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1. Introduction

Throughout this pper we del exclusively with chain complexes of belian
groups. If K is torsion-free complex, the homology spectrum of K consists
of: the groups

H(K), H(K, m) H(K (R) Zm) (m > 0);

the coefficient homomorphisms induced by the canonical projections and in-
jections

Z --* Z, Z -- Z, Z -- Z (m > 0);

and the connecting homomorphisms induced by the exact sequences

O--> Z--% Z--- Z,---> O (m > 0).

The "multiplicative" Kunneth Theorem given in [2] states that for K and L
torsion-free differential graded rings, the ring H(K (R) L) is completely deter-
mined by the homology spectra of K and L. A natural question then is:
What is required to determine the ring H(K (R) L) if K and L are not neces-
sarily torsion-free? The purpose of this note is to give a (partial) answer to
this question. In particular, we shall show that the results of [2], suit-
ably modified, can be extended to give a more general multiplicative Kun-
neth Theorem (Theorem 3.2) for which we need only require that
H(Tor (K, L)) 0, instead of the condition that both K and L be torsion-
free. Finally, we indicate briefly how these results can be carried over to the
case of any finite number of complexes.
The chief difficulty with an arbitrary complex K is that the short exact co-

efficient sequence
0-- Z Z -- Z --0

does not remain exact (on the left) when tensored with the complex K, and
hence no connecting homomorphism H(K, m) ----> H(K) is defined. The basic
idea needed to remedy this defect and to produce an analogue for the homology
spectrum of a torsion-free complex (which reduces to the homology spectrum
in case K is torsion-free) is to move from the homology spectrum to the hyper-
homology spectrum of a complex.

2. The hyperhomology spectrum
We shall assume that the definition of the hyperhomology group of the

complexes K and L, (K (R) L), and the definition and properties of free double
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complex resolutions of complexes are known. This information may be found
in Chapter XVII of Cartan-Eilenberg [1]. In addition we assume a familiarity
with the main results of [2].

If K is a complex and G is any abelian group, G can be considered as a com-
plex (in dimension zero). Then the hyperhomology group of K with coeffi-
cients in G is the group (K (R) G). In particular if G Z (m > 0), we de-
note by 2(K, m) the group 2(K (R) Z). We shall occasionally denote
H(K) 2(K (R) Z) by 2(K, 0).

Since 2(K, m) H(/ (R) Z) (/ free resolution of K), the canonical maps
Z -- Z, Zk --+ Zm and Zm -- Zk induce coefficient homomorphisms", 2(K, m/) --, (g, m) (m,/ _> 0);

t, (K, m) --+ (K, m/) (m,/ > 0).
Since/ is free, the exact sequence

0- Z 2 Z -- Z --0

induces a connecting homomorphism of degree 1"

t" 2(K, m) H( (R) Z) ---+ H() .. H(K) 2(K, 0).

The hyperhomology spectrum of the complex K consists of the groups
(K, m) (m >_ 0) together with the maps, tk (m,/ >_ 0). It is denoted

{2(K, m)}. It follows from the definition of 2(K, m) that for K torsion-free
2 (K, m) H(K, m) H(K (R) Zm) i.e. in this case the hyperhomology
spectrum reduces to the homology spectrum (which was used in [2]).

If K an L are complexes, then the tensor product of their hyperhomology
spectra, denoted 2 (K, m) (R) (L, m) }, is the abelian group

[m>0 2(g, m) (R) 2(L, m)]/S,

where S is the subgroup generated by all elements of the form"

(i) u (R) v (m/ >_ 0);), uk (R) v- 1)’
mk(ii) u(R)v-u(R)),v (m/>_0);

where u e (K, i) and v. e 2(L, j). If u (R) v e 2(K, m) (R) 2(L, m) repre-
sents an element x of {2(K, m)} (R) {2(L, re)l, then the degree of xis
degu-t-degv- 1if m> 0anddegu+degvifm= 0.

If K is a complex and/ a free resolution of K, then the hyperhomology
spectrum of K, /2(K, m)}, is by definition the homology spectrum of /,
{H(/, m)}. Hence as a special case of Theorem 2.2 of [2] we have

THnOnE 2.1. If K and L are complexes, then there is a natural isomorphism
of graded groups:

{2(K, m)} (R) {2(L, m)} 2(K (R) L).
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3. Products
A differential graded ring K is a complex of abelian groups together with

chain maps rK K (R) K -- K and IK Z -4 K such that the following diagrams
are commutative"

(3.1)

The first diagram asserts that the product uv r<(u (R) v) is associative and
the second that IK(1) 1 is a two sided identity for this product. (cf.
MacLane [4], Chapter 6).

If i is a free double complex resolution of K, then the maps r and I can
be lifted to double complex maps / (R) / --/ and I" Z --/. This
fact follows from Proposition 1.2 in Chapter XVII of Cartan-Eilenberg [1].
The statement of this proposition requires that both X and Y be projective
resolutions; the proof, however, uses only the fact that Y is a projective res-
olution and that B..(X), H..(X) are free complexes over By(A), Hv(A),
for each p. This is exactly the situation here" BX(/ (R) /) is free since
/ (R) / is, and by the Kunneth Theorem

H’(/ (R) ) ’ H’(/) (R) H’(/),
which is free since i is a free double complex resolution.

In general, however, K (with the maps r, I) is not a differential graded
ring. The fact that the diagrams (3.1) commute for K implies only that the
corresponding diagrams for/ are homotopy commutative It is true, there-
fore, that H(/) is a graded ring and that the augmentation/ - K induces a
ring isomorphism H(/) ----- H(K).

Similarly if L is a differential graded ring and L a free resolution for L, then
it follows that H([, m),H(L, m),H([ (R) , m),H(K (R) L, m), U([ (R) L, m)
(m

_
0) are all graded rings. This involves showing that the diagrams (3.1)

with/ (R) Zm, L (R) Zm,/ (R) L, etc. in place of K are homotopy commutative.
These facts are consequences of standard arguments about homotopic maps
and their tensor products. Therefore if K and L are differential graded rings,
2(K (R) L) is a ring with r being the composition"

2(K (R) L) (R) 2(K (R) L)
H(/ (R) L) (R) H(/ (R) L) - H(/ (R) L (R) R: (R) L)

-H(/ (R) K (R) L (R) L) (’ (R) rz)
*,) H(K (R) L) 2(K (R) L),

where a is the usual homology product and z the obvious interchange of factors.
The identity in 2(K (R) L) is given by
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Z Z(R)Z (I(R)Iz). H( (R) L) (g (R) L).

Note that essentially the same product will be defined if one uses H(/ (R) L)
or H(K (R) L) in place of H(_ (R) L), since the augmentation maps/ -- Kand L --. L induce ring isomorphisms

H(K (R) L)H(: (R) L)H(: (R) L).

If K and L are differential graded rings, then so are (K, m) and
(L, m) (m >_ 0). We would like to put a product structure on the spectra

tensor product 2(K, m) (R) 2 (L, m) in such a way that the isomorphism
of Theorem 2.1 becomes a ring isomorphism. The fact that this can be done
is again a consequence of Section 3 of [2].
For convenience we indicate briefly how this product is defined. First a

product is defined on m>0 (K, m) (R) (L, m) (it is non-associative and has
other peculiarities); this induces the desired product (associative, etc.) on the
quotient

[, 2(g, m) (R) 2(L, m)]/S {2(g, m)/ (R) {2(L, m)}.
If x and y are homogeneous generators of .(K, i)(R) (L, i) and

(K,j) (R) (L,.j) respectively, then a product is given in ’0 (K, m) (R)
2(L, m) by

x.y x.[(k (R)),)y], if j 0;

x.y (--1)deg[(k (R) k)x].y, if j> 0 and i= 0;
x. y a[(k (R) k)x].[(), (R) ),)(Dj y)]

+ (--1)deg"b[(k (R) k)(Dx)].[(k (R) k)y],
if i> 0 and j> 0,

where is the product in (each) 2(K, m) (R) (L, m);c (i, j) and
ai - bj c; and

D, 2(g, m) (R) 2(L, m) ---. (g, m) (R) 2(L, m)

is the map given on u (R) v e 2 (K, m) (R) 2 (L, m) by

(R) 1) + (R) u (R) ,).

We can summarize these results in

THEOREM 3.2. If K and L are differential graded rings, then there is a natural
isomorphism of graded rings:

{2(g, m)} (R) {(L, m)}-- 2(g (R) L).

Thus the ring 2 K (R) L) is completely determined by the hyperhomology spectra
of K and L. Furthermore, if

H(Tor (K, L)) 0
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then the theorem remains true with H(K (R) L) in place of 2(K (R) L ).

The proof of the last statement is a consequence of the fact that there is an
exact triangle (cf. [1])

(K (R) L)
/

H(K (R) L) H(Tor (K, L)).

Thus we hve obtained a much more general multiplicative Kunneth Theorem
than the one given in [2].

4. A multiple multiplicative Kunneth Theorem
If K, K, K" are complexes, then the tensor product of theirhyper-

homology spectra

{(K, m)} (R) {2(K, m)} (R) (R) {(g,m)}
is gain a certain quotient of the group

(4.1) Eo(K1, m) (R) (R) (Kn, m).
The precise definition is given in [3]. The only relevant fact needed here is
the observation that if K1, K are differentially graded rings, a product
(analogous to the one defined in Section 3) can be defined on (4.1) and induces
a product in the spectra tensor product.

It is clear that all the other products defined in Section 3 extend without
difficulty to the case of n differential graded rings; in particular,

(K (R) (R) Kn)

is a graded ring. If we so denote by Mult (A1, An) the i-th left derived
functor of the functor A (R) A (R) (R) An, then we have

THEOREM 4.2. If K1, K are differential graded rings, then there is a
natural isomorphism of graded rings:

(4.3) {2(g1, m)} (R) (R) {(gn, m)} (g (R) (R) g’).

Thus the ring 2(K (R)... (R) Kn) is completely determined by the hyper-
homology spectra of K1, Kn. Futhermore, if
(4.4) H(Mult (K1, ..., Kn)) 0 for i > 0,

then the theorem remains true if 2(K (R) (R) K’) is replaced by

H(K (R)... (R) gn).

The existence of an isomorphism (4.3) of the additive groups is just a special
case of Theorem 3.1 of [3]. The proof that (4.4) implies that

2(K (R) (R) g’) H(K (R) (R) Kn)
is given in the proof of Corollary 1.2 of [3]. It might also be noted that it is
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shown there that (4.4) holds if n 1 of the complexes K1, K are torsion-
free. Finally, the fact that the isomorphism (4.3) does in fact preserve the
product structure and is thus a ring isomorphism, follows as in Theorem 3.2
from Section 3 of [2] (where the case n 3 is treated; but all of the arguments
are valid for any n).
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