THE ORDERS OF THE POSTNIKOV INVARIANTS OF THE THOM SPECTRUM $M S O$

BY
Jacques Troué ${ }^{1}$

The Thom space $M S O_{q}$ has been introduced by Thom [18] for analysing the structure of the groups Ω_{n} of the cobordism classes of closed compact oriented differential manifolds of dimension n. We wish to study the Postnikov invariants of the Thom space $M S O_{q}$. The idea is to use the now known structure of the ring Ω : one obviously can so obtain the stable invariants only. Aside from the invariants which happen to be zero, it has not been possible to determine the classes which give these invariants, but only their orders. However this allows to sharpen a result of Thom relative to the realization of an integral homology class of a differential manifold by a differential submanifold.

I. Preliminaries

1. By what precedes, the object under study is really the Thom spectrum $M S O=\left\{M S O_{q}, f_{q}\right\}_{q \geq 1}$, i.e. the sequence of spaces $\left\{M S O_{q}\right\}$ and maps $\left\{f_{q}\right\}, q \geq 1$:

$$
f_{q}: S\left(M S O_{q}\right) \rightarrow M S O_{q+1}
$$

(S, reduced suspension) as defined by Thom [18].
$\pi_{n+q}\left(M S O_{q}\right)=\Omega_{n}$, if $q \geq n+2$, and we will always make this assumption. $\Omega / \Omega_{T}=\bar{\Omega}(=\Omega \bmod$ torsion $)$ is a polynomial algebra on the integers whose generators $V^{4 i}$ are characterized by

$$
\begin{array}{ll}
s_{i}\left[V^{4 i}\right]=p & \text { if } 2 i+1=p^{s}, p \text { a prime, } \\
s_{i}\left[V^{4 i}\right]=1 & \text { otherwise }
\end{array}
$$

In dimensions which are not multiples of four, Ω_{n} is a direct sum (occasionally empty) of groups isomorphic with Z_{2}; in dimensions which are multiples of four, it is a direct sum of groups isomorphic with Z and of groups isomorphic with Z_{2}, [14], [20].

A remark (with an elementary proof) by Dold [9] shows that $\Omega_{n}, n \geq 8$, is never trivial. Moreover, $\Omega_{4 i}$ has for its free part a direct sum of $\pi(i)$ groups isomorphic with Z, where $\pi(i)$ is the number of partitions of i in positive integers.

A general reference for the stable homotopy and the stable cohomology of $M S O_{q}$ is [7].

[^0]2. (Finite) Postnikov tower of a CW-complex. Let there be given a CW-complex X and a positive integer n. One can then construct a CW-complex $X(n)$ containing X as a subcomplex by attaching cells of dimensions greater than $n+1$ with maps chosen such as to kill the homotopy groups of X in dimensions greater than n [22]. Then the inclusion $X \subset X(n)$ induces an isomorphism of the homotopy groups of dimensions at most n and $X(n)$ has the $(n+1)$-homotopy type of $X[23]$.

Proceeding as above one constructs a finite sequence of CW-complexes,

$$
X \subset X(n) \subset X(n-1) \subset \cdots \subset X(1) \subset X(0)
$$

in which the inclusion $X(i+1) \subset X(i)$ induces an isomorphism of the homotopy groups in dimensions at most i, and the homotopy of $X(i)$ is trivial in dimensions greater than i. One can classically [5, (n.1)] turn the inclusions into fibrations in the sense of Serre [16] without changing the homotopy type of the $X(i)$'s. One may therefore consider the above sequence as a sequence of fibrations:

$$
X \rightarrow X(n) \rightarrow X(n-1) \rightarrow \cdots \rightarrow X(1) \rightarrow X(0)
$$

The fibre of the fibration $X(\mathrm{i}) \rightarrow X(i-1)$ has $\pi_{i}(X)$ as its only non-trivial homotopy group, and is therefore a space of type ($\left.\pi_{i}(X), i\right)$. The Postnikov invariants of X are the characteristic classes of these fibrations.

To apply this to a spectrum such as $M S O$, one takes $X=M S O_{q}$, with $q \geq n+2 ; X$ is then $(q-1)$-connected. In such a case $X(n)$ denotes rather what has been called above $X(q+n)$, so that $X(0)$ is a space of type $\left(\pi_{q}(X)\right.$, $q)$. Thus the fibration $X(i) \rightarrow X(i-1)$ has for fibre a space of type $\left(\pi_{q+i}\left(M S O_{q}\right), q+i\right)$.
3. Symmetric polynomials. We will need in Part III the following elementary facts about symmetric polynomials. (See [14].)

Let s_{ω} be the smallest symmetric polynomial containing the monomial $t_{1}^{i_{1}} \cdots t_{r}^{i_{r}}, \omega=\left(i_{1}, \cdots, i_{r}\right)$, where the t_{j} 's are indeterminates of the same degree. One can always take (and we will) r equal to the number of variables. Denote s_{ω} by $\sum^{*} t_{1}^{i_{1}} \cdots t_{1}^{i_{r}}$. It is known [19] that s_{ω} can be expressed as a polynomial with integral coefficients in the elementary symmetric polynomials in the $t_{j}{ }^{\prime} s$:

$$
p_{1}=\sum^{*} t_{1}, \quad p_{2}=\sum^{*} t_{1} t_{2}, \quad \cdots, \quad p_{r}=\sum^{*} t_{1} \cdots t_{r}
$$

Order the monomials in the t 's by the lexicographic order; one gets a total ordering. If $t_{1}^{i_{1}} \cdots t_{r}^{i_{r}}$ is the F.T.L.O. (first term in the lexicographic cover) of s_{ω}, then $i_{1} \geq i_{2} \geq \cdots \geq i_{r}$; for if $i_{2}>i_{1}$, say, $t_{1}^{i_{2}} t_{2}^{i_{1}} \cdots t_{r}^{i_{r}}$ would be before
 ing induces an ordering of the partitions

$$
\omega=\left(i_{1}, \cdots, i_{r}\right) \quad \text { of } \quad i=i_{1}+i_{2}+\cdots+i_{r}
$$

and of the polynomials s_{ω} by $s_{\omega}<s_{\omega^{\prime}}$ if $\omega<\omega^{\prime}$. It also induces an ordering of
the monomials which we now introduce, the monomials $p_{1}^{i_{1}-i_{2}} p_{2}^{i_{2}-i_{3}} \cdots p_{r}^{i_{r}}$. Indeed each ω determines such a monomial, and given such a monomial, one can find without ambiguity the ω from whence it comes. These monomials are therefore naturally ordered in the order in which they appear when ω increases.

We recall that to obtain s_{ω} in terms of the p 's one forms $s_{\omega}-p_{1}^{i_{1}-i_{2}} p_{2}^{i_{2}-i_{3}}$ $\cdots p_{r}^{i_{r}}$; this is a homogeneous symmetric polynomial which no longer contains $t_{1}^{i_{1}} \cdots t_{r}^{i_{r}}$. (Use is made of the obvious fact that the F.T.L.O. of a product is the product of the F.T.L.O. of the factors.) It has a F.T.L.O., $c t_{1}^{j_{1}} \cdots t_{r}^{j_{r}}$, with $c \in Z, j_{1} \geq j_{2} \geq \cdots \geq j_{r}$, such that $t_{1}^{i_{1}} \cdots t_{r}^{i_{r}}<t_{1}^{j_{1}} \cdots t_{r}^{j_{r}}$. The polynomial $s_{\omega}-p_{1}^{i_{1}-\bar{i}_{2}} \cdots p_{r}^{i_{r}}-c p_{1}^{j_{1}-j_{2}} \cdots p_{r}^{j_{r}}$ contains neither $t_{1}^{i_{1}} \cdots t_{r}^{i_{r}}$ not $t_{1}^{j_{1}} \cdots t_{r}^{j_{r}}$. Since it is clear that for a given monomial there exists only a finite number of monomials (here of the same degree) which succeed it in the ordering, s_{ω} is of the form

$$
s_{\omega}=p_{1}^{i_{1}-i_{2}} \cdots p_{r}^{i_{r}}+c p_{1}^{j_{1}-j_{2}} \cdots p_{r}^{j_{r}}+\cdots,
$$

and the monomials in the p 's appear in the order induced by the order of the ω 's. Note that the first coefficient is one and that if ω^{\prime} is the immediate successor of ω then $s_{\omega^{\prime}}$ begins with the monomial which is the immediate successor of the first monomial of s_{ω} in the ordering of the monomials in p. Hence the s_{ω} 's can be expressed in terms of the p 's by the following triangular pattern. We illustrate for the case $i=4$:

$$
\begin{array}{rrr}
s_{4} & =p_{1}^{4}-4 p_{1}^{2} p_{2}+2 p_{2}^{2}+4 p_{1} p_{3}-4 p_{4} \\
s_{31} & = & p_{1}^{2} p_{2}-2 p_{2}^{2}-p_{1} p_{3}+4 p_{4} \\
s_{22} & = & p_{2}^{2}-2 p_{1} p_{3}+2 p_{4} \\
s_{211} & = & p_{1} p_{3}-p_{4} \\
s_{1111} & = & p_{4} .
\end{array}
$$

It is now clear that conversely the p_{ω} 's can be expressed as polynomials in the s_{ω} 's with integral coefficients, p_{ω} denoting $p_{i_{1}} p_{i_{2}} \cdots p_{i_{r}}$. Therefore:

Lemma. A Z-module over the p_{n} 's is a Z-module over the s_{ω} 's.
We are now in a position to state our results.

II. Statement of the results and description of the method

One first looks at the connection between the Postnikov towers of MSO and $M O$. $M O$ has the homotopy type of a cartesian product of spaces of type $\left(Z_{2}, m\right)$ (Thom, [18]), i.e. the Postnikov invariants of $M O$ are all the zero class. One easily obtains a map $M S O \rightarrow M O$ induced by the inclusion $S O \subset O$. This map induces a homomorphism

$$
h: \Omega_{n} \rightarrow \mathscr{N}_{n}
$$

where \mathfrak{N}_{n} is the cobordism group of non-oriented differential manifolds of dimension n. Clearly h is obtained by disregarding the orientation. Rohlin has shown that Ker $h=2 \Omega_{n}$ (Dold [8] has given an elementary proof, described also by Wall [21]).

Theorem A. The reductions mod two of the Postnikov invariants of MSO are null classes.

Corollary 1A. The components of the Postnikov invariants of MSO corresponding to the 2 -torsion of Ω are null.

Proof. We simply observe that these are cohomology classes over Z_{2}.
Corollary 2A (Wall [20]). $H^{*}\left(M S O ; Z_{2}\right)$ is a direct sum of free $A_{2^{-}}$ modules (one generator for each summand Z_{2} of Ω in the same dimension) and of A_{2}-modules with one relation $\mathrm{Sq}^{1} u=0$ (one generator u for each summand Z of Ω in the same dimension).

Proof. By Theorem A, $H^{*}\left(M S O ; Z_{2}\right)$ is the cohomology mod 2 of a product of spaces of type $\left(Z_{2}, *\right)$ and of type $(Z, *)$ in the relevant dimensions.

Proof of Theorem A. Let $X=M S O_{q}, Y=M O_{q}$ and

$$
\begin{aligned}
& X \rightarrow X(n) \rightarrow X(n-1) \rightarrow \cdots \rightarrow X(0)=K(Z, q) \\
& Y \rightarrow Y(n) \rightarrow Y(n-1) \rightarrow \cdots \rightarrow Y(0)=K\left(Z_{2}, q\right)
\end{aligned}
$$

be Postnikov towers of the same height for X and Y. One wishes to construct maps $f_{1}: X(i) \rightarrow Y(i)$ such that the diagrams

are commutative, and which are extensions of $f: X \rightarrow Y$. The construction is by induction, starting with n. As the first step is very similar to the induction step, we do only the induction step. This is by classical obstruction theory; the obstruction to the extension of f_{i} is always zero, either because the coefficient group is zero, or because the cohomology group is zero. Details are left to the reader. Commutativity of the diagram follows since the fibrations are constructed from inclusions.

The characteristic class τu_{i} in $H^{*}\left(X(i-1), \Omega_{i}\right)$ corresponds to the characteristic class τv_{i} in $H^{*}\left(Y(i-1), \mathfrak{N}_{i}\right)$ by

$$
\rho\left(\tau u_{i}\right)=f_{i-1}^{*}\left(\tau v_{i}\right),
$$

where $\rho: H^{*}\left(X(i-1), \Omega_{i}\right) \rightarrow H^{*}\left(X(i-1), \mathfrak{N}_{i}\right)$ is the homomorphism induced by $h: \Omega_{i} \rightarrow \mathscr{V}_{i}$. In view of Rohlin's Theorem, this is just reduction $\bmod 2$. Because $\tau v_{i}=0$ and this construction can be made at any level of the Postnikov tower, Theorem A is proved.

By using the construction recalled in I, M. Kervaire [12] has obtained an expression for the Postnikov invariants which we now describe. Consider the cohomology exact sequence of the pair $(X(i-1), X)$ over the coefficients Ω_{i} :

$$
\begin{aligned}
& \cdots \stackrel{\delta}{\longleftarrow} H^{*}\left(X ; \Omega_{i}\right) \stackrel{j^{*}}{\longleftarrow} H^{*}(X(i-1)\left.; \Omega_{i}\right) \\
& \stackrel{a^{*}}{\longleftarrow} H^{*}\left(X(i-1), X ; \Omega_{i}\right) \stackrel{\delta}{\longleftarrow} \cdots .
\end{aligned}
$$

Assume X is $(q-1)$-connected; in our case $X=M S O_{q}$. From the fact that $H_{q+i+1}(X(i-1), X)=\pi_{q+i+1}(X(i-1), X)=\pi_{q+i}(X)=\Omega_{i}$, it follows that there exists a fundamental class u in $H^{q+i+1}\left(X(i-1), X ; \Omega_{i}\right) \cong \operatorname{Hom}\left(\Omega_{i}, \Omega_{i}\right)$. The result of Kervaire is that the Postnikov invariant of X in dimension $q+i+1$ is $a^{*} u$. One recalls that in dimension $4 i+1$, the Postnikov invariant of $M S O, \tau u_{4 i}$, has $\pi(i)$ components, each corresponding to one factor of the fibre $K_{4 i}$ of type $(Z, q+4 i)$. Denote by k_{ω} the component corresponding to the partition ω. We apply the result of Kervaire to MSO; this allows us to prove:

Theorem B. The order of the component k_{ω} of the Postnikov invariant of MSO in dimension $4 i+1$ is

$$
n_{\omega}=\left\{2 i_{1}+1\right\} \cdot\left\{2 i_{2}+1\right\} \cdot \cdots \cdot\left\{2 i_{r}+1\right\}
$$

where $\omega=\left(i_{1}, \cdots, i_{r}\right)$ is any partition of i, and $\left\{2 i_{t}+1\right\}=p$ or 1 depending on whether $2 i_{t}+1=p^{s}$ (p a prime necessarily odd) or is divisible by at least two distinct primes.

In the course of the proof one needs the following theorem:
Theorem C. There exists a Milnor basis $\left\{V^{4 i}\right\}_{i \in N}$, such that if $2 i+1=p^{s}$, p a prime, all the Pontrjagin numbers of $V^{4 i}$ are multiples of p.

Using the notion of stable cohomology operation, we finally prove:
Theorem D. Given an integral cohomology class v of dimension m in an orientable differential manifold of dimension n, with $m<[n / 2]$, one is assured that $f(m, n) \cdot v$ is realizable by a submanifold by taking $f(m, n)$ to be the product α_{k} of the denominators μ_{1}, \cdots, μ_{k} of the Hirzebruch polynomials L_{1}, \cdots, L_{k}, k being the integral part of $m / 4$ (for L_{k}, see [10]).

Theorems B and C are proved in Part III, Theorem D in Part IV.

III. The computation of the orders

Let $X=M S O_{q}$; we will determine the image of

$$
\delta: H^{q+4 i}\left(X ; \bar{\Omega}_{4 i}\right) \rightarrow H^{q+4 i+1}\left(X_{4 i-1}, X ; \bar{\Omega}_{4 i}\right)
$$

where the last group is isomorphic with

$$
\operatorname{Hom}\left(\Omega_{4 i 4}{ }^{`} \bar{\Omega}_{i}\right)=\operatorname{Hom}\left(\bar{\Omega}_{4 i}, \bar{\Omega}_{4 i}\right) .
$$

By exactness Ker $a^{*}=\operatorname{Im} \delta$, hence we have a method for determining the orders of the components of $a^{*} u$, u the fundamental class of Hom ($\left.\bar{\Omega}_{4 i}, \bar{\Omega}_{4 i}\right)$. Clearly we can neglect the 2 -torsion of X.

1. Determination of $\operatorname{Im} \delta$.

Lemma 1B. Let c be a cohomology class of MSO over any group of coefficients г. Then

$$
\delta c[\alpha]=\alpha_{1}^{*} \bar{c}\left[V^{4 i}\right],
$$

where $V^{4 i}$ is a representative of an element in $\bar{\Omega}_{4 i}, \alpha$ is the corresponding homotopy class in $\pi_{4 i}(M S O), c=\varphi \bar{c}$, and α_{1} is the homotopy class of the map $V^{4 i} \rightarrow B S O$ induced by α.

Proof. Let c^{\prime} be a $(q+4 i)$-cocycle representing

$$
c \in H^{q+4 i}\left(M S O_{q} ; \Gamma\right)
$$

δc^{\prime} is defined as the coboundary of any extension of c^{\prime} to $X_{4 i-1}$ (see [17, p. 164]). We compute δc^{\prime} on the cycles which are images of the cube $I^{q+4 i+1}$ by maps

$$
f:\left(I^{q+4 i+1}, I^{q+4 i}, J^{q+4 i}\right) \rightarrow\left(X_{4 i-1}, X, *\right)
$$

with $\left[f \mid I^{q+4 i}\right]=\alpha$; i.e. $f \mid\left(I^{q+4 i}, \dot{I}^{q+4 i}\right)$ is a representative of $\left[V^{4 i}\right]$. One has for any coefficients

$$
\delta c^{\prime}\left[f I^{q+4 i+1}\right]=c^{\prime}\left[f I^{q+4 i}\right]=f^{*} c^{\prime}\left[I^{q+4 i}\right] .
$$

One has therefore to compute $f^{*} c^{\prime}\left[I^{q+4 i}\right]$, or equivalently $\alpha^{*} c^{\prime}\left[I^{q+4 i}\right]=\alpha^{*} c\left[S^{q+4 i}\right]$ (by replacing the cube by the sphere, which is permissible because the boundary of the cube is carried onto the base point ∞ of $M S O_{q}$). Consider the diagram which follows, known to be commutative, [18], and in which φ is the Thom-Gysin isomorphism.

We obtain

$$
\alpha^{*}(c)=\alpha^{*} \varphi(\bar{c})=\varphi^{\prime} \alpha_{1}^{*}(\bar{c})
$$

But $\varphi^{\prime}=D_{S}^{-1} s D_{V}$, where D is the Poincaré duality (valid here over an arbitrary coefficient group because the manifolds are orientable) and s is the homology homomorphism induced by the inclusion $V \subset S$. Hence

$$
\varphi^{\prime}\left(\alpha_{1}^{*}(\bar{c})\right)\left[S^{q+4 i}\right]=D_{S}^{-1} s D_{V}\left(\alpha_{1}^{*}(\bar{c})\right)\left[S^{q+4 i}\right]
$$

Let $\alpha_{1}^{*}(\bar{c})\left[V^{4 i}\right]=\gamma \in \Gamma$. Then

$$
s D_{V}\left(\alpha_{1}^{*}(\bar{c})\right)=\gamma \cdot 1_{S}
$$

where 1_{S} is the generator of the homology of S in dimension zero. Hence:

$$
\alpha^{*}(c)\left[S^{q+4 i}\right]=D_{s}^{-1} s D_{V}\left(\alpha_{1}^{*}(\bar{c})\right)\left[S^{q+4 i}\right]=\alpha_{1}^{*}(\bar{c})\left[V^{4 i}\right]
$$

One applies Lemma 1B with $\Gamma=\bar{\Omega}_{4 i}, c=\varphi \bar{c}, \bar{c}$ being a linear combination of $\pi(i)$ Pontrjagin classes. $\alpha^{*} \bar{c}$ is the corresponding linear combination of $\pi(i)$ Pontrjagin classes on $V^{4 i}$. We shall write $\delta c \epsilon \operatorname{Hom}\left(\bar{\Omega}_{4 i}, \bar{\Omega}_{4 i}\right)$ as a $\pi(i) \times \pi(i)$ matrix, where the $\omega \omega^{\prime}$-coefficient is the value of the Pontrjagin class p_{ω} on the basis element $V_{\omega^{\prime}}$ of $\bar{\Omega}_{4 i}$. \bar{c} is represented by a column vector. In fact instead of the Pontrjagin classes $p_{\omega}\left(p_{\omega}=p_{i_{1}} \cdots p_{i_{r}}, \omega=\left(i_{1}, \cdots, i_{r}\right)\right.$ a partition of i), we shall take the classes s_{ω} expressed in terms of the p_{ω} as explained in I, 3 . The s_{ω} form also a basis for the free part of $H^{4 i}(M S O)$. One is therefore led to consider matrices S, one for each i, with elements $S_{\omega \omega^{\prime}}=s_{\omega}\left[V_{\omega^{\prime}}\right]$; here one writes $V_{\omega^{\prime}}=V^{4 j_{1}} \times V^{4 j_{2}} \times \cdots \times V^{4 j_{r}}$ if $\omega^{\prime}=\left(j_{1}, \cdots, j_{r}\right)$ is a partition of i. Let s be the column vector whose entries are the s_{ω} 's; any vector will then be of the form $A s$, with A a $\pi(i) \times \pi(i)$-matrix with integral entries. For a particular choice of the basis in $\bar{\Omega}_{4 i}$, the S 's are generators of $\operatorname{Im} \delta \bmod$ torsion. Clearly each element of $\operatorname{Im} \delta$ is of the form $A S$.

If e_{ω} denotes the $\pi(i) \times \pi(i)$-matrix whose only non-zero entry is one occurring on the diagonal in the line $\omega, k_{\omega}=a^{*} e_{\omega}$ will be one component of the Postnikov invariant. Its order is the smallest number d_{ω} such that $a^{*} d_{\omega} e_{\omega}=0$ or $d_{\omega} e_{\omega} \epsilon \operatorname{Ker} a^{*}=\operatorname{Im} \delta$. If this is done for all ω, one sees that the orders under investigation are exactly the smallest possible values of the d_{ω} such that $A S=D$, for all possible A, D being the diagonal matrix with entries d_{ω}. The fact that these orders are finite shows that there exists a basis for $\bar{\Omega}_{4 i}$ such that $A S$ is diagonal.
2. Some lemmas on the values of the s_{ω} 's on manifolds. (See [14].) On every differential manifold $V^{4 i}, s_{\omega}$ determines an integer $s_{\omega}\left[V^{4 i}\right]$ if $\omega=\left(i_{1}, \cdots, i_{r}\right)$ is a partition of i. A basis $\left\{V^{4 i}\right\}$ for the polynomial algebra $\Omega \otimes Q$ may be characterized by the condition $s_{i}\left[V^{4 i}\right] \neq 0$.

Lemma 2B. $\quad s_{\omega}\left[V^{4 i_{1}} \times V^{4 i_{2}}\right]=\sum_{\left(\omega_{1} \omega_{2}\right)=\omega} s_{\omega_{1}}\left[V^{4 i_{1}}\right] \cdot s_{\omega_{2}}\left[V^{4 i_{2}}\right]$, the summation being extended over all pairs of partitions ω_{1}, ω_{2} whose union is ω.

Proof. See [18], where the same property is proved for Stiefel-Whitney numbers. The proof applies literally here if one makes the computation over the rationals (a field). But this suffices to prove the result over the integers.

Lemma 3B. If $\omega_{s} \& \Pi\left(i_{s}\right)$, then $s_{\omega_{s}}\left[V^{4 i_{s}}\right]=0$.
Proof. Immediate, for dimensional reasons.】
Corollary 4B. $s_{\omega}\left[V_{1}^{4 j_{1}} \times V_{2}^{4 j_{2}} \times \cdots \times V_{s}^{4 j_{s}}\right]=\sum_{\left(\omega_{1} \cdots \omega_{s}\right)=\omega} s_{\omega_{1}}\left[V_{1}^{4 j_{1}}\right]$. $s_{\omega_{2}}\left[V_{2}^{4 j_{2}}\right] \cdots s_{\omega_{s}}\left[V_{s}^{4 j_{s}}\right]$ (and $\omega_{\alpha} \in \Pi\left(j_{\alpha}\right)$ by Lemma 3B).

Proof. By induction on s.
Corollary 5B. $s_{\omega}\left[V_{1}^{4 i_{1}} \times \cdots \times V_{r}^{4 i_{r}}\right]=s_{i_{1}}\left[V_{1}\right] \cdots s_{i_{r}}\left[V_{r}\right]$, if $\omega=$ $\left(i_{1}, \cdots, i_{r}\right)$.

Proof. For $s_{\omega}\left[V_{s}\right]=0$ if ω is not a partition of i_{s}.

Corollary $6 \mathrm{~B} . \quad s_{\omega}\left[V_{1}^{4 j_{1}} \times \cdots \times V_{s}^{4 j_{s}}\right]=0$ unless ω is a subpartition of $\left(j_{1}, \cdots, j_{s}\right)=\bar{\omega}$.

Proof. Use Corollary 4B.

Corollary 6 B is equivalent to the assertion that $s_{\omega}\left[V_{\bar{\omega}}\right]=0$ if ω precedes $\bar{\omega}$, i.e. the matrices S considered in 1 are triangular with diagonal entry

$$
s_{i_{1}}\left[V_{1}^{4 i i_{1}}\right] \cdots s_{i_{r}}\left[V_{r}^{4 i_{r}}\right]
$$

on the row $\omega=\left(i_{1}, \cdots, i_{r}\right)$. For what follows it is useful to keep in mind that the invertible triangular matrices with integral entries and zeros above the main diagonal form a group under multiplication.
3. The system $A S=D$. If any column of S is divisible by the entry of that column on the diagonal, then the answer to the question raised above about that system is straight-forward. Indeed, let \bar{S} denote the matrix obtained from S after these divisions; then \bar{S} is unimodular, and \bar{S}^{-1} has integral entries. We note that $S=\bar{S} \bar{D}, \bar{D}=\left(\bar{d}_{\omega \omega^{\prime}}\right)$ being the diagonal matrix such that $\bar{d}_{\omega \omega}=S_{\omega \omega} . \quad A S=D$ implies $D=(A \bar{S}) \bar{D}$, i.e.: the entries of D must be multiples of the corresponding entries of \bar{D}, which are therefore the smallest possible ones (then $A=\bar{S}^{-1}$).

We will show that one is always in that simple case and this will complete the proof of Theorem B.

Lemma 7B. If $s_{i}\left[V^{4 i}\right]$ divides $s_{\omega_{i}}\left[V^{4 i}\right]$ for every partition ω_{i} of i and for all i, then $s_{\omega}\left[V_{\omega}\right]$ divides $s_{\omega^{\prime}}\left[V_{\omega}\right]$ for all $\omega^{\prime}>\omega\left(V^{4 i}\right.$ is any generator of $\left.\Omega \otimes Q\right)$.

Proof. By assumption, $s_{i_{1}}\left[V_{1}^{4 i_{1}}\right]$ divides $s_{\omega_{1}}\left[V_{1}^{4 i_{1}}\right], \cdots$. Therefore $s_{\omega}\left[V_{\omega}\right]$ ($=s_{i_{1}}\left[V_{1}\right] \cdots s_{i_{r}}\left[V_{r}\right]$ by Corollary 5B) is such that each factor divides a distinct factor in each term of the sum

$$
s_{\omega^{\prime}}\left[V_{\omega}\right]=\sum_{\left(\omega_{1} \cdots \omega_{r}\right)=\omega^{\prime}} s_{\omega_{1}}\left[V_{1}\right] \cdots s_{\omega_{r}}\left[V_{r}\right]
$$

(ω_{t} a partition of i_{t} by Corollary 4B), hence divides the sum.
Since Theorem C states that the hypothesis of Lemma 7B is realized by a proper choice of a basis for Ω mod torsion, Theorem B will be completely proved once Theorem C is proved.

4. Proof of Theorem C.

Lemma 1C. (Atiyah-Hirzebruch [3]). The dimension of the space of relations $\bmod p(p$ a prime) between the Pontrjagin numbers of an oriented differential manifold of dimension $4 i$ is the number $d^{\prime}(i)$ of partitions of i with at least one summand of the form $\left(p^{j}-1\right) / 2\left(1 \leq j,\left(p^{j}-1\right) / 2 \leq i\right)$.

Let E_{1} be the vector space over Z_{p} of the Pontrjagin classes p_{ω} of dimension $4 i$, and let E_{2} be the vector space over Z_{p} of the cobordism classes also of dj-
mension $4 i\left(E_{2}=\Omega_{4 i} \otimes Z_{p}=\bar{\Omega}_{4 i} / p \bar{\Omega}_{4 i}\right) . \quad$ One has $\operatorname{dim} E_{1}=\operatorname{dim} E_{2}=\pi(i)$. Between E_{1} and E_{2} there exists a bilinear pairing given by the value $\bmod p$ of an element in E_{1} on an element in E_{2} (recall that the Pontrjagin numbers are invariants of the cobordism classes). The space of relations $(\bmod p) R_{1}$ in E_{1} is the annihilator of E_{2} in this pairing; let R_{2} be the annihilator of $E_{1} . R_{2}$ is the set of cobordism classes for which all Pontrjagin numbers $\bmod p$ are zero. The following lemma is trivial and well known.

Lemma 2C. With the above notations, $R_{1} \subset E_{1}$ and $R_{2} \subset E_{2}$ are vector subspaces and $\operatorname{dim} R_{1}=\operatorname{dim} R_{2}$. (See e.g. [2].)

Therefore R_{2} is isomorphic with $\left(Z_{p}\right)^{d^{\prime}(i)}, d^{\prime}(i)$ as in Lemma 1C. The following two lemmas prove that for $s=1$, the complex projective space of complex dimension $p-1, P C(p-1)$, can be chosen for a Milnor basis element as required by Theorem C.

Lemma 3C. The total Pontrjagin class of $P C(2 i)$ is $\left(1+\alpha^{2}\right)^{2 i+1}$, where α is a generator of the integral cohomology of $P C(2 i)$.

Proof. See [10, p. 73].
Lemma 4C. $\quad s_{i}[P C(2 i)]$ is equal to $2 i+1$ and divides $s_{\omega^{\prime}}[P C(2 i)]$ for all ω^{\prime} partitions of i if $2 i+1=p, p$ a prime. Equivalently $P C(p-1)$ satisfies the assumption of Lemma 7B.

Proof. First $s_{i}=\alpha^{2 i}+\cdots+\alpha^{2 i}$ (p terms) or p. (fundamental class) (use the definition of s_{i}).

Secondly $s_{\omega^{\prime}}$ is a linear combination with integral coefficients of the p_{ω} 's, and by Lemma 3C the total Pontrjagin class of $P C(p-1)$ is $1 \bmod p$. It follows that p divides every Pontrjagin class of $\operatorname{PC}(p-1)$, therefore also $p_{\omega}[P C(p-1)]$, for all ω partitions of $(p-1) / 2$.

Theorem C is now proved by reproducing an argument of Conner and Floyd [7, pp. 113-115].

IV. The additivity of obstructions and the realizability of homology classes

Thom [18] has shown that for every integral homology class v of dimension m in a differential manifold M of dimension n, there exists an integer $f(m, n, v)$ such that $f(m, n, v) \cdot v$ is realizable by a submanifold. An upper bound $f(m, n)$ of the numbers $f(m, n, v)$ will be determined below for $m<[n / 2]$. According to Thom, if c is the cohomology class dual to v, v is realizable if and only if there exists a map $f: M \rightarrow M S O_{n-m}$ such that $f^{*}(U)=c$, where U is the fundamental class of $M S O_{n-m}$. Our task is to find sufficient conditions for the existence of f. f will be constructed by successive extensions through the Postnikov tower of $M S O_{n-m}$.

Lemma 1D. [6, Exposé 13]. Let f_{1}, f_{2}, f_{3} be three maps $X \rightarrow \Omega Y$ such that
$f_{3}=f_{1} \circ f_{2}$, the multiplication being that of loops; X, Y are topological spaces, ΩY is the loop space of Y based at y_{0}. Then if η is in the image of the suspension

$$
\sigma: H^{*}(Y) \rightarrow H^{*}(\Omega Y)
$$

the following is true:

$$
f_{3}^{*}(\eta)=f_{1}^{*}(\eta)+f_{2}^{*}(\eta)
$$

Proof. See [6, Exposé 13].
A basic reference for what follows is Adams [1], especially Chapter II.
Lemma 2D. In the stable range, the higher obstructions are additive.
Proof. Consider the stable Postnikov tower of any space X and two maps

$$
f_{i}: M \rightarrow X(0)
$$

such that $f_{i}^{*}\left(u_{0}\right)=c_{i}(i=1,2)$. We consider this tower as obtained from another tower by applying to it the functor Ω. By Theorem 3.4.9 [1] and an easy induction, the Postnikov invariants correspond in both towers by suspension, may be up to sign; Lemma 1D can be applied to them. Assume f_{i} has been lifted to $X(k-1)$ and call one such lifting f_{i}^{k-1}. If we continue to denote (improperly) by u_{0} the extension of u_{0} to $X(k-1)$, then Lemma 1D gives

$$
\begin{equation*}
\left(f_{1}^{k-1} \circ f_{2}^{k-1}\right)\left(u_{0}\right)=\left(f_{1}^{k-1}\right)^{*}\left(u_{0}\right)+\left(f_{2}^{k-1}\right)^{*}\left(u_{0}\right)=c_{1}+c_{2} \tag{1}
\end{equation*}
$$

Also if u is any class in the cohomology of $X(k-1)$,

$$
\begin{equation*}
\left(f_{1}^{k-1} \circ f_{2}^{k-1}\right)^{*}(u)=\left(f_{1}^{k-1}\right)^{*}(u)+\left(f_{2}^{k-1}\right)^{*}(u) \tag{2}
\end{equation*}
$$

Now the class u determines a stable cohomology operation of the $k^{\text {th }}$-kind, say Φ_{k}, for which the tower is a universal example, with $\Phi_{k}\left(u_{0}\right) \in u$. By the naturality of Φ_{k} :

$$
\left(f_{1}^{k-1} \circ f_{2}^{k-1}\right)^{*} \Phi_{k}\left(u_{0}\right)=\Phi_{k}\left(f_{1}^{k-1} \circ f_{2}^{k-1}\right)^{*}\left(u_{0}\right)=\Phi_{k}\left(c_{1}+c_{2}\right)
$$

by (1); and

$$
\left(f_{1}^{k-1} \circ f_{2}^{k-1}\right)^{*}\left(\Phi_{k}\left(u_{0}\right)\right)=\Phi_{k}\left(f_{1}^{k-1}\right)^{*}\left(u_{0}\right)+\Phi_{k}\left(f_{2}^{k-1}\right)^{*}\left(u_{0}\right)=\Phi_{k}\left(c_{1}\right)+\Phi_{k}\left(c_{2}\right)
$$

by (2) applied to $\Phi_{k}\left(u_{0}\right)$.
Therefore

$$
\Phi\left(c_{1}+c_{2}\right)=\Phi\left(c_{1}\right)+\Phi\left(c_{2}\right) .
$$

To prove Theorem D we must insure that

$$
f: M^{n} \rightarrow X(0)=K(Z, n-m)
$$

can be lifted to $X(n)$ with $f^{*}\left(u_{0}\right)=\alpha_{k} c$. This will be achieved if at each level from $X(0)$ to $X(4 k)$ one can insure that $0 \epsilon \Phi_{i}\left(\alpha_{k} c\right)$ with Φ_{i} the cohomology operation determined by τu_{i} (see [1, Lemma 3.3.8]). But $\tau u_{i} \in \Phi_{i}\left(u_{0}\right)$ has for
order the least common multiple of the numbers n of Theorem B. The following lemma gives that order.

Lemma 3D. The least common multiple of the numbers n_{ω} of Theorem B is $\coprod_{3 \leq p} p^{[2 i /(p-1)]}, p$ any prime.

Proof. Each prime factor of the least common multiple must have for exponent the largest exponent it has among all numbers n_{ω}. This is obviously $[2 i /(p-1)]$ for the prime p.

For a proof that this is the denominator μ_{i} of the polynomial L_{i} introduced by Hirzebruch see [3].

Proof of Theorem D. Assume that

$$
f_{i-1}: M \rightarrow X(4 i-4)
$$

exists, such that $f_{i-1}^{*}\left(u_{0}\right)=\alpha_{i-1} c$. Then there exists a map

$$
f_{i}: M \rightarrow X(4 i-4)
$$

such that $f_{i}^{*} u_{0}=\mu_{i} \alpha_{i-1} c=\alpha_{i} c$, for the obstructions for f_{i} are the obstructions for f_{i-1} multiplied by μ_{i}, therefore can be made zero. Now

$$
\Phi_{i} f_{i}^{*}\left(u_{0}\right)=\mu_{i} \Phi_{i}\left(\alpha_{i-1} c\right)=\mu_{i} f_{i-1}^{*}\left(\Phi_{i} u_{0}\right)
$$

contains $\mu_{i} f_{i-1}^{*}\left(\tau u_{i}\right)$, which is zero; here and above use has been made of the additivity of Φ_{i}. Therefore f_{i} can be lifted to $X(4 i)$. Starting with $f_{0}: M \rightarrow X(0)$ such $f_{0}^{*} u_{0}=c$, we end up with $f_{k}: M \rightarrow X(4 k)$ such that $f_{k}^{*} u_{0}=\alpha_{k} c$. Then $\Phi_{i}\left(\alpha_{k} c\right)$ contains 0 for all i.
k is clearly the largest integer such that $4 k \leq m$. The result is valid in the stable range, i.e. for $m<n-m-1$ or $m<(n-1) / 2$. If n is even, this is $m \leq n / 2-1$. If n is odd, $(n-1) / 2$ is an integer equal to $[n / 2]$. In both cases $m<[n / 2]$.

A formula for α_{k}. One has $\alpha_{k}=\prod_{3 \leqq p} p^{\nu(k, p)}, p$ running over all primes. We compute

$$
\nu(k, p)=\sum_{1 \leqq i \leqq k}\left[\frac{i}{\frac{p-1}{2}}\right] .
$$

We decompose this sum as follows:

$$
\begin{aligned}
\left(\left[\frac{1}{\frac{p-1}{2}}\right]+\left[\frac{2}{\frac{p-1}{2}}\right]+\cdots\right) & +\left(\left[\frac{\frac{p-1}{2}}{\frac{p-1}{2}}\right]+\left[\frac{\frac{p-1}{2}+1}{\frac{p-1}{2}}\right]+\cdots\right) \\
& +\cdots+\left(\left[\frac{q \frac{p-1}{2}}{\frac{p-1}{2}}\right]+\cdots+\left[\frac{k}{\frac{p-1}{2}}\right]\right)
\end{aligned}
$$

where

$$
q=\left[\frac{k}{\frac{p-1}{2}}\right]
$$

Each partial sum contains $(p-1) / 2$ terms, except the last one where the number of terms is r, remainder of the division of k by $(p-1) / 2$, plus one $(k=q(p-1) / 2+r, r<(p-1) / 2)$. Now clearly

$$
\begin{aligned}
\nu(k, p) & =\frac{(p-1)}{2}(1+2+\cdots+(q-1))+(r+1) q \\
& =\frac{p-1}{2} \frac{q(q-1)}{2}+\left(k+1-\frac{p-1}{2} q\right) q
\end{aligned}
$$

or

$$
\nu(k, p)=q(k+1)-\frac{q(q+1)}{2} \frac{p-1}{2} \text { where } q=\left[\frac{2 k}{p-1}\right] \cdot
$$

References

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. vol. 72 (1960), pp. 20-104.
2. E. Artin, Geometric algebra, New York, Interscience, 1957.
3. M. F. Atiyah and F. Hirzebruch, Cohomologie-Operationen und characterische Klassen, Math. Zeitschrift, vol. 77 (1961), pp. 149-187.
4. E. Brown and F. Peterson, Relations among characteristic classes II, Ann. of Math., vol. 81 (1965), pp. 356-363.
5. H. Cartan, Séminaire, Paris, 1954-55.
6. ——, Séminaire, Paris, 1958-59.
7. M. Conner and M. Floyd, Differentiable periodic maps, Erg. Mat., Springer, 1964
8. A. Dold, Démonstration élementaire de deux résultants du cobordisme, Séminaire Ehresmann, Paris, vol. II, no. 4, 1961.
9. ——, Erzeugende der Thomschen Algebra \mathfrak{T}, Math. Zeitschrift, vol. 65 (1956), pp. 25-35.
10. F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, Erg. Mat., Springer, 1962.
11. D. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc., vol. 107 (1963), pp. 432-450.
12. M. Kervaire, A note on obstructions and characteristic classes, Amer. J. Math., vol. 81 (1959), pp. 773-784.
13. J. Milnor, On the cobordism ring of Ω^{*} and a complex analogue. Part I, Amer. J. Math., vol. 82 (1960), pp. 505-521.
14. --, Lectures on characteristic classes, mimeographed, Princeton, 1957.
15. J. P. Serre, Homotopie et classes de groupes abéliens, Ann. of Math., vol. 58 (1953) pp. 258-294.
16. -, Homologie singulière des espaces fibrés, Ann. of Math., vol 54 (1951), pp. 425-505.
17. N. Steenrod, Topology of fibre bundles, Princeton, Princeton University Press, 1951.
18. R. Тном, Quelques propriétés globales des variétés différentiables, Comment Math. Helv., vol. 28 (1954), pp. 17-86.
19. B. L. van der Waerden, Modern algebra, New York, Ungar, 1963.
20. C. T. C. Wall, Determination of the cobordism ring, Ann. of Math., vol. 72 (1960), pp. 292-311.
21. ———Cobordism exact sequences for differential and combinatorial manifolds, Ann of Math., vol. 77 (1963), pp. 1-15.
22. J. H. C. Whitehead, On the realizability of homotopy groups, Ann. of Math., vol. 50 (1949), pp. 261-263.
23. -—, Combinatorial homotopy, Bull. Amer. Math. Soc., vol. 55 (1949), pp. 213-245.

New York University
New York, New York

[^0]: Received June 3, 1965.
 ${ }^{1}$ This work has been presented at the Courant Institute of Mathematical Sciences (New York University) as partial fulfillment of the requirements for the Ph.D. degree. From start to end, the suggestions of Professor Michel A. Kervaire have been very helpful and efficient.

