphism (4.3) of the additive groupsis just a special case of Theorem 3.1 of [3]. The proof that (4.4) implies that

$$
\mathfrak{L}\left(K^{1} \otimes \cdots \otimes K^{n}\right)=H\left(K^{1} \otimes \cdots \otimes K^{n}\right)
$$

is given in the proof of Corollary 1.2 of [3]. It might also be noted that it is
shown there that (4.4) holds if $n-1$ of the complexes K^{1}, \cdots, K^{n} are torsionfree. Finally, the fact that the isomorphism (4.3) does in fact preserve the product structure and is thus a ring isomorphism, follows as in Theorem 3.2 from Section 3 of [2] (where the case $n=3$ is treated; but all of the arguments are valid for any n).

References

1. H. Cartan and S. Eilenberg, Homological algebra, Princeton, Princeton University Press, 1956.
2. T. W. Hungerford, Bockstein spectra, Trans. Amer. Math. Soc., vol. 115(1965), pp. 225-241.
3. -, Multiple Kunneth formulas for abelian groups, Trans. Amer. Math. Soc., vol. 118(1965), pp. 257-276.
4. S. MacLane, Homology, Berlin, Gottingen, and Heidelberg, Springer, 1963.

University of Washington
Seattle, Washington

