
ABSOLUTE EQUIVALENCE OF EXTERIOR DIFFERENTIAL SYSTEMS

BY

H. H. JOHNSON

This paper concerns an equivalence relation first defined by E. Cartan for
certain systems of ordinary differential equations [2]. He called two systems
absolutely equivalent if they had isomorphic prolongations. A similar concept
was used in Cartan’s theory of infinite groups [1]. We extend Cartan’s
definition to general exterior differential systems. For ordinary equations
one has only normal prolongations, but in general it is necessary to define and
study partial prolongations. This is done and absolute equivalence is defined
in 1. In 2 an integer is found which is an absolute invariant and which
may be calculated from any given involutive system. In 3 other invariants
are found which are calculated from the sequence of normal prolongations of
system. Examples are given. All manifolds, functions and forms are
complex analytic. We use the notations and definitions of [4]. We also deal
only with systems which are involutive at each of their points.

1. Absolute equivalence
Let D and M be neighborhoods of 0 in R [(x, ..., x)} and

R {(yl, y)}, respectively. Let D D M ThenJ*(D, M)
denotes the manifold of/c-jets of maps on D into M. The usual source and
target projections are a and , and

o a X :J(D,M) --.D.

If f D -- M, let f D, --. D be defined by ](x) (z, f(z) ). Let ft be the
module of 1-forms generated by dxl, dxp on Dp We shall consistently
use the same notation ft for a*ft on D or J(D, M). Let (2:, ft) be an
exterior differential system on D having independent variables ft. Denote by
(P2:, ft) the ]th prolongation of (2:, ft) onJ*(D, M).

If D’ D X M is a submanifold of D by animbedding F such that aF a,
and if F(D’) contains the manifold of integral points of (2:, ft), the restriction
of (2:, ft) to D’ is called an admissible restriction of (2:, ft).

If F D -- D and f D -- D are bi-analytie functions such that aF
then the transformed system (F*2, f*f) is said to be a transform of (1:,

DEFINITION 1. A system (2h, ft) on D D XM is a partial prolonga-
tion of (2:, t) on D if there exist maps

a:D--.D and b:jl(D, M)--*D
which satisfy"
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(1) ab p on integral points;
(2) aa a, ab a;
(3) a*(2:) 2h, b*(Z1) PZ;
(4) if jlx(fl) is an integral 1-jet of (2:1 ), then by (3), jlx (a01)) is an

integral 1-jet of (2, 2), and hence is an integral point of (P2, ft). It is
required that b,jlx(a]) f(x) (x, f(x) ).

PROPOSITION 1. If (1, ) is a partial prolongation of (2, ), then (P2,
is a partial prolongation of (, f).

Proof. Given jl(f) inji(Dv, M) define

a’ .1 .1(.f(2,(f))

We shall prove that (1), (2), (3), (4) of Definition 1 hold for a’ and b.
Condition (1) holds for a’ and b because of (4). Condition (2) follows

from the definitions of a’, a, . Since a’ maps integral points of (P2h,
into integral points of (P2, 2),

a’* (P2:t01 P2 t01.
One may check that the generating 1-forms in P2;m are carried by a’* into
1-forms in P21 by local coordinates.

Condition (4) is satisfied" if j() is an integral 1-jet onJ(Dv, M), jl(b,)
is an integral 1-jet of (2h, ) by (3) in Definition 1. Thus, j(b,) in
J(D,, M) is integral; hence

.1 .1 .1 .1 .I .I3(p) (,) Q .D3[a(b 3( .E3x[fla b(a3(b)

PROPOSITION 2. If (2:1, ft) is a partial prolongation of (2:, ), then there is
a natural one-to-one correspondence between their solutions.

Proof. If f is a solution of (2:, ft), b(jl(f)’-) is a solution of (2:1, 2) by
(3) in Definition 1. If fl is a solution of (2h, ft), then a.fl is a solution of
(2;, ). Further,

a[flb (jl(f)_]-. ab[jl (f)_] p(jl(f)-] f,

while by (4) in Definition 1, b[j1(a]1)-] fl, Q.E.D.

DEFINITION 2. One exterior differential system is absolutely equivalent
to a second if there exists a finite sequence of systems beginning with the
first and ending with the second such that for each adjacent pair in the se-
quence, one is an admissible restriction, a transform or a partial prolongation
of its neighbor.

Remark. The involutiveness assumption is not as restrictive as it may
seem, for many non-involutive systems can be prolonged to be involutive by
Kuranishi’s Prolongation Theorem. If one system is a partial prolongation
of a second they can be simultaneously prolonged to equivalent systems of
which one is a prolongation of the second.
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2. An absolute invariant of characters

form regular coordinate systems for (2, t) and (2h, 2) at 0, respectively
[4, Def. III. 4], and let a(0) 0. Suppose (Z, t) is a partial prolongation
of (2, t) with respect to the mps a nd b us in Definition 1. Let H denote
the set of ll sequences of m formM power series in x, x. We may
define a germ of infinite nMytic mppings ’H -- H+ by

[4, Def. I. 10, 11]. If , define solution of (2, t), (, )
will define a solution of (P2:, It). The map

b "ji(D, M) D1
defines a germ of infinite analytic mappings B"-t4m+ --* H’. Let (I) be
the composition B r. Define (I)1 H’ g7 by means of the map a. Then
we have

PROPOSITION 3. If H’ is a solution of (, ), then () is a solution of
(Z, It). If is a solution of (Z, t) then() is a solution of , ). Fur-
ther, xI and are identity mappings on all solutions.

Let now so s sp_ sp m-- so sp_ nd so ,s ,sp
be the characters of (2, t) and (21, gt), respectively [3, Def. I. 7]. Let

H(S) H; q-Hl q q-H;,
and similarly for H(S’) using So, "", sp. Then there exist convergent
formM infinite analytic maps F of H(S) into H and F of H into H(S)
such that (F, F,) form a solution mapping of (2:, f) at X, the 0-function
[4, Theorem III. 2]. Then if q) and q) denote the convergent formal infinite
analytic mappings arising from the germs defined in Proposition 3, we have
that (q)F, F1 1) constitute a solution mapping for (2:1, f). But then H(S)
and H(S’) are homeomorphic [4, Remark following Theorem III. 2]. Hence
they have equal dimensions (p, a) where a is the last non-zero integer in the
sequence So, sv or So, s. This same relation holds for admissible
restrictions; hence we have

THEOREM 1. Let (, ) and ( f) be absolutely equivalent systems having
characters So, s, ..., s, and So, Sl ,s, respectively. Let r be the last
non-zero integer in the sequence So, s, s, and let r’ be the similar member

O"in So, s Then

3. Oher invriants

Let M be the mnifold of integral points in J(D, M), so that

dimM <_ dimJ(D,,,M) p-km(Pp+;) <_pq-m(l,+ 1)*’-1._
The restriction (2:, f) of (P2:, f) to M is equivalent to (P2, ).
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If 2rj denotes the module of r-forms in 2 and w is any 1-form of ft let
[rlL(w) {Oe+., O ^ w 0}.

If l(w) is the minimal dimension of L(w) at any point of M, then

l(w) <_ (:)wherev=p+m(] + 2)"-1 Hencelim_++(1/lr’)l(w) O.

The sequence l(w) 1 1, 2, is said to be of characteristic (ur(w),
v+(w) if u(w) is the smallest non-negative integer for which

lim++

exists, and v (w) is the limit.

DEFINITION 3. The integers

V sup {u(w)[w eft},
u inf {u(w)[w eft},
Y sup

v inf {v(w) ]w ft}, r 1, 2,

are the characteristics of (2,

LEMMA. If (Z1, t) is a partial prolongation of (2, ) and if Zlo and Zo denote
their respective restrictions to the manifolds of integral points, then

2rj 0} _< dim {Oe2:;]O ^ w 0}.dim{0e ]0 ^ w

Proof. By involutiveness, each integral point of (2:, ft) is contained in a
solution f. Then bjl(f) is a solution of (El, ft) and abjl(f) ]. Hence a
maps the integral points of (El, ft) onto those of (2:, ft). Now p* is one-to-one
and p ab on the integral points. Hence a* is one-to-one on E0 and

It]a (z0)c E};1, and the conclusion follows.

THEOREM 2. Two absolutely equivalent systems have equal characteristics.

Proof. For admissible restrictions or transforms, the theorem is not diffi-
cult to prove. If (E, ft) on D1 is a partial prolongation of (2, ft) on D then
(P+12, ft) is a partial prolongation of (P2h, ft), which is a partial prolonga-
tion of (P2:, ft). Denoting the numbers/(w), ur(w), v(w) for the system
(E, ft) by l[(w), u[ (w), v(w), it follows from the previous lemma that

for every k, r and w. Hence

limk++ l(w)/k limk++ l(w)/ku, Q.E.D.

Example 1. Let E be generated by

01 dy -4-y2 dx dO1 dye. ^ dx

O dy, + dx. "4- y4 dx dO dy4 ^ dxl
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Here So st 2, so z 2. Zk is generated by 0t, 02, together with

; d + ; dx, d; d; ^ dx
02 dye y. dxt dO dy n dx
o;’ d; + i’ dx, dO d dx

o) -) + )x, o) ) x
ay + dx, ay dx.

Here,

so
l(dx) 2(]c -t- 1).

Hence u(dx2) 2, v(dx.) =2, so u2_<2, v2<_2.
Example 2. Let 2 be generated by

dy + y dx, dO dy dx
O dy + y dx, dO dy dx.

Again So st a 2.

Ot dy yt dxt
O dye + y dx,

ayt + dxt,

ay2 + dx2,

2 is generated by

dO dy ^ dxt
dO dy ^ dx.

dO) dy) ^ dxt
dO) dy) ^ dx.

Now, L (at dxt --[- as dx.) L (w) contains k[1]
A W and the forms

dOh) 0+) dO) Oa+)a + a dx, a + a dx h= 0,1, , -1

Hence l(w) 2(k 1) 2k, und consequently for this system v 4.
Hence the systems in these examples are not bsolutely equivalent. Yet they
hve the same 2.
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