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The Thom space MSOq has been introduced by Thom [18] for analysing the
structure of the groups a, of the cobordism classes of closed compact oriented
differential manifolds of dimension n. We wish to study the Postnikov in-
variants of the Thorn space MSOq. The idea is to use the now known struc-
ture of the ring a: one obviously can so obtain the stable invariants only.
Aside from the invariants which happen to be zero, it has not been possible
to determine the classes which give these invariants, but only their orders.
However this allows to sharpen a result of Thorn relative to the realization of
an integral homology class of a differential manifold by a differential submani-
fold.

I. Preliminaries

1. By what precedes, the object under study is really the Thom spectrum
MSO {MSO, f,}q>_l, i.e. the sequence of spaces {MSO} and maps
{71, q _> .

fq S(MSOq) - MSO+
(S, reduced suspension) as defined by Thorn [18].
-+,(MSOq) , if q >_ n + 2, and we will always make this assump-

tion. ]/r 5( 2 mod torsion) is a polynomial algebra on the integers
whose generators V re characterized by

s[V] p if 2i -+- 1 p, p a prime,

s[V4] 1 otherwise (see [4, Appendix]).

In dimensions which are not multiples of four, t is a direct sum (occasionally
empty) of groups isomorphic with Z in dimensions which are multiples of
four, it is a direct sum of groups isomorphic with Z and of groups isomorphic
with Z, [14], [20].
A remark (with an elementary proof) by Dold [9] shows that , n :> 8, is

mver trivial. Moreover, 4 has for its ree part a direct sum ot (i) groups
isomorphic with Z, where (i) is the number of partitions of i in positive in-
tegers.
A general reference for the stable homotopy and the stable cohomology of

MSO. is [7].
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2. (Finite) Postnikov tower of a CW-complex. Let there be given a
CW-complex X and a positive integer n. One can then construct a CW-com-
plex X(n) containing X as a subcomplex by attaching cells of dimensions
greater than n -+- 1 with maps chosen such as to kill the homotopy groups of X
in dimensions greater than n [22]. Then the inclusion X c X(n) induces an
isomorphism of the homotopy groups of dimensions at most n and X(n) has
the (n -t- 1)-homotopy type of X [23].

Proceeding as above one constructs a finite sequence of CW-complexes,

X c X(n) c X(n 1) c c X(1) c X(O),

in which the inclusion X(i q- 1) c X(i) induces an isomorphism of the
homotopy groups in dimensions at most i, and the homotopy of X(i) is trivial
in dimension, s greater than i. One can classically [5, (n.1)] turn the inclusions
into fibrations in the sense of Serre [16] without changing the homotopy type
of the X(i)’s. One may therefore consider the above sequence as a sequence
of fibrations:

X - X(n) --> X(n 1) - --+ X(1) -+ X(0).

The fibre of the fibration X(i) -+ X(i 1) has rr(X) as its only non-trivial
homotopy group, and is therefore a space of type (r(X), i). The Postnikov
invariants of X are the characteristic classes of these fibrations.
To apply this to a spectrum such as MSO, one takes X MSOq, with

q >__ n q- 2; X is then (q 1)-connected. In such a ease X(n) denotes rather
what has been called above X(q q- n), so that X(0) is a space of type (rq(X),
q). Thus the fibration X(i) ---> X(i 1) has for fibre a space of type
,+ MO) q + i).

3. Symmetric polynomials. We will need in Part III the following ele-
mentary facts about symmetric polynomials. (See [14].)

Let s be the smallest symmetric polynomial containing the monomial
t tr, o (it, ir), where the t.’s are indeterminates of the same de-
gree. One can always take (and we will) r equal to the number of variables.
Denote s by -’* t tr. It is known [19] that s can be expressed as a

polynomial with integral coefficients in the elementary symmetric polynomials
in the t.’ s:

p= E’t,, p= E*t:t,, ..., Pr= E*t,’’’t.
Order the monomials in the t’s by the lexicographie order; one gets a total

ordering. If t t; is the F.T.L.O. (first term in the lexicographic cover)
of s, then it >_ i2 >_ >_ ir ;for if i2 > it, say, t2t t would be before
tit,i2 t Henceforth we assume it > i > > ir Clearly this order-b2

ing induces an ordering of the partitions

oo (il, ir) of i it q- i q- q-i,,,

and of the polynomials s by s < s, if co < co. It also induces an ordering of
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the monomials which we now introduce, the monomials t, w pr.
Indeed each o determines such a monomial, and given such a monomial, one
can find without ambiguity the c0 from whence it comes. These monomials
are therefore naturally ordered in the order in which they appear when 0

increases.
,,il--i2.i2--i3We recall that to obtain s in terms of the p’s one forms s v t,

ir
Pr this is homogeaeous symmetric polynomiM which no longer con-

tains t t. (Use is made of the obvious fact that the F.T.L.O. of a
product is the product of the F.T.L.O. of the factors.) It has F.T.L.O.,
Cll Jrgr with c Z, jl _> j. >_ >_ jr, such that t t; < tl tr.

,i l--i2 ir cpJll--J2The polynomial s t, Pr pr contains neither t t
not t t. Since it is clear that for given monomial there exists only a
finite number of InouomiMs (here of the same degree) which succeed it in the
ordering, s is of the form

il--i2s p p + cp- p + ...,
and the monomials in the p’s appear in the order induced by the order of the
0’s. Note that the first coeigicient is one and that if 0’ is the immediate suc-
cessor of o then s, begins with the monomial which is the immediate successor
of the first monomial of so in the ordering of the monomials in p. Hence the
s’s can be expressed in terms of the p’s by the following triangular pattern.
We illustrate for the case i 4-

s p- @ p + 2p + pp- p
S Pl P 2p p p + 4p

S p- 2p p + 2p

s2 p p p

81111 P4.

It is now clear that conversely the p’s cn be expressed s polynomials in
the s’s with integral coefficients, p denoting p p p. Therefore"

LEMMA. A Z-module over the p,’s is a Z-module over the so,’s.

We are now in a position to state our results.

il. Statement of the results and description of the method
One first looks t the connection between the Postnikov towers of MSO

and MO. MO has the homotopy type of a cartesian product of spaces of type
(Z, m) (Thorn, [18]), i.e. the Postnikov invariants of MO are all the zero
class. One easily obtains a map MSO -- MO induced by the inclusion
SO O. This map induces a homomorphism
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where N;, is the cobordism group of non-oriented differential manifolds of
dimension n. Clearly h is obtained by disregarding the orientation. Rohlin
has shown that Ker h 2fn (Dold [8] has given an elementary proof, de-
scribed also by Wall [21]).

THEOtM A. The reductions rood two of the Postnikov invariants of MSO
are null classes.

COROLLARY 1A. The components of the Postnikov invariants of MSO cor-
responding to the 2-torsion of are null.

Proof. We simply observe that these are cohomology classes over Z..|

COROLLARY 2A (Wall [20]). H*(MSO; Z.) is a direct sum of free A2-
modules (one generator for each summand Z of in the same dimension) and of
A-modules with one relation Sq u 0 (one generator u for each summand Z
of in the same dimension).

Proof. By Theorem A, H*(MS0; Z2) is the cohomology rood 2 of a product
of spaces of type (Z, ,) and of type (Z, ,) in the relevant dimensions.|

Proof of Theorem A. Let X MSO Y MO and

X --+ X(n) --+ X(n 1) -- - X(0) K(Z, q),

Y --+ Y(n) --+ Y(n 1) -- - Y(0) K(Z,., q)

be Postnikov towers of the same height for X and Y. One wishes to construct
maps fl X(i) - Y(i) such that the diagrams

X(i) , Y(i)

X(i- 1) ]=)Y(i- 1)

are commutative, and which are extensions of f" X - Y. The construction
is by ittduction, starting with n. As the first step is very similar to the in-
duction step, we do only the induction step. This is by classical obstruction
theory; the obstruction to the extension off is always zero, either because the
coefficient group is zero, or because the cohomology group is zero. Details are
left to the reader. Commutativity of the diagram follows since the fibrations
are constructed from inclusions.
The characteristic class ru in H*(X(i 1), 2) corresponds to the charac-

teristic class rv in H*( Y(i 1), 9Z) by

o(u) f*-(),
where o H*(X(i 1), i) - H*(X(i 1), 9Z) is the homomorphism in-
duced by h fh - 9Z. In view of Rohlia’s Theorem, this is just reduction
rood 2. Because rv 0 and this construction can be made at any level of the
Postnikov tower, Theorem A is proved.|
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By using the construction recalled in I, M. Kervaire [12] has obtained an
expression for the Postnikov invariants which we now describe. Consider the
eohomology exact sequence of the pair (X(i 1), X) over the coefficients
fi"

H*(X; ai) H (X(i 1); ai)
a* H*(X(i 1), X; a)

Assume X is (q 1)-connected;in our case X MSOq. From the fact that
Hq++l(X(i 1), X) q++l(X(i 1), X) q+(X) i, it follows that
there exists a fundamental class u in Hq+i+l(X(i 1), X; 2) --- Horn (, i).
The result of Kervaire is that the Postnilcov invariant of X in dinension
q - i - 1 is a*u. One recalls that in dimension 4i - 1, the Postnikov in-
variant of MSO, ru4, has (i) components, each corresponding to one factor
of the fibre K4i of type (Z, q + 4i). Denote by lc the component correspond-
ing to the partition o. We apply the result of Kervaire to MSO; this allows
us to prove"

THEOREM B. The order of the component lc, of the Postnitov invariant of
MSO in dimension 4i + 1 is

n {2il -1- 1}.{2i2 -t- 11 {2ir + 1},

where o (i it) is any partition of i, and 2it + 1 p or 1 depending on
whether 2it q- 1 p8 (p a prime necessarily odd) or is divisible by at least two
distinct primes.

In the course of the proof one needs the following theorem"

THEOREM C. There exists a Milnor basis V4i} 8,iv such that if 2i 1 p
p a prime, all the Pontrjagin numbers of V are multiples of p.

Using the notion of stable cohomology operation, we finally prove"

THEOREM D. Given an integral cohomology class v of dimension m in an
orientable differential manifold of dimension n, with m < [n/2], one is assured
that f(m, n). v is realizable by a submanifold by talcing f(m, n) to be the product
a of the denominators of the Hirzebruch polynomials L L
lc being the integral part of m/4 (for L see [10]).

Theorems B and C are proved in Part III, Theorem D in Part IV.

III. The computation of the orders
Let X MSOa; we will determine the image of

’Hq+4i(X; 4i) --> Hqq-4iq-l(x4i-1, X;

where the last group is isomorphic with

Horn (a4i4 ’i) Horn (4, 4i).
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By exactness Ker a* Im ti, hence we have a method for determining the
orders of the components of a’u, u the fundamental class of Horn (54, 4).
Clearly we can neglect the 2-torsion of X.

1. Determination of Im ti.

LEMMA lB. Let c be a cohomology class of MSO over any group of coejicients
F Then

c[] * [y],
where V4 is a representative of an element in 4 a is the corresponding homotopy
class in r4i(MS0), c 5, and al is the homotopy class of the map V4 - BSO
induced by a.

Proof. Let c’ be a (q + 4i)-cocycle representing

c Hq+4(MS0q r).

tic’ is defined as the coboundary of any extension of c’ to X4_1 (see [17, p. 164]).
We compute tic’ on the cycles which are images of the cube I+4+ by maps

f (iq+4+, iq+4, jq+4) - (X4i_, X, .),

with [f iq+4] a; i.e. f I(Iq+4, _]+4) is a representative of [V]. One has for
any coefficients

tiCt[flqq-4i+l] Ct[flq+4i] f*c,[Iq+4].

One has therefore to compute f*c’[Iq+4], or equivalently a*c’[Iq+4] a*c[Sq+4i]
(by replacing the cube by the sphere, which is permissible because the bound-
ary of the cube is carried onto the base point of MSOq). Consider the
diagram which follows, known to be commutative, [18], and in which is the
Thom-Gysin isomorphism.

Hq+4(Sq+4; F) Hq+4(MSOq; F)

H4 V4; F) H4(BSO ;I’)
We obtain

*(c) %() ’.().

But ’ D-sD, where D is the Poincar duality (valid here over an arbi-
trary coefficient group because the manifolds are orientable) and s is the
homology homomorphism induced by the inclusion V S. Hence

’(a(5) )IS+i] D;lsD(a (5)
Leta(5)[V4] eF. The

sD(a() .
where ls is the generator of the homology of Sia dimension zero. Hence:

a* c)[S+] D;sD(a())ISq+4] a(5) [V].
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One applies Lemma 1B with F 4, c g, g bebg a litmar combination of
r(i) Pontriagin classes, a c is the corresponding linear combination of (i)
Pontrjagin classes on V4i. We shall write c Hom (,) as a r(i) X r(i)-
matrix, where the coco’-eoeffieient is the value of the Pontrjagin class p on the
basis element V, of 54 5 is represented by a column vector. In fact instead
of the Pontrjagin classes p, (p, Ph P,. co i,. Jr) a partition of
i), we shall take the classes s expressed in terms of the p as explained in I, 3.
The s form also a basis for the free part of H’(MSO). One is therefore led to
consider matrices S, one for each i, with elements S, s[V,]; here one
writes V, Vh X V’ X X V’ if co’= (j,...,j)is a partition of i.
Let s be the column vector whose entries are the s’s; any vector will then be of
the form As, with A a r(i) X r(i)-matrix with integral entries. For a par-
tieular choice of the basis in 4, the S’s are generators of Im t mod torsion.
Clearly each element of Im ti is of the form AS.

If e denotes the r(i) X r(i)-matrix whose only non-zero entry is one oc-
curring on the diagonal in the line co, ]c a*eo will be one component of the
Postnikov invariant. Its order is the smallest Iumber d such that a* d e. 0
or d e e Ker a* Im 5. If this is done for all co, one sees that the orders
under investigation are exactly the smallest possible values of the d such that
AS D, for all possible A, D being the diagonal matrix with entries d. The
fact that these orders are finite shows that there exists a basis for 4 such that
AS is diagonal.

2. Some lemmas on the values of the s’s on manifolds. (See [14].) On
every differential manifold V4, s determines an integer so,[V] if
co (il, i) is a partition of i. A basis {V} for the polynomial algebra

(R) Q may be characterized by the condition s[V] O.
rr4il v4i2LEMMA 2B. st (12)= Swl[V4il]’sw2[V4i2], the summation

being extended over all pairs of partitions whose union is .
Proof. See [18], where the same property is proved for Stiefel-Whitney

numbers. The proof applies literally here if one makes the computation over
the rationals (a field). But this suffices to prove the result over the integers.

LEMMA 3B. U e i), then s[Vi] O.

Proof. Immediate, for dimensional reasons.
-4Jl J2 4Js IZCOROLLARY 4B. s[V X V N X (...,)= st ]"

s2[V s.[V. (and . e (j.) by Lemma 3B).

Proof. By induction on s.
[lZ4il W4irCoaov 5B. st. X X s[V] s[V], ff

(il, -", i).

Proof. For s[V] 0 if is not a partition of i, .
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COROLLARY 6B.
(.fl,..-,.i) . so,IV1 X X 0 unless o is a subpartition of

Proof. Use Corollary 4B.|

Corollary 6B is equivalent to the assertion that so,[V] 0 if precedes 5,
i.e. the matrices S considered in 1 are triangular with diagonal entry

[T74izl
Sil[)’l Sir[V4rir]

on the row o (il, it). For what follows it is useful to keep in mind
that the invertible triangular matrices with integral entries and zeros above
the main diagonal form a group uxder multiplication.

3. The system AS D. If any column of S is divisible by the entry of
that column on the diagonal, then the answer to the question raised above
about that system is straight-forward. Indeed, let denote the matrix ob-
tained from S after these division,s; then is unimodular, and -1 has integral
entries. We note that S /),/) (30,,) being the diagonal matrix such
that 3o,,0 So, AS D implies D (A)/), i.e." the entries of D must be
multiples of the corresponding entries of/), which are therefore the smallest
possible ones (then A -).
We will show that one is always in that simple case and this will complete

the proof of Theorem B.

LEMA 7B. If s[V4] divides so,[V] for every partition of i and for all i,
then so,[Vo,] divides so,,[Vo,] for all o’ > o( Vi is any generator of (R) Q).

ITT4izl rTT4illProof. By assumption, SL divides so,[rl J, Therefore so,[Vo,]
(= s[V].., s[Vr] by Corollary 5B) is such that each factor divides a
distinct factor in each term of the sum

s,[V] (...>=, s[V] s,[V],

(0t a partitio of it by Corollary 4B), hence divides the sum.|

Since Theorem C states that the hypothesis of Lemm 7B is realized by
proper choice of a basis for t rood torsion, Theorem B will be completely proved
once Theorem C is proved.

4. Proof of Theorem C.

LEMMA 1C. (Atiyah-Hirzebruch [3]). The dimension of the space of rela-
tions rood p (p a prime) between the Pontrjagin numbers of an oriented differ-
ential manifold of dimension 4i is the number d’( i) of partitions of i with at least
one summandoftheform(p- 1)/2(1 _<j, (p- 1)/2 _< i).

Let E be the vector space over Z of the Poatrjgia classes po, of dimension
4i, and let E be the vector space over Z of the cobordism classes also of di-
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mension 4i (E2 ft4i (R) Zp 4i/p4i). One has dim E1 dim E2 (i).
Between E1 and E2 there exists a bilinear pairing given by the value rood p of
an element in E1 on an element in E (recall that the Pontrjagin numbers are
invariants of the cobordism classes). The space of relations (mod p) R1 in E1
is the annihilator of E. in this pairing; let R be the annihilator of E. R is
the set of cobordism classes for which all Pontrjagin numbers rood p are zero.
The following lemma is trivial and well known.

LEMMA 2C. With the above notations, R E1 and R E2 are vector sub-
spaces and dim R dim R. (See e.g. [2].)

Therefore R. is isomorphic with (Zp)’(i), d’(i) as in Lemma 1C. The fol-
lowing two lemmas prove that for s 1, the complex projective space of com-
plex dimension p 1, PC(p 1), can be chosen for a Milnor basis element as
required by Theorem C.

LEMMA 3C. The total Pontrjagin class of PC( 2i) is 1 -- a:) i+l, where a is
a generator of the integral cohomology of PC(2i).

Proof. See [10, p. 73].|

LEMMA 4C. 8i[PC(2i)] is equal to 2i -- 1 and divides s,o,[PC(2i)] for all co’
partitions of i if 2i - 1 p, p a prime. Equivalently PC(p 1) satisfies the
assumption of Lemma 7B.

Proof. First s a
i +... + a (p terms) or p. (fundamentM class)

(use the definition of s).
Secondly s, is a linear combination with integral coefficients of the p’s,

nd by Lemma 3C the total Pontrjagin class of PC(p 1) is 1 rood p. It
follows that p divides every Pontrjagin class of PC(p 1), therefore also
p[PC(p 1)], for all partitions of (p 1)/2.|

Theorem C is now proved by reproducing an rgument of Conner and Floyd
[7, pp. 113-115].|

IV. The additivity of obstructions and the realizability of
homology classes

Thorn [18] has shown that for every integral homology class v of dimension
m in a differential manifold M of dimension n, there exists an integer f(m, n, v)
such that f(m, n, v). v is realizable by a submanifold. An upper bound f(m, n)
of the numbersf(m, n, v) will be determined below for m [n/2]. According
to Thorn, if c is the cohomology class dual to v, v is realizable if and only if there
exists a map f M -+ MSO,_ such that f*(U) c, where U is the funda-
mental class of MSO Our task is to find sufficient conditions for the
existence of f. f will be constructed by successive extensions through the
Postnikov tower of MSO,_m.

LEMMA 1D. [6, Expos6 13]. Let f f fa be three maps X Y such that
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fa fl f2, the multiplication being that of loops; X, Y are topological spaces,
Y is the loop space of Y based at yo Then if v is in the image of the suspension

H*(Y) -- H*(Y),the following is true:
f(n) f(v) 3- f(n).

Proof. See [6, Expos6 13].|

A basic reference for what follows is Adams [1], especially Chapter II.

LEMMA 2D. In the stable range, the higher obstructions are additive.

Proof. Consider the stable Postnikov tower of any space X and two maps

f M- X(O)

such that f(uo) c (i 1, 2). We consider this tower as obtained from.
another tower by applying to it the functor 2. By Theorem 3.4.9 [1] and an
easy induction, the Postnikov invariants correspond in both towers by sus-
pension, may be up to sign; Lemma 1D can be applied to them. Assume f
has been lifted to X(/c 1) and call one such lifting -1f If we continue to
denote (improperly) by u0 the extension of u0 to X(/c 1), then Lemma 1D
gives

1 (f-I f-i) (Uo) (fl-1) *(no) -Jr- (f-l) ,(U0) Cl -[- c2.

Also if u is ny class in the eohomology of X(lc 1),

(2) (f)-lf2-1)*(U) (fl-l)*(U) -[- (f2-l)*(U).
Now the class u determines a stable cohomology operation of the/orb-kind,

say , for which the tower is a universal example, with (u0) e u. By the
naturality of

4,k--1
j of. )*(I)(u0) a(f-iof-)*(Uo) (c + ce),

by 1); and

(fl-1 of-’)*((u0)) }(fl-l)*(u0) -- (f-’)*(u0) (c) + (c)

by (2) applied to (u0).
Therefore

(c + c) (c) + (c).|

To prove Theorem D we must insure that

f: M"--- X(O) K(Z, n m)

can be lifted to X(n) with f*(u0) a c. This will be achieved if at each level
from X(0) to X(4/) one can insure that 0 (a c) with ) the cohomology
operation determined by ,u (see [1, Lemma 3.3.8]). But ,u (u0) has for
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order the least common multiple of the numbers n of Theorem B.
ing lemma gives that order.

The follow-

LEMMA 3D.
H3_p P

[2i/(p-1)]
The least common multiple of the numbers n, of Theorem B is
p any prime.

Proof. Each prime factor of the least common multiple must have for ex-
ponent the largest exponent it has among all numbers n. This is obviously
[2i/(p 1)] for the prime p.|

For a proof that this is the denominator ui of the polynomial Li introduced
by Hirzebruch see [3].

Proof of Theorem D. Assume that

fi-l" M -- X(4i 4)

exists, such that f*-l(u0) ai-1 c. Then there exists a mp

fi" M -- X(4i 4)

such thatf u0 a._l c ai c, for the obstructions for f are the obstructions
for fi-1 multiplied by , therefore can be made zero. Now

f(uo) ti(- c) tfi-( Uo)

contains tf-(vu), which is zero; here and above use has been made of the
additivity of . Therefore f can be lifted to X(4i). Starting with

fo’M -- X(O) such f’ u0 c, we end up with f’M ---> X(4k) such that

f* u0 a c. Then (a c) contains 0 for all i.
]c is clearly the largest integer such that 4k _< m. The result is valid in the

stable range, i.e. for m < n m 1 or m < (n 1)/2. If n is even, this is
m <_ n/2 1. If n is odd, (n 1)/2 is an integer equal to [n/2]. In both
cases m < In/2].|

A formula for a.
We compute

We decompose this sum as follows"

([+1+ il+ ...)_k_ + 2--I 1]p-1 +""
2

One has a II<= P(’), p running over all primes.

qp-1-
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where

Each partial sum contains (p 1)/2 terms, except the last one where the
number of terms is r, remainder of the division of k by (p 1)/2, plus one
(k q(p- 1)/2+r,r < (p- 1)/2). Now clearly

or

(/c, p) (p 1) (1 - 2 + + (q 1)) - (r + 1)q
2

P- l q(q- 1)--It--2
p- 1)2q

,(k,p) q(k+ 1) q(q + 1) p-- 1
2 2

where q= i "|
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