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1. Introduction
Let 1 be the 2 X 2 modular group, that is the group of transformations

of the upper half plane to itself where a, b, c, d are integers and ad bc 1.
The principal congruence subgroup F(n) is defined by the conditions

a--- d- 1 (modn) and b c- 0(modn).

A subgroup G of F which contains F (n) is called a congruence subgroup and is
said to be of level n if u is the smallest such integer. Now Ghas a fundamental
region in the upper half plane which can be compactified to a Riemann surface
and the genus of this Riemann surface is referred to as the genus of G. It is
the purpose of this paper to give a genus formula for congruence subgroups
and to apply this formula to a conjecture of Rademacher (cf. [4]) which says
that there is only a finite number of congruence subgroups which have genus
zero. In [4] VI. Knopp and 5/I. Newman give a result in this direction; they
prove that the genus of G is positive if G is free and the level of G is relatively
prime to 2, 3, 5, 7, and 13. Our results improve somewhat on this (Theorem 3,
Section 3). However the genus formula has intrinsic interest. If we com-
bine it with the results of Gierster [1], [2] on the subgroup structure of F/P(pm)
where p is an odd prime we can write down explicitly the genus of every con-
gruence subgroup of prime-power level. The case of prime level is particularly
simple and then the genera can be written down without any difficulty (cf.
[3]).
The methods are algebraic and so will apply to Igusa’s elliptic modular

functions in the case that the characteristic is greater than 3. We shall
denote by K(n) the field of elliptic modular functions of level n, i.e., the
field ot meromorphic functions on the compact Riemann surface corresponding
to F(n). We recall that K(n) is an algebraic function field of one variable
and if j is the Weierstrass absolute invariant then K(n) is a finite Galois
extension of C(j). The Galois group is r/r(n) which is isomorphic to the
linear fractional group LF(2, n) consisting of the group of 2 2 matrices of
determinant 1 over the ring of integers modulo n in which a matrix and its
negative are identified. If F G l(n) and H is the corresponding sub-
group of LF(2, n) then by Galois theory H corresponds to a subfield F of
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K(n) and the genus of F is the genus of G.

of LF(2, n) generate the group and we set

R TS= 4--(01

The elements

(0S A=
1

Now K(n) is ramified over C(j) at precisely j 0, 123 and with ramifica-
tion indices 3, 2 and n and inertia groups at these places are generated by
R, T and S respectively.

2. Genus Formula
LetH be a subgroup of LF(2, n) and let F be the corresponding field between

C(j) and K(n). We shall use g(H) for the genus of F. When H is the
identity E, say, then of course F K(n) and it is well known that

g(E) 1 + (1/24)(n- 6)(n)(n), n > 2,

where (n) is the Euler function and

(n) nII (1 + /p),

g(E) 0 when n 1,2.
Indeed g(E) 0 when n

_
5 and so we shall assume in what follows that

n > 5. We shall denote the order of H by h and define

(1_
n

The following results follow at once from [5] when n is odd; the case of even
n presents no new difficulty.

IEMMA 1. The orders of the normalizers of T and R, in LF(2, n) are r(n)
and p(n) respectively, where 1 if n =- 0 (rood 3) and 1/2 otherwise.

LEMMA 2. R and R-1 are conjugate in LF( 2, n) if and only if
n 0 (rood3).

We can now state the

THEOREM. Let r, and s(d) be the number of distinct cyclic subgroups of H
generated by a conjugate in LF(2, n) of R, T and S respectively where d is a
divisor of n. Then

g(H) 1 + n(n)(n)/24h rp(n)/3h tr(n)/4h

(d) s
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Proof. Let f) be the different of K(n) over F. Then, by the relative
genus formula,

2g(E) 2 (2g(H) 2)h + deg ).

Let D(a) be the contribution to deg ) of those places of K(n) which lie above
j a. Now if I is the inertia group of a place of K(n) over j a then I
operates on the homogeneous space Lr(2.n)Ha and by Hilbert’s Galois
theory there is a one-to-one correspondence between the orbits and the places
of F lying over j a. Furthermore if P is the place corresponding to the
orbit (Ha} then zIa-1 n H is the inertia group of a place of K(n) above P,
and the number of points in the orbit is just the ramification index of P over
j= a. Letj= 0andI= (R). ThenlzIz-1 nHi l or 3 and this order is
3 if and only if Rz- e H. It follows from the lemmas that the number of
z’s with this property is precisely rp(n); hence the number of cosets Ha is
rp(n)/h and the number of places of F which ramify in K(n) with index 3 is
rp(n)/h. It follows that D(O) -rp(n). In a similar manner one sees that
D(123) 1/2tr(n). Finally let j and I (S). Let d be a divisor of n,
f(d) the number of places of F which ramify in K(n) with index n/d, and
C(d) the number of elements z in LF(2, n) such that aS%-e H. Then
el ef(e) (1/h)C(d) and so, by the MSbius inversion formula

Now
g (d) (1/h)

D( (h/n) d,n df(d)(n/d 1)

hlnf(d) (h/n) _,l df(d)

-,1,, 1/d_,el tt(e)C(d/e) (1/n)C(n).

From this it follows easily that

D( (l/n) _,l.< (n/d) C(d).

The normalizer of S consists of all elements

such that , 0 (mod n/d) and a 1 (rood n/d). By considering the
natural homomorphism from LF(2, n) onto LF(2, n/d) defined by reduction
modulo n/d it can be seen that the order of this normalizer is

1/2n4(n)b(n)/(n/g)A (g)

where A(d) is the number of quadratic residues modulo n/d. Now Sm

is conjugate in LF(2, n) to S if and only if m is a quadratic residue modulo
n/d and so

C(d) 1/2n(n)b(n)s(d)/(n/d).
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It follows that

D( ) 1/2 (n)f,,(n)
d n,d(n

and the proof of the theorem is complete.
Suppose that n is a prime power, say n p’. When p > 2 an element of

LF(2, p’) has order 2 if and only if its trace is zero, and consequently every
element of order 2 is conjugate to T [2]. When p > 3 an element has order
3 if and only if its trace is =i= 1 and therefore every element of order 3 is con-
jugate to R [2]. If we also remark that in this case

(d)/b(d) (p-- 1)/(p + 1)

when d > 1 we can state the

COROLLARY. Let H be a subgroup of LF(2, p’) where p is prime and greater
than 3. Let r and be the number of elements of order 3 and 2 respectively in H.
Then

g(H) 1 + P’--6
24h
p 1) ---p p--

where
w

Now all subgroups of LF(2, p) are known [1] (we may assume p > 5).
subgroup of LF(2, p) is

A

(i) a cyclic group Cm of order m where m p, ml(p 1)/2 or
m I(P -[- 1)/2,

(ii) a dihedral group D:n of order 2n where n ]p 1 or nip -[- 1,
(iii) a metacyclic group Mu of order pu where u ](p 1)/2,
(iv) a tetrahedral group 5, octahedral group 0, or icosahedral group 9.

If u is an integer we set u2 1 or 0 according as u 0(rood2) or
u 0(rood2), and we set u3 1 or 0 according as u 0(rood3) or
u 0(rood3).
WhenH Cthenr 0andW lsothat

g(C) (p- 5)(p- 7)/24.

When H C where m l(p + e)/2 and e +/-1, then r m3, m2 and
W 0. Furthermore if m. I then
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and if m3 1 then

We get

z(c ) + (p 6)(p 1)
24m 2m

[1/2 m2 -k- m3].

WhenH D,wherenlp +ethenr ns,t n+n,W 0andso

g(D:n) 1 + (P 6) (P --1) n3 (p_t_e)_ (-t-)(())48n 6--- 8n P-

When H Mu where u I(P 1)/2 then

=1/2p(l + ())U., r =p(l - (---))ua, W=I

and so

g(Mu) 1+
p 1 p ll_u 1 +2u 12 4 1+

Finally, when
H 5 then

H 0 then

H 9 then

we can therefore write

3, r= 4, W 0;

9, r= 4, W 0;

15, r 10, W 0;

g(5) 1 + (p-6)(p2- 1) ( (-))/288
p-- 9-- p-- 16

g((9) 1-t-(P--6)(P2-- 1) ( (-))/576
p-- 18--3 p-- 32

g(t) 1 + (P-- 6)(P2-- 1) ( (__))/ ( (_))/1440
p-- 18-- p-- 16.

3. Fields with genus zero

From the last results of the previous section we have, by an easy computation,
the following

THEOREM 1. Let H be a non-trivial subgroup of LF( 2, p), p > 5, and let
g(H) be the genus of the corresponding field of modular functions. Then g(H)
is positive except in the following cases

U-- C, p--- 7

H M, p 7and13

H 5, 0, p 7

H=, p= 11.
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COROLLARY. The number of prime level modular function fields of genus zero
is finite.

DEFINITION. We shall denote by p(n) the smallest prime which divides
the natural number n.

THEOnE 2. Let C(j) F K(n) where p (n) > 13 and the genus of F is
zero. Then F C(j).

Proof. Suppose first that n p where p is prime; when m 1 our result
is true by Theorem 1, so we proceed by induction on m. Let H be the sub-
group of LF(2, p’) corresponding to F and denote by K, m _> r, the kernel
of the homomorphism from LF(2, p’) to LF(2, p) defined by reduction
modulo p. Then

F K(p"-) C(j)

by the induction hypothesis so that H (rood pm-i) LF(2, p’-). From [2]
it follows that H K_ so that F K(p"-) and therefore F C(j) by the
induction hypothesis. To prove the theorem for composite n we set p the
largest prime divisor of n and write n p’r where r > 1 nd (r, p) 1. We
use induction on the number of distinct prime divisors of n. Let H be the
subgroup of LF(2, n) corresponding to F and suppose that H LF(2, n),
i.e., F C(j). Let C be the subgroup of LF(2, n) corresponding to
K(pn) K(r); C has order 2 and belongs to the centre of LF(2, n). Now the
subgroup of LF(2, n) corresponding to F F K(p’).K(r) is H.C. If
C H then F F C(j); otherwise C H identity and consequently if
F C(j) we have LF(2, n) C.H so that H is normal subgroup of
LF(2, n) of index 2. This is contradiction [6]. Therefore F is a non-trivial
subfield of K(p") .K(r) of genus zero. We denote by G the Galois group of
K(p’).K(r)/C(j) and by G(r) and G(p") the subgroups of G which cor-
respond to K(p) and K(r) respectively. Let H correspond to F. We note
that G(r) LF(2, r) and G(p") LF(2, p’) and that G G(p") X G(r).
Now by the first part of the proof and by the induction hypothesis we have

F K(p") F K(r) C(j)

and therefore H.G(r) H.G(p") G. It follows that H is a subgroup of
G(p") X G(r) which projects onto the two fctors and so there are normal
subgroups L and M of G(pm) and G(r) respectively such that

G(p’)/L G(r)/i.

By [6] this is impossible unless

L G(p’), M G(r) and U G(pm) X G(r).

Therefore F C(j) which gives a contradiction.
A great deal of calculation is required to improve on this result and we shall



GENUS OF FIELDS OF ELLIPTIC MODULAR FUNCTIONS :85

limit ourselves to the case p (n) > 5. The proof of the following lemma will be
sketched at the end of the paper.

LEMMA. If C(j) C F C K(7a" 11b. 13c) and the genus of F is zero then F is
contained in K(7), K 11 or K 13 ).

With the aid of this lemma we can prove

THEOREM 3. If C(j) F K(n) where p (n) > 5 and if the genus of F is
zero then F is contained in K(7 ), K(11), or K(13).

Proof. Ifp(n) > 13 then we are finished by Theorem 2. Ifnotletn r.m
where r 7a. 11b- 13 and p(m) > 13. We show first that F is contained in
the compositum K(r). K(m). Let C be the subgroup of LF(2, n) which cor-
responds by Galois theory to this compositum and let H be the subgroup which
corresponds to F. If F

_
K(r).K(m) then H n C identity, the subgroup

HC corresponds to

Fo F K(r).K(m) and K(n) F.K(r).K(m).

Now the number of places of F0 which ramify in K(n) with index 2 is t.-(n)/h.
On the other hand by considering the tower F1 F K(rm) it is clear that
this number is also 2 + tr(n)/2h. It follows that 4h tr(n). The Galois
group of K(r).K(m)/C(j) is LF(2, r) X LF(2, m) and if H0 is the subgroup
of this corresponding to F0 then H H0, in fact H (rood C) H0. Since
Fo K(m) C(j) by Theorem 1, it follows that the projection of H0 into
LF(2, m) is all of LF(2, m) and so (cf. [6]) H0 H1 X LF(2, m) where H1 is
the subgroup of LF(2, r) which corresponds to F1 F0 n K(r). Since T(n) is
multiplicative we see that 4h t.(r). By the previous lemma F1 is con-
rained in K(p) where p 7, 11 or 13, and if H2 is the subgroup of LF(2, p)
which corresponds to F1 then an easy computation shows that 4h2 tr(p).
The possibilities forH are listed in Theorem 1 and for these groups it is quickly
seen that 4h tr(p). We have a contradiction and therefore

F g(r).K(m).

The argument just used for F0 shows that F K(r) and so, by the lemma,
F K(p) where p 7, 11 or 13.

Proof of the lemma. Suppose first that F K(p’), m > 1, where p 7, 11,
or 13. If F K(p) C(j) then an argument already used in Theorem 2
shows that F C(j). In any case the genus formula shows that pm- divides
h and so H n K is not trivial; it follows (cf. [2, pp. 353-360]) that if
F F K(p) corresponds to a tetrahedral, octahedral, or icosahedral sub-
group of LF(2, p) then H D K and F FI K(p). Now if H is the sub-
group of LF(2, p) which corresponds to F then by Theorem 1 there remains
only the possibilities H Mu (p 7 or 13) and H C (p 7). In the
first case H is conjugate [1] in LF(2, p) to a subgroup of the group of triangu-
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lar elements

mod ,

and so we can assume that H is a subgroup of the group of elements

(a :) modp-+
cp

We may also assume that H does not contain K_I since otherwise
F c K(p-l) and we are finished by an easy induction. But then [2, pp. 353-
360] H is a subgroup of the group of elements

(a2 db) modp=i=
cp

and so F K(p) corresponds to the group of elements

in LF(2, p). This field has positive genus when p 7 or 13 and so we have a
contradiction. Suppose finally that H C (p 7); we show by induction
on m that F F. When m 2 then, by the induction hypothesis
F F K(p-) and so the subgroup of LF(2, p-) corresponding to F has
order p- since K p-. It follows that h, the order of H, is p-+
where r 1, 2, or 3. From the genus formula we get

2.7+ 7-+ 3 (rood9)

and therefore a 3, h p- and F F.
Suppose now that F K(7).K(13). IfF F K(7) C(j) then one

argues as before to show F K( 13) and so F K(13) by the first part of the
proof. Similarly if F F n K(13) C(j) then F K(7). In any case
F K(7) and F K(13), by the first part of the proof, and if H, H are
the corresponding subgroups of LF(2, 7) and LF(2, 13) respectively then
H X H is the subgroup of LF(2, 7) X LF(2, 13) corresponding to F F in
K(7).K(13). Now by Theorem 1 the only possibilities are H 5, V, C,
M where p 7 and H M where p 13. One checks easily that the
genus of F F is positive and since F F F this is a contradiction. There-
fore F K(7) or K(13). Suppose now that F K(7. 13); then the argu-
ment already used in the proof of the theorem shows that F K(7) .K( 13)
so that F K(7) or K(13). In exactly the same way the case
F K(7. 11. 13) can be treated.
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