THE STRONG SZEGO LIMIT THEOREM

BY
A. DrviNaTZ!

1. Suppose that f is a complex-valued function belonging to L' of the
circle group with the usual Haar measure (normalized to 1) and D, is its
ntt Tocplitz determinant defined by

(1) D, = det [f( — §)]im0 -

It is of considerable importance to be able to obtain an asymptotic estimate
for D, as n — . The now classical theorem by Szego [12] states that if
7 > 0 and log fe I}, then

(2) log D, = (n + 1) follogf(e) do + o(n) as n— o,

Considerably later, Szegd [13] obtained a more precise result for a more
limited class of functions. TFor real positive functions enjoying considerable
smoothness properties he showed that

(3) log D, = (n 4+ 1) fo log f(0) do <+ kzz k| N~ (E) |2 + o(1),

where

N~ (k) = fol ¢ log £(8) do.

The problem was subsequently taken up by M. Kac [10] and others. The
most recent results, obtained by Banach algebra techniques, were initiated
by G. Baxter [1], [2], [3] and continued by I. I. Hirschman, Jr., [8]. The
latter’s result is the following:

If

a. 2‘._/‘1%—-00 f(k)Al < o,
B 2w | kf(R) P < o,
v. f(8) # 0,
8. Aargf(0) =0,
then
(4) D,/ — exp 25 kM) () () (—k),

where u = exp ffl, log f(0) d6. He has also obtained analogous results when
the functions are defined on the real line [9].

Banach algebra techniques, as beautiful as they are, have for these prob-
blems certain inherent limitations in that rather severe smoothness require-
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THE STRONG SZEGO LIMIT THEOREM 161

ments are needed for the functions in question. We have, therefore, gone
back to the more classical Hilbert space techniques and have been able to
obtain more general results. In particular we obtain as special cases Hirsch-
man’s result as well as the following result which seems to be closely related
to a result announced by L. Onsager in the 1964 Gibbs lecture:

If the conditions B, v, and 6 are satisfied and if in addition

o', f s continuous and there is a non-negative, continuous, doubly periodic

Junctron m(0, ¢) with m(0,0) = 0 and an M > 0 so that for every ¢ ¢ [0, 1]
L A
0

0 — ¢ im((’, )
then the relation (4) is valid.

2. Our results are based upon results obtained in [7] which we shall briefly
review and bring into a form suitable for use in this paper. We shall be
working on the cirele group with Haar measure normalized to one. Let us
begin by supposing that fe L' and that for all sufficiently large integers n
the Toeplitz determinant D,, £ 0. This means that for all sufficiently large n
we can form the numbers

(5) Mn = Dn/Dn—l,

and moreover there is a unique polynomial

(6) Un(0) = 1 4 Dy (k)™

such that
1

) [ & un0)1(0) do = o, 1<k<n
0

I'rom this it follows immediately that

(8) o = [ | n(0) [ £0) do = [ ua(0)1(0) .

IFFor any complex number z let Az designate the principal argument of z.
In order to proceed we shall suppose that in addition to the condition fe L'
that

(9) log | f|eL

and there exists a v e H* such that 1/y ¢ H* and

(10) I Avf [l < 7/2,

where |||l designates the usual supremum norm. From the facts that

| f] and log | f | are summable it follows from the well-known Szegd factoriza-
tion theorem that
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(11) 7l =12,

where @ is an outer factor in H*. Turther, from the condition (10) it follows
from the considerations of [5] that we may write

(12) e = vt (2* = complex conjugate of z)

where ¥ and 1/¥ are outer factors in H? for some ¢ > 2. Hence, using (11)
and (12) we may write

(13) I = gh*,

where g = ®¥ and h = ®/¥, g and h are outer factors in H”, for some p > 1.
Let us denote the conjugation operator by C; i.e., for any w e L',

Culp) = /oluw) cot (o — ) db.

It is well known [4] that any g e H' is an outer factor if and only if
g = exp {log |g| + iClog |g| + ia},

where a is any value of the argument of §(0). By Jensen’s inequality it is
always true that log | g | e I'.  However, in general, Clog | g | ¢ L7,0 < p < 1.
We can take

logg = log|g| + iClog|g| + ia,

and in case C log | g | ¢ L' we can integrate to get

1
[ 108 9(0) do = 1og |4(0) | + i

We have used the fact that ¢ is an outer factor and hence log | §(0) | is the
integral of log | g |- Hence we may write

1
§g0) = expf0 log ¢(6) do.

In case C' log | h | € L' we get the same formula for A(0). Hence, if we define
(14) logf = log g + log h*

we arrive at the fact that
1
(15) G(0)h(0)* = exp f log f(6) do.
0

Notice that log f depends on the values chosen for the arguments of §(0)
and h(0) but that exp fé log f(8) db is independent of this choice.

In the case where one of the functions C log | g | or C log | & | is not summable
a similar analysis (carried out in [7] shows that we may take

(16) log f = log | f| 4+ 2:C log | ¥ | 4 48,
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where now g is any argument of ¥(0), and in this formulation the formula ( 15)
remains valid. Indeed, it is easy to see that the values of log f given by (14),
coincide with the values given by (16) up to an additive constant 2kwz,
where £ is an integer. Roughly speaking, the additive constant determines
the “branch of log f”, and does not affect the formula (15). For convenience
we shall designate the left side, and hence the right side of (15) by u.

We have broken the main thread of our development in order to get an
expression for §(0)2(0)*. Let us return to it. For any nt* degree trigono-
metric polynomial of the form ¢.(8) = 1 + .7 d.(k)&™, it follows from
(7) and (8) that

1
u = f Un g(qa h)™ d,
0

and hence we can write

1 1
0 0

= { unQ{@\IL* lgn ® — 71(0)\1’]*} de.

I'urther since A(0) = &(0)/¥(0), it follows that (g, ®)*(0) = h(0)¥(0)

and hence
"1 (W *
fo (17{&7*' lg. ® — R(0)¥]*} df = 0.

Therefore, we get

Taking absolute values, and applying the Schwarz inequality we arrive at
the estimate

(17) ltn — o] < Jua® — §(0)/¥ | || ga® — h(O)¥ |,

where || -|| indicates the usual L’ norm.

In order to proceed further it is necessary to obtain an estimate for the
quantity || u.® — §(0)/¥|. To do this it is necessary to use a theorem
proved in [7]. Let us set ¢ = ¥/¥* and T, the corresponding Toeplitz
operator. Let P, be the projection of L onto the (n + 1)-dimensional
subspace of H® generated by the set {¢*® : 0 < k < n}. If we denote the
latter subspace by H%(®), the following is true:

TueEorREM A. (a) If | f| and log | f | are in L' and || Af || < /2, then there
exists an m > 0 so that for all n and all w e H>(®)

(18) mllwl < || PuToul.
(b) Suppose
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|f| — eu-l—Cv’
where w e L, || v ]|w < 7/2 and there is a v e H” with 1/y ¢ H” so that
| Avf o < m/2.

If in addition g/g* or h/h™* is continuous, then there is an m > 0 and an N
so that (18) is valid for all n > N and all u e H%(®).

Although we have stated the theorem here and in [7] only for the special
situation for which it is needed, the proof given in [7] makes it quite clear
that it can be formulated in a way so that it will constitute a generalization
of a theorem of Reich [11].

The inequality (18) implies that D, = 0 (see [7]). Hence the considera-
tions prior to Theorem A are valid. If p(6#) is any trigonometric polynomial
of the form p(8) = D reo p(k)&™’, then we may write

DO i — 1} = [ o lin ® = (0)/%} (p2)" b
Hence,

” Ijn T‘p(un ¢ — 6(0)/\11) ”

sup {| (¢lun ® — §(0)/%]| p®) : || p® || = 1}
sup {| B(0) | [pn —w|: |92 = 1}

< Jpa = w|/19(0) |
The last inequality follows from the fact that || p® | = 1 implies that

| 5(0) [ $(0) | < 1.

Therefore, if p, ® is any element of H’(®) and if f satisfies either of the
hypotheses of Theorem A we have from (18), for all sufficiently large n,

i ® = pa® || < || Pa Tolttn® — p®) |
Sl — wl/120) | + | PuTo(pa® — §(0)/¥ .
Using the estimate (17) and noting that | P, 7, || < 1 we get
M| Uun® = pa®| < {lua® — pu®@ || + [[pu® — §(0)/¥ [}]| ¢ ®
— O)¥ |/ $(0) | + || pa® — §(0)/¥ ||

Now @ is outer and ¥ e H® and hence we can find a sequence ¢, so that
¢n ® — h(0)¥ in H>. Hence for all n sufficiently large we can find a ¢, so that

| gn® — R(0)¥ ||/| $(0) | < m/2.

Il

Using this in the previous inequality we have arrived at the following:

TuroreM 1. If f satisfies either of the hypotheses of Theorem A, then there
isan M > 0 and an N so that for all n > N and all p, ® e Hy(®),

(19) [un® — pu®|| <M || pn® — §(0)/¥ .
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CoroLLARY 1. Under the hypotheses of Theorem 1, there is an M > 0
and an N so that for all n > N and all p, ® e Ho (D),

(20) [ ® — §(0)/¥ || < M || pa® — §(0)/¥ |.

3. In order to discuss the strong Szegd limit theorem it is necessary for
us to make some observations about a certain Hilbert space of functions which
we will label Hye. This will be the Hilbert space of all functions on the
circle group for which

(21) lellie =180) P+ 2w lk|]ék) P < o.

We shall usually be working with a pseudo-norm on this space and we shall
designate this by

(22) el = { 28w | k11 é(k) 3™

There is an alternate expression for || ¢ ||1,» which is often very useful. This
is given by

(22') I e [l1 =f01fol

In case ce H n Hyy,, then ¢ may be extended analytically inside the unit
disk D and we have the representation

c(8) — clo)

2
2sin 7@ — o) a0 de.

(227) Lol =1 ][ 1e@Fdsay, =t

where ¢'(2) is the derivative with respect to z of the analytic extension ¢(z)
of ¢ into the unit disk. As is well known, for almost all 6, ¢(re®™) — ¢(8)
asr — 1. (We are somewhat abusing the notation here since quite properly
the boundary function should be denoted by ¢(**™) instead of ¢(§). However
we think no confusion will result.) Both of these formulas are essentially
an application of the Plancherel theorem and we leave their verification to
the reader. Of course the formulas (22’) and (22”) are valid even if ¢ ¢ Hys
in which case both sides are infinite.

In case ¢ is an outer factor it has a non-vanishing extension into D and
moreover log ¢ can be defined as in Section 2 and this belongs certainly to
H” for0 < p < 1. If we write A¢c = log ¢, then the formula (22”) takes the

form
I xe [[1]2 = L ff c((:))

If ce L', let o,(c) be the nt Fejer mean of ¢ and s,(¢) the nth partial sum
of the Tourier series of ¢; i.e.,

(Tn(c)(o) = ZI?‘=_7; (1 — l](; l/(n + 1))é(k)e2rik0,
5a(¢)(0) = 2iemn &(k) ™.

- % ffn | {log c(2)}'|" da dy.
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Prorosition 1. If ce Hypo, then

| sn(c) — au(c) |l —0 asn— o.
Proof. We have
| $a(e)(8) — 0u(e)(0) ' = | Ziemn | B |/(n + 1)e(k)e™™ |
<20n + 1) 2= [ k/(n + 1) Pl ék) [
<23l k/(n + )" ek) P

Break up the sum on the right into two parts. The first part shall consist
of those terms for which | k |/(n + 1)* < 1/(n 4 1)"* and the second part
will consist of the remaining terms. Noting the fact that |k |/(n + 1) < 1
for | k| < n, we have

[ sa(€)(0) — au(e)(0) |*
<2/(n + 1" Xz [ 8(K) [P+ 2 2 kismenrs [ k|| 6(k) [

Since ¢ e L’ the first term goes to zero as n — w, and since ¢ e Hy/, the second
term goes to zero. This completes the proof.

ProrosiTion 2. If0 < m < |f| £ M < « and f satisfies the other hy-
potheses of part (a) or (b) of Theorem A, then for all sufficiently large n,

| un — $a(3(0)/9) |lo ‘
= Of{n'” || su(1/g) — 1
Ltn — 5u(g(O)/g) ] OO N0 = Wl
= Of| sa(1/g) — 1/g |}

In particular if 1/g € Hyjs both quantities on the left go to zero.

Proof. Since f satisfies the hypotheses of Theorem A we may factor it as
f = gh* and (18) and (19) are valid. Hence, u, exists for all sufficiently
large » and we may write

| ua(8) — 54(6(0)/9)(0) ' = | Doio {2a(k) — (§(0)/g)"(K)} ™™
< n i | da(k) — (§(0)/g)"(k) [*

In (19) take p, = $.(§(0)/g) and use the fact that 0 < m < |@[° < M.
Then for all sufficiently large n,

m |l un — 5(§0)/9) || < [ un® — 8@ || < My su(1/g)— 1/g |,

where M, is a fixed positive constant. Putting this into the previous in-
equality gives the first inequality of our proposition.
Similarly, using (19),

ik | (k) — (§0)/9)"(k) [ < 02| 4u(k) — (§(0)/g) (k) [
= O{n || s«(1/9) — /g [}
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The fact that
n |l su(1/9) — 1/g | = Ofllsu(1/9) — 1/g Ilir2}

is clear.

ProrosiTioN 3. Suppose 0 < m < |f| < M < o and there is a v e H®
with 1/y € H® so that || Axf ||l < 7/2 and moreover that v and log v belong to
Hiys . Then fe Hypsif and only if log f € H1j2 where log f is defined by (14).

Proof. Tt us set
Ji=f.

If Log z represents the principal value of the logarithm then we can clearly
choose the “branches” of log v and log f so that

Log fi = log v + log f.

Let us suppose that fe Hip. Since v e Hy and both v and f are bounded
it follows from (22") that fi = «vf belongs to Hys. As we shall now show
this will imply that Log fi e [{1/2 , and since log v € Hy;» it follows that log f € Hyj2 .
Clearly the “branch” of log f that we choose does not affect || log f ll12 and
hence if one “branch’ of log f belongs to Hys , any “branch” will also.

To show that Log fi belongs to Hy» we simply notice that f; is bounded and
bounded away from zero and hence its range lies in a compact set in the open
right complex plane (remember that || Afi ||l < w/2!). Hence, there is a
constant K so that

| Log f1(6) — Logfi(e) | < K [f1(6) — file) |
for all 6 and ¢. If we use this inequality in the right hand side of (22") we see
that indeed Log fi1 e Hye .

Conversely, suppose that logf is in Hys ; then Logfie Hyp. Since fi is
bounded and bounded away from zero, Log fi lies in a compact set in the com-
plex plane. Hence, since

fl — eLog/I
there is a constant K so that

| /1(0) — f1(8)] < K| Logfi(8) — Log fi(¢)|

for all 8 and ¢. Hence fi e Hy» and since f = fi/v, it follows that f e Hype .
We have of course used the fact that since v and 1/ are in L”, v ¢ Hy, if and
only if ]./’Y € H]/Q .

CoroLrary 2. If0 < m < |f| £ M < » and the argument of f can be
chosen as a continuous function on the circle group, then the conclusions of Propo-
sitton 3 are valid.

Proof. Since arg f(#) is continuous there is a real trigonometric polynomial
p(8) = > n . p(k)é™™ so that || p(8) — arg f(8)]l < 7/2. Choose

v(8) = exp — 2i{p(0)/2 + D p(k)™™).
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Clearly v and 1/ are in H*, || Avf ||l» < /2 and logy € Hy». Further, since
v is continuously differentiable as a function of 6, it also belongs to Hys . The
result now follows from Proposition 3.

Propostrion 4. If f = gh™ with g, h, 1/g, 1/h in H®, then log f (as defined
by (14)) belongs to Hys if and only if g and h are in Hqs2 (or either of the equiva-
lent conditions: 1/g, 1/h € Hyjs ; log g, log h e Hys).

Proof. Since logf = logg + logh*, it follows that (\f)* (k) = (Ag)*(k)
for k > 0 and (A)*(k) = (\k)*(k)* for k < 0, where \f = log f, etc. Hence,
it is enough to show that g e Hy if and only if Ng e Hy2 and the same for h.
However, since ¢ and h are bounded and bounded away from zero we have

[RYAIYES ;l-rf/D 7(2) dx dy = 0{71—r ffb | ¢’ (2)|" du dz}
=0 {[l g 1]},

9()
and vice versa. Of course, the same is true for h. This completes the proof.

4. We are now in a position to obtain some results about the limit of
D,/u*". Our first result gives conditions under which this limit exists, but
does not specify its value.

Tueorem 2. If fe L” and satisfies the hypotheses of either (a) or (b) of
theorem A and if in addition 1/g and 1/h are in Hyjs , then

: 1
limy > D /u™"
exists as a finite non-zero number.

Proof. Suppose that n, is an integer so that for n > ng, D, % 0. Then we
may write

D, [ o T L ax D,
1

= S ETEE I
prtt n T

We should, of course, note that under the conditions of theorem A, u exists and
is a non-zero number (see [7]).

A sufficient condition that the product on the right have a finite non-zero
limit is of course that

Do | 1 — m/u] < .

I'rom the estimates (17) and (20) and the fact that | ® | = | f | is bounded we
get

|1 — wa/u| = O] pa — §(0)/g |||l ¢u — £(0) /R I}

where p, and ¢, can be taken to be any n*™ degree ‘“analytic” trigonometric
polynomials with constant coefficient 1. We choose

P = 52(6(0)/9),  gu = 5a(h(0)/R).
Then
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Do |1 = m/u| = O{Xisne [Xial(1/0) *DFILE 5l (1/B) "I
Applying the Schwarz inequality on the right we finally get
Zina | 1= wi/u| = O{ 1/h Yo || /R [
CoroLLARY 3. [If the hypotheses of Theorem 2 are satisfied, then
(Ba/w)" —1 as n— .

Proof. 'This corollary is really a corollary to the proof of Theorem 2. As
we have shown in the proof

1 — /i = O{[Xion [(1/9) (k) P2 kmn [(1/R) *(R) 1.
Since 1/¢g and 1/h are in Hy , it follows that

1 — pa/u = o(1/n).
This says that

(Nn/l")” - 1= (1 -+ en/n)n - 17

where ¢, — 0. Hence, given ¢ > 0, there is an N so that n > n implies
| e. | < & and hence forn > N

l(“n/l-")n - ]-l < (1+ len l/n)n —1<e — 1

In order to identify the limit in Theorem 2 it will be necessary for us to make
more stringent assumptions about the outer factors g and h which appear in
the factorization of f. It will also be necessary for us to use an identity due to
Baxter [1] and Szego [13]. In order to write down the Baxter-Szego identity
we first note that if D, # 0 then there exists a unique trigonometric polynomial

0(0) =1+ Z)f=1 Du(k)&™™
s0 that

1
f A (9)f(0) do = 0, 1<k <mn.
0

Clearly it is possible to obtain for the sequence {v,} results analogous to those
we have obtained for the sequence {u,}. The functions u, and v, can clearly
be extended analytically into the unit disk (indeed over the entire complex
plane) and the Baxter-Szeg6 identity says that if these polynomials do not
vanish in the closed unit disk (which means in particular that they are outer
factors) then

D & X U 1 w, (2)\ (00 (2)\"
i = exp {IZ—; ke Ovun ) () ()~ (k) } = oxp ~ [L( )(——»——) dz dy.

TurorEM 3. Suppose f is a complex-valued function on the circle group which
satisfies the following hypotheses:

1. f s conttnuous and f(9) % 0,

2. f € H 1/2 5
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3. Aargf =20
4. Clog f vs continuous.
Then

limps Do/u™™ = exp { 21 KON (B) (M)A (=K}

Proof. We here takelogf = log | f| + 7 arg f, where arg f is continuous on
the circle group. The conditions 1 and 3 imply that

f=gh*
where ¢, h, 1/g and 1/h are in H” for some p > 1. This follows from the dis-

cussion at the beginning of Section 2 and the proof of Corollary 2. Indeed, up
to non-essential multiplicative constants we may take

exp 3{log f + iC log f}
exp {log f* + iC log f*}.

This is always true for factorizations of the form (13) for functions satisfying
(9) and (10). In this case the proof is particularly simple. Designate the
right hand sides of the above expressions by g1 and hy respectively. As is well
known [4] any functions which can be written in this form are outer factors and
indeed because of the assumptions 1 and 4 we have that g1, b1, 1/g1 and 1/hy
arc continuous outer factors. Ifurther it is clear that

f=gh* = gbi

g
h

and hence
9/91 = (hi/h)* = constant.

Consequently, all of the conditions of (b) of theorem A are satisfied and in
particular proposition 2 is valid for both u, and v, . In the case of v,, of
course, we must consider s,(h(0)/h). It follows from our hypotheses and
Corollary 2 that log f € Hy/» and hence from Proposition 4 that g, h, 1/g, 1/h
are in Hys . Hence Proposition 1 is valid for these functions.

Since 1/g is continuous it follows from Propositions 1 and 2 that

[ un — §(0)/g ||l — 0.

Since 1/¢ is outer and does not vanish on the circle group it follows that its
analytic extension does not vanish in the closed unit disk. Hence using the
maximum modulus principle and the uniform convergence of u, to §(0)/g it
follows that there is an ny so that n > ny implies that the analytic extension of
un does not vanish in the closed unit disk. In the same way v, — h(0) /A uni-
formly and we may as well suppose that we have chosen ny large enough so that
n > my implies that the analytic extension of v, does not vanish on the closed
unit disk.
We shall presently show that

[ Mew = N(1/g) |12 and | Mo — N(L/A) |12
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go to zero as m — . From this it follows that
201 k() () M)A (B) ™ — 2250 k(Ng)* () () (k)™
= 21 kO ()Y (M)A —k).
Taken in conjunction with the Baxter-Szegs identity this tells us that
Lo, Do/ ™ = exp { 22500 KON (B) (M) (—F)).

However, from Corollary 3 we know that (u./u)""" — 1, and hence the proof of
our theorem will be complete.

We shall only establish the fact that || Au, — N(1/g) |12 — 0 since the proof
for v, — N(1/h) is the same. First of all we notice, using Proposition 2, that

2w — §(0)/g 12 < [ wn — 3a(3(0)/g) 12 + 1 5(§(0)/g) — §(0)/g |12
= O{|| s.(1/9) — 1/g ”;/2} —0 as n— .

Hence, we may write, for n > ny,

1 Mtn — A(1/g) 1 =[ ff uf,’((z? gg((z)) . },
4 2 1/2
= I01% - (58)) al 2= ]
’ 2 i N "
* |:jT' ffp ggézz)) u:é:)(;)(z) — 1| dz dy] .

IFor n > my the first integral of this last sum is

Of || wn — §(0)/g llis2},

which we have noted above goes to zero, and since §(0)/u.(2)g(z) — 1 uni-
formly in the closed unit disk and log g € H1/2 we have shown that Nu, —N(1/g).
Remarks. If in Theorem 3 we replace condition 4 by the condition

4. Clog|f| is continuous

then it is an immediate consequence of Theorem 2 that the limit of D,/
exists. This follows from the fact that g/¢g* and h/h™ are continuous and hence
the conditions of Theorem 2 are fulfilled.

In the simple situation of Theorem 3, that is to say where the functionsgand
h are continuous, it is of course possible to use Reich’s theorem [11] instead of
our more general Theorem A to obtain the needed estimates corresponding to
(17) and (19).

We should perhaps also note that the limit of D,/u""™ can be alternatively

written in the form
1 g @)\ (1 ()\*
P ff» <g(2) ) ("h(Z) ) dardy.

5. The fact that Theorem 3 contains Hirschman’s theorem is quite clear.
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It will still take a small amount of work to show that it contains the last result
of §1. To do this it will be enough to show that the condition «’ implies our
condition 4, namely that C log f is continuous. We begin with a slightly more
general result.

ProrosiTioN 5. If fe L', is continuous at ¢ € [0, 1], and

de
0 — ¢ < %
then the conjugate function Cf is continuous at ¢ if and only if

Mie —t) —fle+h)
(24) . Th dt = o(1) as h—0.

Proof. Our proof is a modification of a proof given in Zygmund [14, p. 122]
for a similar situation. It will be more convenient to work on the interval

[—%, %]. The condition (23) is clearly equivalent with
2]
f JO0) = 1Ce) | 4 < o
Lae | tan 7(0 — o)

We can write

Cf(p) = wf(@ —t) — [(e) dt,

—1/2 tan =i

, e —t) — fle + h)
Cllo +h) = 172 tan w(t + h) dt.

Let us set

_ M —t) — ), _ [ e =1 — e + k)
Li(h) = Low — tanawt d, L(h) = [zml tan w(t + h) d,

I(h) = Ii(h) + Ly(h).

Then we write

Clle + h) — Cf(e)
—2|h| 1/2
= (f_ + f2 >[f(<p ~ 1) — J(e)] [eot w(t + h) — cotxt] dt

1/2 |h]

~tstetm =g ([ [ ) eotnte 0y e 1h).

1/2 1kl

By a direct computation the second set of integrals on the right is O(1) and
by the continuity of f at ¢, the corresponding term is o(1) as h — 0.

Let us now concentrate our attention on the first set of integrals. We may
write

1/2
1 f2|hl [f(e —t) — f(e)] [cot w(t + k) — cot =] dt'
(26)
Jlo —1t) — f(e)

1/2
< .
sin i

21l

sin wh
sin w(t + h) \ dt.
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Let m(t) be a positive monotone decreasing function on (0, %] so that

m(0+) = o and /
1/2
I

This is always possible since [f(¢ — t) — f(¢)]/sin «t is a summable function of
. Given ¢ > 0, choose & so that 1/m(8) < & and then h sufficiently small so
that 0 < 2| h| < §and

fle —8) — [(e)

: m(t) dt < .
sin i

: e = 1) = J(e) sin wh

(27) fa sin ! sinw(t + h) i < e
Tfurther, we have

/6 o —t) — fe) sin wh dt

20l | sin i sinw(t+ h) |

8
(28) - ml(a) 21 = _sitn)L ﬂ;f(@ \m(t) dt
1/2
< efo flo —Sitrzr-;fﬁp) m(t) dt.

If we combine (27) and (28) we see the left side of (26) is o(1) as h — 0.
Analogously we can work with the integral over [—1, —2 | A |]. Hence we see
that the first set of integrals in (25) is o(1) as h — 0.

It remains to examine I(h). Since [f(¢ + t) — f(¢)]/tan «t is a summable
function of ¢, I1(h) = o(1) as h—0. Hence Cfis continuous at ¢ if and only if
I,(h) = o(1) which is clearly equivalent with (24).

CorOLLARY 4. If f is continuous and there is a non-negative, continuous,
doubly periodic function m(8, ¢) with m(6, 6) = 0 and an M > 0 so that for
every ¢ € [0, 1]

(29) [

then (24) is satisfied for f and hence Cf is conlinuous.

1(6) — J(e) i .y
0—¢ m(ey (,0) - ’

Proof. Let us again work on [—%, 1]. To show that condition (24) is
satisfied it will be enough to show that

. Mo —t) — (o + h)
(30) [.zm] {4+ h

However, from (29) the condition (30) is almost trivial. Indeed, set n(t,¢) =
m(e — &, ¢); clearly n(t, ¢) is a continuous periodic function and n(0, ¢) = 0.
Now given ¢ and ¢ take h sufficiently small so that n(t + h,¢ + h) < &/M for
[t] < 2|h]. Then

dt = o(1) as h—0.
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2|h|
‘[ZIhI

Jle —t) — J(e + h)
T h dt

Ml — ) — fle 4+ h) [n(t 4+ hye + h)

< ) TS

dt

21|
< e
Of course Corollary 4 can be proved directly since the condition (29) will
make the integral defining Cf uniformly convergent.

Some special cases of condition (29) are as follows: If 0 < a < 1 and there is
an M > 0 so that for all ¢ € [0, 1]

H11) — fle) |
(] l b— o l
then (29) is satisfied. Indeed, choose m(8, ¢) = | f(8) — f(o)|"% Also, if
p > 1 and for all ¢
1
I

then it is easy to show there is an 0 < « < 1 for which the previous inequality
is satisfied. Of course in this last case the continuity of Cf is immediate.

COROLLARY 5. If f satisfies 1 and 3 of Theorem 3 and in additton (29) of
Corollary 4 s satisfied then C log f is continuous.

o < M,

P

10 =1 gy < mt

00— o

Proof. From the proof of Corollary 2 there is an analytic trigonometric
polynomial p so that if v = exp (—p) and
ho=,
then || Afi ||» < 7/2. Further, it is clear that
| £1(8) — file)l = O f(8) — f(e)] + |v(6) — v(o)]}.

Since v is continuously differentiable it is clear that (30) is true for v. Since
(30) is true for f, it is true for f; .

Now, log f = Log fi + p, where as before Log z is the principal branch of the
logarithm function. Since

| Log f1(0) — Log fi(e)| = O{|f1(8) — fi(e)}

it follows that (30) is true for Log fi . Since p is continuously differentiable
(30) is true for p. Hence (30) is true for log f. Since log f is continuous the
proof is completed by applying Proposition 5.

6. As Szego has pointed out, for f real D,/u"™ is non-decreasing and hence
the limit will always exist, although it may not necessarily be finite. Using
results obtained in [6] we can establish the following:

If0<m<f<M < o then D,/u"™ goes to a finite limit if and only if
fé H]/g .
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Because of the boundedness conditions on J, it has a factorization f = | ¢ |,
where ¢ is outer. It follows from Propositions 3 and 4 that if fe [y, then
1/g e Hy». The sufficiency is then a consequence of Theorem 2.

To prove the necessity we notice that since f is real, u, > p for all n and
hence 1 — (p,/u) is always non-positive. From the proof of Theorem 2 it
follows that a necessary and sufficient condition for the convergence of D,/u™""
to a finite himit is that

2ol 1l = wafu| < oo

We have shown in [6] that f > m > 0 implies there is a constant « so that
2 [(L/NE) < a| 1 — palu .
Summing over n we arrive at the fact that
2k [(1/g) (R < a 2 50 |1 — pa/u| <
i.c., 1/g € Hys . Propositions 3 and 4 imply that fe Hy .
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