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1. Introduction
Let C, be the set of n degree cosine polynomials g such that if

g() a0 a cos -t- -[- a cos n,
then g() -> 0 for all real 6, a > a0 > 0, and a -> 0 for k 2, 3, n.
The estimates for the errors in approximate formulas obtained for various
functions of prime numbers depend on the following two quotients formed
from the coefficients of members of C,

R R(g) a -t- a. -t-" -4-" a,,

v%)

S S(g) ao "4- a -t- -4- a,,.
al ao

Following standard notation, we denote by r(x) the number of primes
less than or equal to x. For v(x), Landau [5, vol. 1, pp. 242-251] established
the validity of the following approximation for all X > S + 2:

dy (xe-(o) xr(x)
log Y d- 0 ).

By more sophisticated arguments Landau [5, vol. 1, pp. 321-333] also showed
that for any p > R we have

r(x) f dy
-4- O(x (log x)-l/2e-./iogx)

log y

The last estimate for the error for large x depends on the following result
concerning the zeros of the Riemann zeta-function ’(s). If a > R, there
exists a positive number 3’0 depending on a such that if + iy is a zero of
’(s) with , => 3’0, then < 1 1/(a log 3’). From these results it can be
seen that the estimates for the error are decreased if S and R are made smaller.
The problem involving S has been treated by Landau, Tschakaloff and van

der Waerden. Denoting the g.l.b, of S(g) for g e C by P, the best results
can be summarized as follows. Tschakaloff [8] proved that P 7, P P
P 6, Ps 5.92983 and P Ps Ps 5.90529 he gave another
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proof for 6 =< n -< 9 in [9]. Subsequently, Landau [6] proved these results
for 2 <- n -< 5 in a way different from that of Tschakaloff. Finally, van der
Waerden [10] proved that for arbitrary n, P _-> 5.8642.
Now we turn to the question of R, which is somewhat more difficult and has

not been discussed as much in the literature. It has been established that
R -> 10.82 for all g e C this is an unpublished result from a joint investiga-
tion by Schoenfeld and W. J. LeVeque. For n 3, Landau [5, vol. 1, p. 324]
gives the example

g() (1 -t- cos ) (1 -}- 2 cos ),
for which R(g) < 18.53. A slightly better example due to P. T. Bateman is

g() (5 + 12 cos )(1 + cos ),

for which R(g) < 18.48. Also, as was shown by Rosser-Schoenfeld [7, pp.
71, 78], choosing a in g() (1 + cos )(1 + a cos ) gives a g e C
for which R (g) < 17.51632. Here we determine the g.l.b, of R (g) for g e C.,
we show that R(g) 16.2568 for all g e C. and we give stronger inequalities
for R for smaller vulues of n. Our results are tabulated at the end of the
paper.
For a complete discussion and proofs of results given herein the reader is

referred to [3].

2. Determination of the g.1 .b. of R for n 2
We first note that C1 is the null set since g e C1 implies 0 =< g() a0 al,

which contradicts a > a0. Thus n 2 is the simplest case, and we proceed
to determine the g.l.b, of R(g) for g in Cs. It is clear that R and the con-
ditions imposed on g(), a0, al’, and a. remain unaltered if g() is multiplied
by a positive constant, so that it is no restriction to take a0 1. Through the
substitution x cos , g() is transformed into

h(x) (1 as) + alx -t- 2asx

which satisfies the condition 0 =< h(x) for all x e [- 1, 1]. Examination of the
first and second order derivatives of h(x) with respect to x shows that h as-
sumes its absolute minimum at x x0 where Xo -al/(4as). There are two
possibilities.

First, suppose that x0 e [-1, 1]. For x e [-1, 1], h(x) >- 0 if and only if

(as- 1/2)s _<1oal

__
122

Second, suppose that x0 [-1, 1]. For x e [-1, 1], h(x) >= 0 if and only if

0 -<_ h(--1) 1 a - a2.

Now since for fixed a, R decreases as a2 decreases, it is clear that R has its
minimum on the set B u B2, where
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B1 /(al, as)las (1 %/1-- a/2)/2, < a _<_ %/}
Bs-- {(a, as)i a.- a- 1, 1 < a <- -}.

On Bs, inspection of the quotient R shows that R is minimal at (al, as)
(, 1/2), where it takes the value V. - - 10V/ > 34.8. On B1, after differ-
entiating the quotient R and simplifying, it is found that dR/dal <- 0 is equiva-
lent to

81a[ 28a 220a - 176a - 128a- 256 b(a) <- O.

Sturm’s theorem [1, p. 83] is pplied to show that b(a) 0 has exactly one
root in [1, ). This root, cll it r, is located in [1.4126, 1.4127]. Since
b(a) > 0 for a > r and b(al) < 0 for 1 -< a < r, on B, R is minimal at
a r, where it takes the value V e (26.5, 26.6).

It is clear that the g.l.b, of R(g) for g in C is V, where

r - (1 %/1 --s/)/2
2(/- 1)

and r is that zero of b(a) satisfying r __> 1. This discussion also makes it
clear that the g.l.b., V1, is actually attained for the cosine polynomial having
a0 1, al r and a. (1 %/1 r/2)/2. In fact, a slight modification of
the argument given by Tschakaloff [10] shows that for each n the

g.l.b. R(g)
geCn

is attained.

3. Obtaining a lower bound for R by using results of Landau
and van der Waerden

The complexity encountered in determining the g.l.b, of R(g) for g in C
indicates that for n _-> 3 the problem of determining the g.l.b, of R(g) for g
in C would be intractable. Thus we are led to search for lower bounds that
will be near to the greatest lower bound.
Two methods are available for obtaining inequalities of the form

(3.1) b0 a0 b a b a _-> 0.

One method uses the fact that if 0 is real, then g(0) _-> 0; the other uses a
function G such that G() => 0 for e [a, b] so that

(3.2) G(4)g(4) d >= O.

When various inequalities of the type (3.1) or (:3.2) are suitably combined,
we obtain an inequality of the form

(3.3) a + as + -t- a, >- Aa- Bao.
Following van der Waerden [10] we construct an inequality of the form

(3.3). For g e C we have
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g(r) a0-- al-[- as-- as-t- >- 0

nd

(3.5) g() d a0 al -[- (_1)(k+1)/. ak > 0.
k=2

Multiplying (3.5) by p 0 and adding to (3.4) gives

(p/2 + 1)a0 (p + 1)a + ,la ,a{1 + (- 1)(-)/k}

a {2 + (- o.
If p 6, then 2 + (- 1)(-)/ 0, so that

(3.6) al -{- as -}- zr a _-> (p -t- 2)al- (pr/2 -t- 1)a0
for 0 =< p -< 6, and (3.6) is of the form (3.3).
0 <- p -< 6, then

Therefore, if g e C. and

(3.7) R(g) >- Aa- Bao

where A p q- 2 and B pr/2 -{- 1.
Selecting [a, b] [-, ] and G() 1 cos in (3.2) shows that

0 < a/ao < 2. Letting .y/a/ao- 1, we have 0 < < /- 1; further,
from (3.3) we have

(3.8) R(g) >- [A(/ -{- 1)3- B]/(2) F().

These results enable us to obtain a lower bound for R(g), g e C.
THEOREM. For each g e C, we have R g > 16.

Proof. Suppose that there exists a g e C such that R(g) <- 16. Taking
p 0 in (3.6) we have

2( q- 1)3- 116>__R>_

so that [t -[ > -/30 > .11 Since > 0, this implies t -[
zz; and hence, that > -}. Similarly, taking p 6 in (3.6) we obtain

I 1/2] > . The left side cannot be 1/2 , since this would imply
< 1/2 < -}. Hence > 1/2 -+- > %/ 1, which contradicts
< // 1. This proves the theorem. It is clear that careful calculation in

this proof will yield a value somewhat larger than 16; in fact, 16 could be re-
placed by 16.247.
The arguments that established (3.7) and proved the preceding theorem

suggest that more careful selection of A and B in (3.3) and more information
for would produce a better lower bound for R (g), g e C.. We now examine
these possibilities with two formulas for A and B. The proof of the preceding
theorem illustrates the general method of the following investigation.
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In [5, vol. 2, pp. 891-893] Landau obtains the following formulas for A and
B whenn _> 3"

A 2+ (x + 2)(y+2)/4,

B (1 -t- y)/y -t- (y + 2)(x -t- 1)/2x

wherex > 0andy > 0.
In [10] van der Waerden obtains the following formulas for A and B"

A pcose-[-q-[- 1, B p(7/2- s) +q
where p _-> 0, q _>- 0, e < /2, and p and q are such that for k _-> 2, the co-
efficients b of (3.1) satisfy b _-< 1. The b determined by van der Waerden’s
procedure are

b- b() mp+ (-1)q,
k-1where m sin k(7/2 ). For a given < 7/2, let

T() {(P,q)lP => 0, q-> 0, b_< 1 for ]>- 2}.

Then for (p, q) e T() and with A and B as given above, (3.3) holds for all
g e C. if < 7/2. Thus it will be necessary to examine the set T(). The
inequality R -> F() will be used with both formulas for A and B to determine
a domain for f and lower bounds for R.

4. The character of the set T(c)
The discussion of 3 makes clear the necessity of determining the nature of

the set T() if van der Waerden’s formulas for A and B are to be used. For
suitably defined m we can write b =mk p 1)q for/c _-> 1. For reasons
that will be clear later we must determine

M0 1.u.b.21__>. m M1 1.u.b.., _a m.
As we now show, these least upper bounds are non-negative and are assumed.
If e is a multiple of 7/2, the statement is easily verified. Since m --* 0 as
] --, , it suffices to show that for not a multiple of /2 there exist both an
even and an odd _>- 3 such that ms > 0.

If is a rational multiple of 7, but not a multiple of 7/2, we find as follows.
Let rT/s with r, s, relatively prime and s

_
3, r 0. If s is odd there

exists a positive integer n such that

2rn 1-- r mod s

and if s is even, r is odd so that there exists a positive integer n suchthat

rn (1-- r)/2 (roods/2).

In either case, there is an integer m such that (2n + 1)r ms 1. Now
2(2n + 1) => 6 is even and ms > 0. Similarly, for suitable a 0 or :t:1

and a suitable integer n, (4n -t- 3)r 2ms a, and 4n -{- 3

_
3 is odd

andm > 0.
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For c not a rational multiple of r we use Kronecker’s Theorem [4, p. 375],
which we now state for our convenience.

:[RONECKER’S THEOREM. If 0 is irrational, if a is arbitrary and if N
and are positive, then there exist integers n and m such that n > N and
lnO-- m- a < 7.

We apply this with v N and 0 2e/r so that for suitable X e 1, 1),
we have 4no 2mr -f- 2ra - (r/4). Now taking a e/r and defining

2(2n -4- 1) => 6, we have is even and ms > 0; taking a -3s/(2r) and
defining 4n -4- 3 >= 7, we have is odd and ms > 0.
For p => 0, we now have that b -< M0 p A- q for all even/ => 2 with equality

for some k; likewise for all odd k _-> 3 we have b -<_ M1 p q with equality for
some k. The nature of T(e) has now been determined. When is an odd
multiple of -/2, T(c) is a strip; for other cases it is either a convex quadri-
lateral or a triangle. Also, it is clear that M0 and M1 must be determined for
values of that we want to consider.
For --< arc cos %/’, it is possible to prove that M0 max {ms, m4} and
M ma. To obtain this result it is necessary to prove various trigonometric
inequalities and it can be verified by reference to [3].

5. Determining bounds for/
For general non-negative cosine polynomials Feir [2] obtained the

equality
al -<- 2a0 cos [r/(n -t- 2)

with equality holding for a certain g in C, which is unique up to a multiplica-
rive constant, so that

(5.1)

_
/2 cos [r/(n + 2)] 1.

This result will be used to determine lower bounds of R for certain n; however,
it is apparent that for large n, this bound only slightly improves -< /- 1.
The procedure to determine domains for and corresponding lower bounds for
R is as follows. Assuming that g e C and R(g) < c we obtain, for certain
numbers c, values (c) and (c) such that e [(c), (c)]. We use (c) and
(c) to obtain a number p(c) that is a lower bound for F() on this interval.
Hence we will have that R => rain {c, p(c)}.

If R < c, then from (3.8) we obtain

(5.2) (2c- A)- 2Af -4- B A > 0.

Let the discriminant of the quadratic in (5.2) be denoted by 44. Then (5.2)
and A < 2c imply

(5.3) -- 2c--A > (2c--A)"
If B ( -t- 1)A 2c, then A >__ 0. Now if -< for all g e C. such that
R(g) < c, then
(5.4) > 4c/(2c- A) ,- 2.
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If 2C _--< A, then from (5.2) it can be deduced that, whenever R(g) < c and
g C,,

(5.5) < (B A)/(’X/ + A).

These results are now used with the van der Waerden and Landau formulas
for A and B to obtain bounds on in the sense described above.
The quantity 4c/(2c A) appearing on the right side of (5.4) increases as

A increases, and with van der Waerden’s formulas, A is maximal for s 0
if (p, q) (6, 1). This choice in conjunction with B (k - 1)A 2c
fixes h and maximizes 4c/(2c A), but does not necessarily maximize the
right side of (5.4). With the choice s 0, in [3] it is shown by the aid of
linear programming that it is best to take (p, q) (0, 1), (6, 1) as we do to
obtain the lower bounds given below. Further, the corresponding upper
bound procedure using van der Waerden’s formulas with 0 yields no in-
formation.
Using van der Waerden’s formulas with 0, p 0 and q 1 so that

A 2 and B 1, B (), -t- 1)A 2c is equivalent to

(5.6) 2c- 2(k - 1) + 1 0

whose roots we denote by sl and s. with sl < ss.
c > 1 we have sl < 0 < t and (5.4) shows that

Now it is clear that for

(5.7) t > s2.

Withe 0, p 6andq lsothatA 8andB 3- 1,

B (k- 1)A 2ck
is equivalent to

(5.8) 2ck- 8(k -t- 1) + 3 + 1 0

whose roots we denote by M and ),.. It is clear that for certain values of c we
have M < so that by (5.4), > ks. If us e [16.686, 16.687] is the largest
root of

(5.9) (- 2)c- 2(+ - 2)c + (- 1)= 0,

then it can be shown that c <_- u2 implies <= s2. Therefore, by (5.7)

(5.10)

for such c.
Now c 16.30, c 16.66, c u and c 16.69 imply, respectively,
> .4094, > .3796, > .3772 and > .2532. The last bound, although

not used, shows the behavior of the bound when the estimate (5.7) is used.
Using Landau’s formulas for A and B and choosing A 63, B 120.3046

and c 16.2568, we have 2c < A. Therefore, (5.5) implies that
# < .413440261 when R(g) < c, g C and n => 3. Subject to A => 2c, these
choices for Landau’s parameters are optimal as is shown in [3].



TRIGONOMETRIC POLYNOMIALS IN PRIME NUMBER THEORY 247

6. Lower bounds for R
Under the assumption R(g) < 16.2568, it has been shown that

te [.4094, .413440261]. In 3 it was indicated that for A > 0 and
fle [, ], F(/) -> rain/F(), F()}. With van der Waerden’s formulas forA
and B, it is shown by using the nature of T(s) and linear programming and
taking[ s =< arc cos // that the choice 0, (p, q) (6, 1) provides the
best bound for R. In [3] it is shown that the bounds obtained for R using
Landau’s formulas are not so g’ood as those obtained with van der Waerden’s.
Using van der Waerden’s formulas for A and B and taking 0, (p, q)

(6, 1), we have min {F(.4094), F(.413440261)} F(.413440261) > 16.2570.
Therefore, for all g e Cn we have

(6.) R() > 1.25S.

For smaller values of nwe can give stronger inequalities forR than that given
by (6.1). For 3 -< n _<_ 7 we take c us which implies > s > .3772. Also,
for 3 <_- n _<_ 7 Feitir’s result (5.1)implies # < .371. The obvious con-
tradiction shows that for these n we have R > us. For n -> 8, we take
c 16.66 so that > .3796; on letting n be the right side of (5.1) and taking
s 0, (p, q) (6, 1) we find that

R(g) __> 4 -S/ (3- 7)/(2).
This, together with (6.1) and the result of 2 enables us to construct the fol-
lowing table that gives the best results we have obtained in this study.

n 2 3, ...,7 8 9 10 alln

R > 26.5 16.6865 16.6565 16.5883 16.5418 16.2568
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