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1. Introduction

DEFINITION 1.1. A set R of elements in a group G of order mn is a dif-
ference set of G relative to a normal subgroup H of order n mn if the collection
of differences r s; r, s e R, r s contains only the elements of G which are
not in H, and contains every such element exactly d times.

This "relative difference set" will be denoted by R(m, n, , d). It is to be
understood that R(m, n,/c, d) is in a group G of order mn relative to a normal
subgroup H of order n unless the group and normal subgroup are specified
explicitly.

If n 1, R is an ordinary difference set with parameters (m, k, d), and this
will be denoted by D(m, ]c, d).

Difference sets in a cyclic group have been studied extensively by such
authors as Marshall Hall [5], E. Lehmer [6], and H. B. Mann [7] to name only
very few, and more recently this concept has been extended to an arbitrary
group by R. H. Bruck [1], H. B. Mann [8], and P. Kesava Menon [10].
The concept of a relative difference set was introduced by A. T. Butson [2].

He considered the cyclic group, and obtained a class of cyclic relative difference
sets. He also gave a necessary condition for the existence of cyclic
R(m, n, ]c, d).

In this paper, we consider relative difference sets in an arbitrary group.
We first show that the existence of an R(m, n, k d) implies the existence of a
D(m, , ) where k nd; and, in this case, the R(m, n, tc, d) will be called an
extension of the D(m,/c, k).
In Sections 3 and 4, R(pN, p, pN, p-l) and R(p2, p2, p, p-2) are con-

structed in an elementary Abelian p-group, where p is an odd prime. In the
elementary Abelian 2-group, two classes of R(22N, 2, 2, 2-1) are constructed.
It will be shown in Section 6 that a relative difference set in an elementary
Abelian 2-group is, necessarily, an R(22, 28, 2, 2N-8), (unless it is an
R(26, 2, 36, 10)).

For cyclic groups, we are able to enlarge the class described in [2]. We
also show, in direct contrast to the situation in elementary Abelian groups,
that no cyclic R(m, n, m, d), nd m, n > 1, m > 2, exists.

In Section 7, we prove a "Multiplier Theorem" for relative difference sets.
The proof generalizes H. B. Mann’s proof of Marshall Hall’s "Multiplier
Theorem" for difference sets. In Section 8, further results for multipliers
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are established; and, finally, in Section 9, it is shown that no

R(p"= 4t- 1, t-- 1, 2t- 1, 1),

extensions of the quadratic residue difference sets, cn exist.

2. Preliminary results
THEOREM 2.1. If R is an R(m, n, tc, d) and if (r is a homomorphism of G

onto r(G) with ]cernel K H, then (r(R) is an R(m, s, k, td) of z(G) relative
to ((H), where n ts, and is the order of K.
To see this, let g e G and g H. Then there exist exactly td pairs r, s R

such thatz(g) z(r) z(s) and, sinceK___ H,z(r) z(s). IfgeH
and z(g) z(r) z(s) for some r, s e R, then clearly r s, and thus the
theorem is proved.

COROLLARY 2.1.1. If L is a normal subgroup of G of order t, and L H, then
the existence of an R(m, n, lc, d) implies the existence of an R(m, s, t, td), where
ts n, in G/L relative to H/L.

This is clear if we let the homomorphism of Theorem 2.1 be the natural map
of G onto G/L.
Due to its importance, the special case in which L H is stated separately.

COROLLARY 2.1.2. The existence of an R(m, n, tc, d) implies the existence of a
D(m, k, X) in G/H, where X nd.

Corollary 2.1.2 suggests the following definition.

DEFINITION 2.1. If an R R(m, n, to, d) maps onto a D(m, tc, ) under the
natural map of G onto G/H, and if R D, then R is called an extension of D.

Thus, in the search for R(m, n, k, d) and in attempting to prove their non-

existence, particular attention is paid to those R(m, n, t, d) which are exten-
sions of well-known D(m,/c, X).

It follows immediately from Corollary 2.1.2 that

(2.1) /c(/c- 1) (m- 1)nd,

(2.2) lc < m.

We may not, however, assume that 2k < m; since, unlike a D(m, 1, ), the
complement of an R(m, n, ]c, d) is not necessarily an R(m’, n’, k/, d’). Indeed,
we have the result below.

THEOREM 2.2. The complement in G of an R(m, n, lc, d), n > 1, is an

R(m’, n’, to’, d’) if and only if n 2 and m t.

To show this, let R R( m, n, k, d). If g e G, and g H, then, for exactly
mn pairs of elements gl, g2 G, g gl g.. For exactly/ of these pairs
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g e R, and for exactly d pMrs g e R nd g R. Thus, for exactly/c d pirs
g e R nd g. R. Hence g R and g e R for exactly nm 2k -- d pairs.

If g e H, and g 0, then for exactly mn pairs g, g e G, g g g. For
exactly/c of these pairs g e R, which implies that g R; and, for exactly/ pairs
g. e R, which similarly implies that g R. Thus g H, g 0, can be expressed
as a difference of two elements neither of which is in R, in exactly mn- 2t
wys.
For m ], and n 2, therefore, if g e H, g 0, g cnnot be expressed as u

difference of two elements of the complement of R; nd if g H, then g is ex-
pressed as such a difference in mn 2 d ways.

Conversely, if the complement of R is n R(m’, n, k/, d’), it must uecessurily
be defined relative to the subgroup H, since mn 2k d mn 2]. There-
ore, mn= 2]. By equation (2.2), m _> , and n 1; nd, thus, n 2 and
m k, giving the required result.

If G /g, g, g}, nd if the elements are so arranged that

g + H {gi, g+,,

for i 1, 2, m, we may consider the mn X mn incidence matrix A of
R R(m, n, t, d) defined by a. 1, if g. g + R, a. 0 otherwise. Then

AAr ArA klmn + dJ,, d(I, (R) J),
where I is the u u unit matrix, J, the u u matrix each of whose entries is
one, and (R) denotes the left Kronecker product. Thus

(2.3) (det A)2 /cm(-1)+2(/ nd),-.
This proves the theorem below, which generalizes the known result for a

D(m,k,X).

THEOnE 2.3. If an R(m, n, tc, d) exists, then (i) if m is even, lc nd is a
square; ii if m is odd, and n is even, t is a square.

3. Construction of relative difference sets in an elementary
Abelian p-group, where p is an odd prime

The symbol @ will be used to express the direct sum, A will denote the
additive group of integers modulo p, and throughout this section, p will be an
odd prime. We will denote by GN the elementary Abelian p-group of order pN,
with identity 0, whose elements are expressed as N-tuples of elements of A.
THEOREM 3.1. Let G A @ G and let H A {0}. If the rational

integer a 0 (rood p), for i 1, N, then

R {(f(n), n);n (nl, n.,..., n)e G},

where f(n) =- =1 a n (mod p), is an R(p, p, pN, p-) of G relative to H.

To obtain this result, let r(n) (f(n), n), and

(a, g) (a, gl,..., g)e G,
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where (a, g) H. Then (a, g) r(n + g) r(n) if and only if

(3.1) a l 2a n g + a g} (modp).

Now there exists g 0 (mod p) for some i, 1

_
i

_
N. Therefore,

choose n.,j 1,..., i 1, i - 1,..., N arbitrarily from A. Since
g 0 (rood p), for each such choice, there is a value of n ia A satisfying
equation (3.1).
Thus (a, g) can be expressed as a difference of two elements of R in exactly

p ways.
Clearly, no element of H other than the identity can be expressed as such a

difference.

COROLLAn 3.1.1. Corresponding to each R(pv, p, pV, pV-1) of the theorem,
there exists an R(pV, P, pV, pV-) of G relative to any subgroup of order p.

This result follows immediately from Theorem 2.1.

THEOREM 3.2. Let G A @ A @ G2N, and H A @ A @ {0}. Let
a be a quadratic residue modulo p for i 2, 4, 2N, and a quadratic non-
residue modulo p for i 1,3,...,2N- 1. Then

R l(f(n), h(n), n);n (nl,..., n2v) e G.},

where f(n) a n (mod p) and h(n) n.-n (mod p), is an
R(pV, p., pV, pN-.) of G relative to H.

To obtain this result, let r(n) (f(n), h(n), n). If (a, b, g)e G, and
(a, b, g) cH, whereg (g,-.. ,gN) eG,then (a, b, g) r(n + g) r(n)
if and only if

(3.2) a -’1 {2a n g + a g} (mod p)

and

(3.3) b i lg2-n + g, n_ + g-g2} (rood p).

Some coordinate of g is non-zero, so suppose it is one of the pair g2_1, g.
TheI choose n, j 1, 2, 2i 2, 2i -t- 1, 2N, arbitrarily in A.
For each such choice, the conditions of the theorem ensure solutions for n_
and n, unique modulo p, satisfying (3.2) and (3.3). Hence (a, b, g) H can
be expressed as a difference of two elements of R in p2- ways, and (a, b, 0)
clearly cannot be so expressed unless a b 0, completing the proof of this
theorem.
Theorem 2.1 immediately implies the following corollaries.

ConoAnv 3.2.1. The set

R’ {(h(n), n); n e

is an R(p, p, pN, p.-l) in A @ G2 relative to A @ {0}.
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COROLLARY 3.2.2. There exist
relative o any subgroup of order p, and here exis R(p.r, P, p., pr-) in

A @ Gv relative to any subgroup of order p.

Relative difference sets similar to those of Corollary 3.2.1 may be constructed
in Av @ G+I. This result is stated in the theorem below, the proof of which
is entirely similar to that of Theorem 3.1.

THEOREM 3.3. Let G Av @ G.N+I and let H A @ 10}; then

R {(f(n),n);n (n,... ,n2+)eGv+},
where

f(n) =-- i1 (n- ni 4- nv+) (mod p),

is an R(p2v+, p, pN+l, pV) of G relative to H.

Again, appropriate isomorphisms give R(pv+, p, pV+, p.v) of G relative to
any subgroup of order p.

4. Construction of relative difference sets in an elementary
Abelian -group

In this section, KN will denote the elementary Abelian 2-group of order 2
whose elements are N-tuples of elements of A, the additive group of integers
modulo 2. The identity of K will be denoted by 0.

THEOREM 4.1. Let G A @ K. H A2 @ {0}, and

M lg (g, g)eg2N =lg 0 or 1 (mod 4)}.

Then
R {(0, g); g eM} u /(1, g); g eK2, g aM}

is an R(2v, 2, 2v, 22v-) of G relative to H.

To prove this, it is first noted that M is a Menon

D(2N, 2- 2= 2-, 22- -4- 2-1),
[10]. The complement of M in KN is, therefore, a

D(22v, 22v-1 ::t:: 2v-, 22N-2 ::V 2v-1).
Thus, if (0, g) e G, g 0, then (0, g) (0, a) (0, b), for exactly 2TM 2= 2-x

pairs of elements a eM, b e M; and (0, g) (1, a) (1, b) for exactly
22-2 =t= 2-x pairs a M, b M. Hence (0, g), where g 0, can be expressed
as a difference of two elements of R in exactly 22N- ways.
However, g a b for exactly 22-1 2= 2-x pairs a, b where a e M and

b e K2, and for exactly 2:-2 2= 2N- of these pairs, b e M; thus, for exactly
2-2 pairs a e M, b M. Similarly, for exactly 22-2 pairs a M, b e M.
Hence (1, g), g 0, is expressed as a difference of two elements of R in 22-1

ways.
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Clearly, (1, 0) cannot be so expressed, and thus the proof of Theorem 4.1 is
completed.
We have also the following R(22N, 2, 22N, 22-1).
THEOREM 4.2. If G A @ K and H A @ {0}, then

R {(h(n), n) e G; n (nl,..., n2r) e K2}
N (rood 2), is an R(2:, 2, 2, 2-1) of G relativewhere h(n) =-- =n_ln

to H.

To see this, let r(n) (h(n), n), and choose (a, g)e G, g 0. Then
(a, g) r(n + g) r(n) if and only if

a {g_n -f- g. n_ A- g.- g.,} (mod 2).

The proof then proceeds similarly to the proof of Theorem 3.1.

COROLLARY 4.2.1. The complements of the relative difference sets of Theorems
4.1 and 4.2 are relative difference sets.

5. Construction of cyclic relative difference sets

In [2] a class of cyclic relative difference sets was constructed with param-
eters ((p 1)/(p 1), (p 1), pN-, p-), where p is a prime. This
result generalizes to a power of a prime. These relative difference sets are con-
structed from maximal length linearly recurring sequences [11].

THEOREM 5.1. For each m-sequence over a field of q p" elements, there exists
a cyclic

R((qv 1)/(q 1), q 1, qZ-, q-),

where qV_ 1 is the period of the m- sequence.

The proof proceeds exactly as for [2]. If a i O, 1, is the given m-se-
quence, then {i; 0

_
i < q 1, a 1} is the derived difference set in the group

of additive integers modulo qV 1).

COROLaY 5.1.1. There exist cyclic R((qv 1)/(q 1), n, q-, qN- d),
where nd q 1.

This follows from Theorem 2.1.

6. Non-existence

Any relative difference set in an elementary Abelian 2-group is obviously an
extension of a difference set also in an elementary Abelian 2-group. It has been
shown by H. B. Mann [9, Theorem 7.1] that such difference sets have either the
parameters of the Menon difference sets, or else they are trivial difference sets:
that is, the D (m,/c, ) in an elementary Abelian 2-group are

(a) D(22, 2v- -4- 2-1, 2r- ::t: 2v-),
(b) D(2,2- 1,2- 2),

or(c) D(2,2N,2).
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We now show that the Menon difference sets have no extensions in an ele-
mentary Abelian 2-group, with the possible exception of D(26, 36, 20) ;and,
further, if any relative difference set does exist in an elementary Abelian
2-group, it is necessarily an R(22N, 28, 2N, 2-8), (again with the possible ex-
ception of R(26, 2, 36, 10) ). This result is stated in the theorem below, which
is proved in several lemmas.

TIEOREM 6.1. In an elementary Abelian 2-group no R(m, n, l, d) can exist
other than an R(2, 28, 2;, 22-8), except possibly an R(26, 2, 36, 10).

LEMMA 6.1.1. The D(2TM, 2-1 -b 2-1, 2- :t: 2-) have no extensions in
an elementary Abelian 2-group, unless that extension is an R(26, 2, 36, 10).

To prove Lemma 6.1.1, suppose that such an extension does exist. Theorem
2.1 then implies the existence of an extension

R R(2TM, 2, 2- =i= 2-1, 2- =i= 2-)

in an elementary Abelian 2-group, G. The elements of G may be expressed as
(2N + 1)-tuples of ones and zeros; and, since any subgroup of order 2 may be
mapped isomorphically onto {(i, 0, 0) G; i 0, 1}, it may be assumed
that this set is H.

Let be the number of elements of R with first coordinate one. Counting
the number of differences of elements of R of the form 1, g, gN+l) yields
the equation

2t(22- 2- t) (22 1) (22-a :i: 2N-).

Solving for we obtain

2t 2- : 2u- :t: /(22-1 :i: 2-).

Therefore (2N :t: 1) x, where x is a rationM integer. Since N >_ 3,
2 1 x yields an impossibility for x -1 (rood 4).
Now consider 2 + 1 x. Then x + 1 and x I are two positive integers

differing by 2, and are both powers of 2. This is possible only if x 3 and
N 3. Thus no extension of a D(22, 22- :i: 2N-, 2:- 2-) other than
a D(26, 36, 20) exists in an elementary Abelian 2-group.
To complete the proof of the lemma, we note that if an R(m, n, k, d) exists in

an elementary Abelian 2-group, then n must be a power of two. Since
g r r’ implies that g r’ r, d must necessarily be even. This shows
that the only possible extension of a D(26, 36, 20) is an R(26, 2, 36, 10), com-
pleting the proof of Lemma 6.1.1. It also proves the following lemma.

LEMMA 6.1.2. In an elementary Abelian 2-group, no extension of a
D (2v, 2 1, 2v 2) can exist.

To complete the proof of Theorem 6.1, we need only to prove the following
lemma.
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LEMMA 6.1.3. If an extension R of a D(2v, 2N, 2N) exists in an elementary
Abelian 2-group G, then N is even.

To see this, it is first noted that the existence of R implies, by Theorem 2.1,
the existence also of an R(2, 2, 2, 2-1) in an elementary Abelian 2-group.
We may, therefore, assume that this is R. Expressing the elements of G as
(N + 1)-tuples of ones and zeros, it may be assumed, again by Theorem 2.1,
that H {(i, 0,0, 0);i 0, 1}. Let be the number of elements
of R with first coordinate 1. Counting the number of ways in which ele-
ments of G with first coordinate 1 can be expressed as a difference of two
elements of R yields the equation 2t(2 t) (2N 1)2-1. Therefore, N
must be even, and the proofs of Lemma 6.1.3 and, consequently, Theorem 6.1
are complete.

In an elementary Abelian p-group, R(m, n, m, d), where nd m, have been
constructed. In a cyclic group, the situation is entirely different, as the follow-
ing theorem shows.

THEOREM 6.2. In a cyclic group, there exist no R(m, n, m, d), where nd m,
if n 1andre 2.

To prove this theorem, it is sufficient to consider the group G of additive
integers modulo mn. We suppose that R R(m, n, m, d), nd m, n > 1,
does exist, and H lira; i O, 1, m 1}. Since no two distinct ele-
ments of R are congruent modulo m, and since R contains m elements, there
must exist an r(i) eR such that r(i) --- (modm) for each i 0, 1,...,
m- 1;thatis, R It(i) i- a(i)m;i 0, 1,... ,m- 1}. For each
b, 1

_
b < m-- 1,

r(i + b) r(i) =- b + [a(i - b) a(i)]m(modmn)

for i 0, 1,...,m 1 b,

r(i + b- m) r(i) =- b - [a(i- b- m) a(i) 1]m (modmn)

for i m- b,m- b+ 1,...,m- 1.

Thus the collection of integers a(i - b) a(i); i 0, 1, m 1 b, and
a(i - b m) a(i) 1; i m- b,... ,m- ltogetherformsacomplete
set of residues modulo n replicated d times. Adding the elements in this col-
lection gives

(-1)b=-d{l-2-t-... + (n- 1)} (modn)
(6.1)

for each b,l_b<m- 1.

Since n > 1, for m > 2, letting b 1 and b 2 in equation (6.1) gives a con-
tradiction, proving the theorem.

It is noted that cyclic R(2, 2, 2, 1) do exist.
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7. The multiplier theorem

Throughout the remainder of this paper all groups considered will be
Abelian; and v* will denote the L.C.M. of the orders of the elements of the
group G.
DEFINITION 7.1. Let R be an R(m, n, t, d), and let be a rational integer

such that
{tr; r e Rl {r + g; r R}

for some g G, then is called a multiplier of R. If g O, R is said to be fixed
by t.

Multipliers of relative difference sets play a part in the study of R(m, n, k, d)
comparable to that of multipliers in the study of D(m, k, ,). In this section a
"Multiplier Theorem", Theorem 7.1, is proved. The proof parallels the proof
of the "Multiplier Theorem" for difference sets as proved by H. B. Mann
[9, Theorem 7.3].

THEOREM 7.1. If is a multiplier of a D D(n, tc, ), where nd,
e8 where the p are distinct primes, and/ 0 (mod/’),/’ > d,/’ pl ps,

if there existf i 1, s such that p =- (rood v*), then is a multiplier of
every R(m, n, lc, d) which is an extension of D.

To prove Theorem 7.1, we consider the group ring A of G over the rational
integers I, and following the notation in [9] express the elements of A as
polynomials, F(x) gfg x, where fg I. In particular, if Sis a set of
elements of G, then S(x) denotes the element of A defined by S(x) s x.
The mn characters of G will be denoted by x, i 1, mn, where x is the
principal character, and x, for i 1, 2, m, is the identity on the sub-
group H.

If F(x) A, where F(x) f x ndf I, then we define

(F(x)) f(g) or i 1,...,mn.

The proof of Theorem 7.1 will be given in several lemms.

LEMMA 7.1.1. If C(x) A, a is a rational integer such that (a, mn) 1,

and

then

(c(x))-- (m- )ng
x(D(x)) --nd

(mod a),
(moda) for i- 2, 3,... m,

x(C(x) 0 (rood a) for

C(x) diG(x) H(x)] -- aF(x), where F(x) A.

Letting C(x) c x, where cg e I, then the inversion formula [9, 7.6]
states that mn% _,2 x(C(x))x(x-), for each g G. Hence

mnc, (m l)n d n d =. x(x-) (rood a).
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Therefore, if g eH, then %--0 (mod a); and, if gH, since the x,
i 1, m, may be regarded as characters on the factor group G/H, then
c ---- d (mod a). Hence C(x) d[G(x) H(x)] + aF(x), where F(x) A.

LEMMA 7.1.2.
to H such that

Let R and R* be two R(m, n, k, d) both in G, and both relative

R(x-1)R*(x) d[G(x) xH(x)]- k’F(x),

where lc’ > d, F x A,
(7.1)

and

(7.2) R*(x)H(x) R(x)H(x).

Then R* x xaR x where a g d- H.

To prove this, it is first noted that

(7.3) R(x)R(x

Multiplying (7.1) by H(x), and using (7.2) yields, upon simplification,

(7.4) k’F(x)H(x) xH(x).

The principal character applied to (7.4) gives

(7.5) Mxl(F(x)) /.

Applying the automorphism x --. x- to equations (7.1) and (7.4) yields

(7.6) R(x)R*(x-1) d[G(x) x-g(x)] d- MF(x-),
and

(7.7) k’F(x-)H(x) kx-H(x).

Then multiplying equation (7.1) by (7.6) and simplifying gives

(7.8) k’2F(x)F(x-) .
As in the proof for difference sets, since/’ > d, it is clear from equation (7.1)

that the coefficients of F(x) are non-negative. Thus, (7.8) implies that F(x)
contains one term only; that is,/’F(x) /xa, for some a G. Equation (7.4)
yields the fact that a e g + H, and multiplying (7.6) by R*(x) and simplifying
we have R*(x) xaR(x).

LEMMA 7.1.3. Let R and R* be two R(m, n, t, d) of G relative to H, where
]- 0(modp),j > O, and (p, mn) 1. If
(7.9) (x(R(x)), p) (x(R*(x)), p) for i m + 1, ..., ran,

and

(7.10) R*(x)H(x) xR(x)H(x) for some g G,
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then

R(x-1)R*(x) d[G(x) xgH(x)] -{- pJF(x), where F(x) A.

In order to obtain this result, we note that (7.3) holds and, therefore,

(7.11) x(R(x-1))x(R(x)) --- x(R*(x))x(R*(x-1)) (mod p)
for i m 1, ..., mn.

From equations (7.9) and (7.11), we thus have that

(7.12) x(R(x-1))x(R*(x)) 0 (modp) for i m - 1,..., ran;

and, since the characters x, i 1, m, may be regarded as the m charac-
ters of the group G/H, equations (7.10) and (7.3) imply that

(7.13) (R(x-))x(R*(x)) --x(xg)nd (modp’) for i 2, ,m,

and

(7.14) x(R(x-))xl(R*(x)) --- 0 (mod p).

We now infer from Lemma 7.1.1 that

x-R(x-)R*(x) d[G(x) H(x)] + pF(x), where F(x) e A.

Multiplication by x, completes the proof of this lemm.
To prove Theorem 7.1, it is first observed that since is a multiplier of the

difference set induced in G/H, then R(xt)H(x) xR(x)H(x), for some g eG.
The proof of the theorem now follows exactly s for difference sets, [9, Theorem
7.3].

8. Further theorems concerning multipliers

In this section, we include some useful results concerning multipliers.
Theorems 8.1, 8.2 and 8.5 are generalizations of theorems of H. B. Mann, [9,
Theorem 7.2, Corollaries 7.4.1, 7.7.1], and Theorem 8.6 extends a result of
Marshall Hall, Jr., [4, Theorem 4.6].

THEOREM 8.1. Let be a multiplier of an R(m,n,k,d), where
mn 0 (mod v’), and m 0 (mod v’), and let p be a prime divisor of t. If
there exists an f such that tpI 1 (mod v’), then k is exactly divisible by an even
power of p.

The hypothesis of the above theorem ensures that there exists a character
x of G which maps the elements of G into v’th roots of unity, and which is not
the identity on H.
Then x(R(x)R(x-1)) t 0 (modp’), where p divides k. The proof

then follows as for a difference set. We refer the reader to [9, Page 76].
We note that if R is any R(m, n, k, d) such that k m, then from equations

(2.1) and (2.2),/c nd > 0; thus, by equation (2.3), the incidence matrix of
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R is non-singular. We therefore hve the further anMogue of a result for
difference sets.

THEOREM 8.2. If is a multiplier of R(m, n, k, d), where m k, then some
translate g -- R, g G, is fixed by t.

If, further, 1, ran) 1, then this translate is fixed by all multipliers.

The following theorem concerns relative difference sets fixed by a multiplier,
and this theorem is used in the proof of Theorem 9.1.

THEOREM 8.3. Let be a multiplier of an R(m, n, k, d) R, where
(]m, n) 1 and (t 1, n) n. If R is an extension of a D(m, t, nd) D,
and if D is fixed by t, then R is fixed by t.

To prove this let tR ltr; reR} /r - a; reR} where aeG. Con-
sideration of the difference set, D, at once shows that a e H, and, consequently,
na 0. However, for ech r R, there exists r’ R such that tr r’ -- a.

Therefore, (t 1) ]ca, where rR r nd, since n divides 1,/a
has order a divisor of m. Now na 0 nd (kin, n) 1, hence a 0, proving
the theorem.

THEOREM 8.4. If is a multiplier of an R(m, n, k, d), and if 1 (rood m*),
where m* is the L.C.M. of the orders of the elements of G/H, then 1 (rood v*).

To obtain thisresult, we may, by Theorem 8.2, assume that R R(m, n, k, d)
is fixed by the multiplier . Since it is assumed that m > 1, it is first noted
that there exists g G of order s* such that g H. For each r e R, there exists
r’e R such that tr r’. Consideration of the factor group G/H then reveals
that r r’ -- H; and, by the definition of a relative difference set, therefore,
r r’. Thus, for everyreR, (t 1)r 0. However, there existsgeG,
gH, goforderv*,ndg r- r’ for some r, r’eR. Thus(t- 1)g 0,
giving the bove result.

For the special case in which d 1 we hsve two further results.

THEOREM 8.5. Let t t t, and t4 be multipliers of an R(m, n, t, 1) which is

fixed by all multipliers. If t -- t t (mod v*) and t t4 (mod v*), then
t + t is not a multiplier of R.

To prove this, it is gain remarked that there exists g e G, g H, and g ot
order v*. The proof is now an exact nalogue of that for difference sets
[9, Corollary 7.7.1 ].

THEOREM 8.6. Let be a multiplier of an R R(m, n, t, d), and let R be

fixed by t. Let G’ geG;tg g}, H’ H G’ and R’ R c, G’. Then, if
H’ G’,R’ is an R(m’, n’, to’, 1 of G’ relative to H’ such thatevery multiplier of R
is a multiplier of R’.

If, further, R is cyclic, then (t 1, nn) m’n’ and (t 1, n) n’.
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9. Further non-existence theorems
In the additive group of a Galois field K of pN elements, where p is a prime

such that pN 3 (rood 4), the quadratic residues of K form a

D D(pV= 4t- 1, 2t- 1, t- 1)

[8, Theorem 2]. Since the product of two quadratic residues is a quadratic
residue, if is any quadratic residue of K, then is a multiplier of D and D is
fixed by t. In particular, identifying the rational integers with the elements
of the prime field of K, a rational integer is a multiplier of D if is a quadratic
residue modulo p, and then, also, D is fixed by t.
We now examine relative difference sets which are extensions of quadratic

residue difference sets, and are able to state the following theorem.

THEOREM 9.1. There do not exist any R(pv 4t 1, 1, 2t 1, d 1),
where p 3 is a prime, which are extensions of a quadratic residue

D(4t- 1, 2t- 1, t- 1).

To prove this, suppose that R does exist and that K is the field of p ele-
ments in which D is defined. Now G has order pV(t 1); and, since p 3,
(pN, 1) 1. Therefore, G A @ H, where A is a Sylow p-subgroup of G.
Thus, A G/H, the additive group of K.

It is noted that if g e G, then g A if and only if (4t 1)g 0, and that
geH if and only if (t 1)g 0.
The case in which is odd is considered first. Then, by Theorem 2.3,

2t 1 is a square and is a multiplier of D. Theorem 7.2 then implies that
2t 1 is a multiplier of R.
Now (2t 1)2 (mod p(t 1)); and, thus, also is a multiplier of R.

Since some translate of R is fixed by 2t 1, it may be assumed that this
translate is R. Then, clearly, R is fixed by also.

Choosing reR, rcH, then(2t 1)r -tr tr r; but d 1 and
r, tr, (2t 1)r e R. Hence (t 1)r 0, which implies that r H, yielding a
contradiction.
Now suppose that is even. If q is any prime divisor of (2t 1), then q2 is

a multiplier of D. Also, (2t 1) (rood pV(t 1)) and, hence, is a

multiplier of R by Theorem 7.2. By Theorem 8.3, R is fixed by and, con-

sequently, by which is also a multiplier.
It is noted that 0 D so that R n H 0. Consider

$1 {(t- 1)r;reR}.

We now show that $1 consists of 2t 1 distinct non-zero elements of A.
For, if seS,, then (4t 1)s 0 and so seA. If (t 1)r (t 1)r’
for r, r’eR, then (t- 1)(r- r’) 0, r- r’eH, and thusr r’. If
s (t 1)r 0, then r H, which contradicts the statement above that
RnH =0.
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Hence $1 does consist of (2t 1) distinct non-zero elements of A.
consider

S {(t- 1)r;rR}.

Now

It is noted that (t / 1, 4t 1) 1. Hence, if (t2- 1)r=0, then
(t 1)r 0. However, the elements of $1 are non-zero and thus the ele-
ments of $2 are non-zero. The elements of S are also contained in A, and
they are distinct; for, if (t 1)r (t 1)r’, for r, r’eR, then, since
(t-t- 1,4t- 1) 1, (t- 1)(r- r’) 0. The elements of Sl are distinct
and thus it follows that the elements of $2 are distinct. Therefore, S and
S each contain 2t 1 non-zero elements of A.
We now show that $1 n $2 0. Deny this; then tr r t2r for r, r’ e R;

butd 1, andr, tr, r’,tr eR, and(t- 1)r 0. Therefore, r r’ andtr
tr’, yielding a contradiction.
Hence S n S 0, and S and S together consist of the 4t 2 non-zero

elements of A. Now consider a (t 1)r, for arbitrary reR. Then
aeA, and, ifaeS,then(’t- 1)r (t- 1)r’ 0, forr’eR. Sinced 1,
and r, r’, tr’, tr R, then r r’ and tr tr’. This implies that (t 1)r 0,
which is a contradiction. Therefore a $1. Similarly it may be shown that
a $2. Therefore, a (t 1)r 0; but r was chosen arbitrarily, and,
hence, (t 1)r 0 for all r R. There exists g A of order p, and g r r’,
for r, r’ R. Hence, (t 1)g 0, and so p divides 1, and, consequently,
+ + 1. Sincep also divides4t- 1, it may be concluded that p 7.

If p 7, then 3 divides ], and Theorem 7.1 then implies that 9 is a multiplier
of R. Applying Theorem 8.4 gives 9 1 (mod v*). Since H {0}, there
exists h e H of prime order q, where q divides (t 1), q 7; and, therefore,
9 1 (mod 7q). This, then, yields that q= 13, and 4t- 1
7--- 3 (modl3).
Now N is necessarily odd, 7 is a quadratic non-residue modulo 13, giving a

final contradiction, which proves the theorem.

$mmar,
In view of Theorem 2.1, in the search for relative difference sets and in

proving their non-existence, particular attention has been paid to extensions
of well-known difference sets.

Simple difference sets have obviously no extensions, and their complements,
D((r 1)/(r 1), r, r), are, for r

_
1600, a special case of the difference

sets in [3], which have been shown to extend in Section 5.
The Menon difference sets have no extensions in the elementary Abelian

2-group, (with one possible exception); and, in these groups, it has been shown
that only the D(m, k, ) with m k },, may extend, (again, with one pos-
sible exception).

Trivial D(m, m, m), while extending in elementary p-groups, have been
shown to have no extensions in the cyclic group.



RELATIVE DIFFERENCE SETS 531

Of the quadratic residue difference sets, there can be no extensions of the
formR(/v 4t 1, 1, 2t 1, 1),whenp 3.
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