
IMBEDDING IN LOW DIMENSIONS

L. IEUWIRTH
I. Introduction

The purpose of this paper is to give some applications of the idea of in-
groups and out-groups introduced in [1] and [2].
In particular these groups were designed to study imbedding problems

with co-dimension 1. Here we investigate the problem of imbedding a com-
plex of dimension i or 2 in a manifold of dimension 2 or 3 respectively.
Among oher geometric results, we obtain a necessary and sufficient condi-

tion for the planarity of a graph, this condition being quite different from the
classical theorem of Kuratowski [3]. In the case of imbedding a 2-complex
in a 3-manifold we find necessary and sufficient conditions that a 2 dimen-
sional cw-complex with i vertex may be imbedded in some 3-manifold.
Some properties that such a 3-manifold must satisfy are also determined.
We show also that any group which has a presentation in which each gener-

ator occurs exactly twice in the set of relations has a solvable word problem;
in particular such a group is of the form F , r(S), where F is free, and
the S are 2-manifolds (not necessarily orientable). This mildly generalizes a
result of I4. Frederick [4] which was concerned only with groups presented
with one relation, and required that and F each occur once.
To fix ideas we give a number of examples of presentations of the sort de-

scribed above, firs satisfying the hypotheses, and then as they may be
factored.

Finally we show how the genus of a graph may be described algebraically.

II. Standard 2-complexes
Beginning with finite connected simplicil complex K it is well known that

we may deform K over itself so s to contract a maximal tree in the 1-skeleton
of K to a single vertex of K. If K is 2-dimensionM then the resulting space/
is a cw-complex with 1 0-cell e, number of 1-cells e, e, en with bounda-
ries attached at e, nd number of 2-cells r, r, r with ttching mps
which send the boundary of ech r into some word in the e. We denote these
attaching mps which completely determine the topological type of the de-
formed version of K by the word w in the e. which describes them.
Of course the group presented by (e, e, e ;w, w, w) is iso-

morphic to r(K, e). Conversely corresponding to a presentation (e,
e Wl, w, w) there is connected 2-dimensional cw-complex /

with one vertex e, n 1-cells, and m 2-cells such that

r(g,e) I(e,"’,e;w,’",
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Now if K is a 2-dimensional subcomplex of the closed 3-manifold M, then the
deformation of K over itself described above may be extended to a deforma-
tion of M over itself with the resulting space being homeomorphic to M. The
net result of this is the following; K is imbeddable in M only if 2 is imbeddable
in M.
We study in the next sections the problem of imbedding/ in some 3-mani-

fold M. This is not necessarily the same problem as the imbedding problem
for K, however notice/ is of the same homotopy type as K. We will hence-
forth consider/ to be presented by (el, en wl, win).

In another paper we will study the problem of determining necessary and
sufficient conditions that/ be the spine of a 3-manifold M.

All of the above questions are intimately related to the problem of the
planarity of a 1-complex G. In view of this we commence by considering in
the next section the manner in which a 1-dimensional cw-complex G may be
imbedded in a 2-manifold M.

III. Graphs
Given a connected graph (1-dimensional cw-complex) G we may construct

the out-groups of G [1], [2]. J. Edmunds [6] and J. Youngs [5] have described
how an ordering of the edges of a 1-dimensional simplicial complex at each
vertex determines an imbedding of S in an orientable 2-manifold N such that
N S consists of a number of disjoint open 2-cells. The construction they
describe is easily seen to be valid for a 1-dimensional cw-complex rather than
a simplicial complex.

Since each local ordering of the edges of G at a vertex leads on the one hand
to an out-group, and on the other to an embedding of G on a closed orientable
2-manifold we are able to connect these two notions. Let us denote by No(o)
the 2-manifold defined by the ordering o at each vertex of G. We now orient
each 1-cell of G and obtain from the ordering o an out-group presentation which
we denote Po(G) and an out-group which we denote r(G).

THEOREM III.1. r(G) F r(No(o) ), where F is a free group.

Proof. Suppose No(o) G has components C1, Ct select in each
C a point p. Let N denote a ad, (t closed arcs, disjoint except at one
end-point of each, the latter point being common to all the arcs), with end-
points ql, qt. Form the space No(o) u N and identify p with q, de-
note the resulting space Fo(o). Now Fo(o) G is connected and simply con-
nected. Adjoining the 1-cells of G to Fo(o) G we obtain a space Y which
by virtue of the van Kampen theorem has r free, with free generators
gl, g,"" g in 1-1 correspondence with the oriented 1-cells of G. Now
finally adjoining to Y the vertices of G we see that the relations we must ad-
join are exactly those of that out-group determined by the ordering 0. Thus

-.(G) ’1(No(o) u N),
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and wl(Na(o) u N) is clearly Y rl(Na()) where the rank of F is 1.

COROLLARY III.1. G is planar -o( G) is free for some

Proof. If G is planar then some Ne() is a sphere, so rl(Ne() u N) is free;
conversely if rl(Ne() u N) is free N(o) must be simply connected, so Na())
is a 2-sphere.

Clearly the previous corollary is not stated in its strongest form. If we
make use of Young’s observation [5] that an imbedding of G on an orientable
surface of minimal genus has the property that each component of the comple-
ment is a 2-cell, then we see that the following stronger version of the preceding
corollary is true.

COROLLARY III.2. G is imbeddable on an orientable surface of genus g and
not on one of genus g 1 if and only if

r(o) F I(xl x2 x2o 1-[= [x

for some and

ro(o) F,[(xx,x2,...,x2g_2" II-[x,
for any other

This gives a purely algebraic determination of the genus of a graph in terms
of the properties of the out-groups of the graph.

In the next section we will make use of Theorem III.1. in the form" r0(G) is
free if and only if No()) is a sphere.
The graph of a 2-complex is described below.
We assume as indicated earlier that K is a 2-complex with a single vertex e,

and 1-cells e, e, 2-cells rt, r attached to K() by wl, w, w.
To avoid trivialities we suppose that each e actually occurs in at least one of
the words w..
Any nice small neighborhood L of e is the join of a graph G(K) with e, and

it is this graph we wish to characterize. This may be done as follows. Let
f/+i, f- denote 0-cells (vertices) corresponding to the intersection of the
neighborhood L with e. We construct the set of 1-cells of G(K) by letting
each 1-cell correspond to a pair of adjacent letters in w. (j 1, 2, m).
(We consider the first letter of w. to immediately succeed the last letter of

eiw..) In particular when a word w. contains the successive letters ey eii+i
then we map the boundary of a 1-cell .t onto the pair (not necessarily distinct)

.+ In this way we associate with a single vertexed 2-di-of 0-cells f.-,+
mensional cw-complex K, a graph G(K). A little reflection will reveal the
fact that G(K) is in fact homeomorphic to the boundary of a small nice
neighborhood (for example a star neighborhood in a sufficiently fine sub-
division of a triangulation of K) of e.

T. R. Brahana has results closely related to these in a paper which appeared in the
Duke Math. J., vol. 30 (1963), pp. 215-220.
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Clearly a necessary condition for the imbeddability of K in some 3-manifold
is the imbeddability of G(K) on a 2-sphere.

Since a graph is planar if and only if each component is planar we assume
without loss of generality that G(K) is connected.

In the next section we shall refine the idea of imbedding K by imbedding
G(K). For the present, notice when K is imbedded in a 3-manifold, the
boundary of a small ball about the image of e will intersect the image of K in
l-complex homeomorphic to G(K).

IV. Restrictions on the imbedding of G(K) in

As indicated earlier we may not imbed K in a 3-manifold unless G(K) may
be embedded on a 2-sphere. On the other hand not every imbedding of G(K)
on a 2-sphere is induced by imbedding K in a 3-manifold. For example if the
3-manifold is orientable, then a neighborhood of each e u e is a solid torus, and
an ordering of edges of G(K) at fl must induce an ordering of edges at f-l,
since the edges at each correspond to the intersection of 2-cells along e. On
the other hand if the 3-manifold is non-orientable, then a neighborhood of

0.e u e is a generalized moebius band for some i, so again cyclic ordering of the
edges at f+l determines a cyclic ordering of the edges at

Let us restrict our attention to an orientable 3-manifold which purports to
contain K. This implies the existence of an ordering of the edges at each f+
so that the induced ordering on the edges atf yields an ordering, o, of all edges
of G(K) at each vertex, and this ordering enjoys the property that No(0) is a
sphere, hence, by Corollary III.1, vo(G(K)) is free. Notice that by the
definition of G(K) a cyclic ordering at fl amounts to a cyclic ordering of the
collection of successors of e: and predecessors of e in the words w. On the
other hand this is equivalent to cyclically ordering all the occurrences of both
e and e in the w.. The latter process induces the ordering of the successors
of -e and the predecessors of e on the one hand and the ordering of the
predecessors of e and the succesors of e on the other. The former gives
an ordering to the 1-cells atf+, and the latter gives the induced ordering to the
1-cells atf.-1. Let us denote by 0 those orderings of the edges at vertices
of G(K) which arise from an ordering of the occurrences of a generator in
a presentation of K. Then we have shown

PROPOSITION IV.1. A necessary condition for the imbeddability of K in an
orientable 3-manifold is that -o(G(K) is free for some

We now show the converse;

PROPOSITION IV.2. A sucient condition for the imbeddability of K in an
orientable 3-manifold is that o(G(K) is free for some

Proof. Since o(G(K)) is free N() is a2-sphere. Aneighborhoodofe
may be imbedded in a 3-cell B by taking B as the join of No(o) with a point;
then the join of G(K) with a point of homeomorphic to a neighborhood, N, of
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e and lies in B. Join J/tO f-I by disjoint arcs a intersecting B only in their
endpoints. Thicken the a to handles C and attach annuli, A., along the
l-cells of G(K) and a according to the words w.. This may clearly be done
so that the A. lie in the C except for "fins" where the A re ttched to the
l-cells of G(K), no difficulty being encountered in muking the annuli non-
singulur since 0 wus designed for this contingency. Now by thickening B
slightly to accommodate the aforementioned fins we find ourselves with a
handlebody, in the boundary of which are to be found one component of the
boundary of each A. These being simple closed curves we complete the
proof by attaching discs along the curves, (thus completing the reconstruction
of K) and then thickening the discs nd doubling the resulting mnifold with
boundary.

Remark. The last two propositions muy easily be modified to accommodate
non-orientable manifolds by altering the class to take account of non-
orientable handles.

Summarizing the preceding two propositions we have"

THEORE IV.1. K is imbeddable in an orientable 3-manifold if and only if
"o G(K)) is free for some o O.

Notice that in applicutions the determination of the imbeddability of K now
becomes totally algebraic question. In practice one may deal entirely with
finite presentation of group, and investigate orderings of the occurrence of
ech generator. We illustrate this in lter section.

V. Imbedding K in special manifolds

Suppose we wish to imbed K in closed simply connected 3-mnifold; S.
Alexunder’s duulity theorem gives considerable information bout S K in
terms of the cohomology of K. Furthermore we have noted in an earlier paper
[2] that the in-group of K in S is a homomorph of 1(S) if S K is connected.
In case S K has h components we noted in [2] that the in-Group of K is a
homomorph of

v(S) F_ F_,

where F_ is the free group of rank h 1. From these remarks we see that
we have for example;

PROPOSITION V.1. If H(K) O, then K is imbeddable in a simply con-
nected 3-manifold S only if -,(K) 0 for -(K) some out-group of K.

We see in this proposition the first use of the out-groups of K, rather thun
the out-groups of G(K). The relation between these groups is the following.
An ordering of the 2-cells r hving a fixed 1-cell e. on the image of their

boundury is equivalent to n ordering in the presentation for (K) of the oc-
currences of the generator e. in the words w. But as we hve seen, an order-
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ing of this latter sort is precisely one leading to an ordering of the edges in
G(K) from the class of orderings 0. It thus follows that an ordering of the
occurrences of each generator in the set of relators leads to an out-group of K,
and an out-group of G(K) of the sort required in the preceding theorems. To
illustrate, consider the following presentation of a 2-complex K,

--1(el, e el e e e e e e e e ell).
Let us number the letters of the relators 1 2 3 4 5, 6 7 8 9 10. Select an order-
ing of the occurrences of e, say 1 8 4 7 10, and an ordering of the occurrences
of e, say 2 3 6 5 9. Then this gives rise to the out-group of K presented as
follows;

(X, Y;X YX Y z, XX Y2Y).
--1Here X is the 2-cell attached according to the word e e e el e2 and Y is the

2-cell attached according to the word e el e e e-1. The ordering about the
1-cell corresponding to e is XYXYY and that about e. is XXYXY.
On the other hand the out-group of G(K) induced by ordering is presented

as follows; (X,, X,3, X3,4, X4,, X5,1, X6,7, Xs,9, X9,10, X0,6 ;X,, X7,8 X,.
x -:l

X,0). Here X,s for example corresponds to an oriented 1-cell of G(K)X4, -1

joining two vertices f- to f and X0, to an oriented 1-cell of G(K) joining
f+ to f’. The relation X, X, X0, Xs-:] Xs, for example corresponds to a
little loop on N(o) about the vertex f.

Since Alexander’s duality is valid for any 3-manifold which is a homology
sphere we may state stronger version of Proposition V.1 as

THEOREM .1. Suppose H(K) is free of ran] h; then if K can be imbedded
in the homology 3-sphere H, vo(K) must be a homomorph of r(H) F for some
out-group ro(K)

VI. Sufficient conditions for the imbeddability of a simply
connected K in a simply connected -manifold

We consider in this section some conditions which are sufficient to insure
the imbeddability of K in a simply connected manifold.

Given the fact that ro(G(K) is free for some 0 0, there is by Theorem IV.1
an imbedding of K in some orientable 3-manifold; however if K is simply con-
nected the construction of this manifold entailed first the construction of a
regular neighborhood of K and then the doubling of this manifold. Notice
that this neighborhood is simply connected, as it collapses to K. It follows
from Seifert-Threlfall p. 223, Satz IV, that no component of the boundary of
the regular neighborhood in question has genus > 0, and this is sufficient for
imbedding K in an orientable simply connected manifold, since we may simply
cap the 2-sphere boundary components of the boundary of the neighborhood
of K by 3-balls. Putting this argument together with Theorem IV.l, we have
proved
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THEOREM VI.1. If K is simply connected, then K is imbeddable in a closed
simply connected 3-manifold iff ro(G(K) is free for some o 8.

Of course this theorem says very little more than Theorem IV.l, and in the
case K is not simply connected the situation is much more interesting. We
have attacked this problem with some small success, but the results are a bit
complicated and we do not present them here but choose to present them in
another paper.

VII. Applications to group theory
Suppose we are given a presentation

P-- (xl,...,x:rl,...,rm)

with the property that each generator occurs twice in the set of words
Then from such a presentation we may construct a graph G[P] as follows. As
vertices of G[P] we take m points which we denote rl, rm. As edges of
G[P] we take n edges denoted xl, x and as endpoints of x we select that
pair rt and r in which x appears (we allow x to begin and end at the same
vertex if necessary). Now we construct a 2-manifold containing G[P] as
follows. At the vertex r the edges corresponding to those x. occurring in r
are incident, and these edges are cyclically ordered by the word r in the
Preserving this cyclic ordering we imbed a nice small neighborhood of each r in
G[P] on disjoint discs D. The resulting space x is the union of m discs and
n arcs at, each at being a subarc of xj. We will imbed x in a 2-manifold with
boundary by thickening each arc a to a 2-disc A. Before doing this we
orient each D so that the induced orientation on the boundary intersects the
xj in a manner agreeing with the word r (at this point we ignore the exponents
of the xt). Now in thickening the aj to a 2-disc each A will meet two D (not
necessarily distinct) along two arcs on OAt. We orient A. and this orients
the two arcs meeting the D. In thickening at we may have the orientation
of these arcs agree or disagree with that of each of the D meeting OAi. If the
two occurrences of x. have different exponents in the r then we thicken a. so
the arcs’ orientations agree with those of the appropriate OD, if they have
the same exponents we let one arc’s orientation agree with the orientation of a
OD and the other disagree. This puts a "twist" in some of the At relative to
others. This construction is illustrated in Figure 1.
The (possibly disconnected) manifold, T, with boundary components

C1, Cr we have constructed may be nonorientable, but this is no obstacle.
We add discs J1, Jr to C, Cr and obtain a closed 2-manifold with
components U, Ut. As in the proof of Theorem III.1 we adjoin to
[J U an r ad p with endpoints pl, p p by identifying each p with an
interior point of J. Letting F denote a free group of rank q the resulting
space V has fundamental group isomorphic to F _-_ r(U) on the one hand
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A.

FIGURE

(
abcdabcd abcdabdc

FIGURE 2

and to the group (xl, x., x rl, rm) on the other. That the latter
is true is easily seen by first adjoining to p [J J, (a contractible space) the
open arcs x yielding a space with 1 Fn then adjoining the vertices
r, rm each of which gives rise to the corresponding relation. We have
thus proved:

THEOREM VII.1. If the group G has a quadratic presentation, that is, one in
which each generator occurs twice, then it is isomorphic to the free product of a free
group with the fundamental groups of a finite number of surfaces.
Not only is the above theorem true, it is also useful, for one may easily com-

pute the Euler characteristics of the surfaces constructed in the proof of the
theorem, and so determine in a very efficient manner exactly the group being
presented. For example, Figure 2 shows immediately that

(abcd, abcdd5) (X, Y, Z, W [X, Y][Z, W])
and

(abcd; abcdd5) (X, Y, Z, W; IX, Y]).
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