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1. Introduction

All groups considered irt this paper re assumed to be additively written
abelian groups. We follow for the most part the notation and terminology
of [2]. We mention the following notations: if G is an abelian group, then
Gt denotes the maximal torsion subgroup of G, G denotes the primary com-
ponent of Gt for the prime p, G [’1=. nG, and fo(a) denotes the a-th Ulm
invariant, of G if G is primary. The additive group of the rationals will be
denoted by Q and the subgroup of Q consisting of the integers by Z. All
modules are assumed to be unital.
The purpose of this paper is to study mixed groups of torsion-free rank

one; that is, mixed groups G with the property that if x and y are elements of
G having infinite order, then there exist nonzero integers m and n such that
mx ny In Section 2, we give an invariant that, along with the U!m
invariauts, determines the isomorphism classes of such groups in the countable
case. The invariant is just that given by Rotman [9] for a more restricted
class of groups and indeed is the obvious generalization of the invariant
introduced by Kaplansky and Mackey in [6] for countably generated reduced
R-modules of torsion-free rank one where R is a complete discrete valuation
ring. Rotman in [8] generalized the techniques of [6] to certain modules over
a not necessarily complete discrete valuation ring and in [9] to certain count-
able mixed groups having torsion-free rank one. To be specific, if G denotes a
countable reduced mixed group of torsion-free rank one, then Rotman has
given satisfactory invariants in the following cases:

(1) Gt is a p-group, G/Gt Q and Q,= p"G 0 (see [8])

(2) N r,= p’G _, G for all primes p (see [9])

Observe that in both (1) and (2), Gt is necessarily a direct sum of cyclic
groups. Case (2) is more restrictive than it may seem, since, for example,
it does not include the extensions of ’. C(p) (summation over all primes p)
by Q. As in Rotman’s work, our approach is to attempt to push the methods
of [6] as far as possible. Our success in dealing with elements of transfinite
heights depends on the imbedding of a reduced group in its cotorsion comple-
tion (see [3]).

In the third section, we solve the existence question for countable groups
with given invariants, and in the fourth section, we give some consideration
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to uncountable mixed groups of torsion-free rank one. We show that in
some rather special instances the invariant given in the countable case suf-
fices, but that in general it fails to distinguish nonisomorphic mixed groups
of torsion-free rank one having the same maximal torsion subgroup. In the
final section, some applications of our invariant are considered.

Let G be an abelian group and let p be a prime. We define pG inductively
for all ordinals a as follows"

pG [x e G x pg for some g e G].

pG p(p-lG) if a- 1 exists.

f’l<, pG if a is a limit ordinal.

If is the first ordinal such that pXG pX+lG, set pG pXG and observe
that p(pG) pG. We define the p-height h(x) of the element x in G by

p"+G.h(x) a if x e p"G but x e

ifxepG.

In the sequel, we shall need the following lemma and its corollary.

LEM 1. Let p be a prime and a an ordinal. If G is a neat subgroup of K
such that K[p]

_
G[p], pK} for all < a, then pK n G pG for all

_
oz.

Proof. Since G is a neat subgroup of K, pK r G pG. Suppose f

_
a

,nd that pK G pG for all < . If is a limit ordinal, we obtain
pK G pG by taking intersections. We may assume that 1 exists.
Let x e pK G and write x py with y e p-lK. Since G is neat, there is a
geGsuchthatx pg. Theny-geK[p],andwecanwritey--g gl-kz
with gl G[p] and z e p-lK. Therefore

y z g - gl G p-lK p-lG and x pg p(g - g)e pG.

COROLLARY. If K/G is torsion-free, then p"K G p"G for all primes p
and all ordinals a.

For each prime p, let J be a copy of the p-adic integers and let 1 denote
the identity of J. For technical convenience, we assume that the J are
disjoint. We then form the ring J* * J, the complete direct sum of
the J. Clearly J* has an identity 1 whose J-component is 1 for each
prine p, and we may consider the ring J of integers as being imbedded as a
subring of J* by identifying the integer n with the element nl of J*. We also
consider the J to be, in the obvious manner, ideals in J*. Since pJq Jq
for q p we have 1 1 + pq* for a unique q* *J From this equation,
it follows that h,(x) h( 1 x) whenever x is an element of a J*-module M.
(Indeed, we have a direct decomposition M 1M + K where K pK
and 1 K 0, and therefore p"M p"( 1 M) - K for all ordinals a.) More



136 CHARLES K. MEGIBBEN

generally, hp(x) h(rx) whenever r is a unit in J and h(x) h(nx)
whenever n is an integer prime to p.

Certain groups are J*-modules in a natural fashion. For example, if T is a
torsion group, then T T and, since each T is a J-module, T becomes
a J*-module in an obvious manner. If G is a complete Hausdorff space in the
topology obtained by taking the subgroups nG as neighborhoods of 0, then G
is also a J*-module (see [1]). The key to this observation is the fact that J*
may be viewed as the completion of the ring J of integers in the topology on J
obtained by taking the ideals nJ (n) as neighborhoods of 0. The groups G
that are complete Hausdorff in the above topology are precisely the reduced
algebraically compact groups, l\[ore generally, we shall show that cotorsion
groups are J*-modules. Recall that G is cotorsion if and only if G is reduced
and isomorphic to Ext (Q/Z, G). Now

Ext (Q/Z, G) ._ Ext (Q/Z, Gt) - Ext (Q/Z, G/Gt)

and Ext (Q/Z, G/Gt) is algebraically compact (see [3]). It then suffices to
show that T* Ext (Q/Z, T) is a J*-module whenever T is a reduced torsion
group. Now T can be viewed as the maximal torsion subgroup of T*, and
we therefore have the exact sequence

0 Horn (T*/T, T*) - Hom (T*, T*)- Hom( T, T*) - Ext T*/T, T*) O.

It follows then that every endomorphism of T extends uniquely to an endomor-
phism of T*. Therefore there is a natural and unique manner in which to
make T* a J*-module containing T as a submodule. We low see that every
reduced group G is a subgroup of a J*-module M with pM n G pG for
all primes p and all ordinals a. Indeed, let M Ext (Q/Z, G). Then G
can be viewed as a subgroup of iV/ with M/G torsion-free and the corollary
to Lemma 1 applies.

2. Structure theorem

We now iitiate a series of lemmas that lead to the proof of our mai
theorem on countable mixed groups of torsion-free rank one. We first es-

tablish a crucial generalization of Lemma 2 in [6].

LEMMA 2. Let M be a reduced J,-module and suppose that S Y} -k V
is a subgroup of M such that V is finite and O( y) . If x is an element

of M such that px e S, then there is an x’ M such that {x’, S} {x, S} and the
coset x’ -k S contains an element of maximal height.

Proof. Since M is a Jp-module, h(n) for all m M and all primes
q - p. Hence by height we mean p-height and we write h(m) for hp(m).
Since px S, we may write px to y - vo where to is an integer and v0 V.
We consider various cases.
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Case 1. (t0,p) 1. Write 1 Xt0 -- tpandletx’ Xx+y. Then
{x, S} {x’, S} and p’ y’ where y’ y + v0. Observe that S {y’} -- V.
Suppose the coset z’ -- S contains no element of maximal height. Then,
since V is finite, there will exist a v V and a sequence tn of integers such
that

h( x’ + tn+ Y’ -t" V) > h( x’ + t y’ + y)

for ll n. But note that x’ -t- t y’ v (1 -t- t p)x’ + v, nd therefore
there is n unit an J such that

zn(x’-t-tn y’+ v) x’+ an v.

Since v has finite order, the an v can assume at most finitely many values
Therefore we have for some integer the contradiction h(x’ - tv) > h(x’ + tv)"

Case 2. px 0forsomej. LetS* Jy - V. Then byLemma2in
[6], there is a J and a v V such that x -t- y -t- v has maximal height in
x S*. We may assume that 0 (otherwise x + v has maximal height
in x -t- S) and we write pa where is a unit in J. Then there is an
integer ] prime to p such that

-(x -t- ’y + v) ]cx + py -t- tv.

Let k and t be integers such that 1 ),/c -t- p. Then

),(k,x q--py -t- k,v) x q-- hpy q- klcv x q-- S.

Since h-1 is a unit in J, x q-- kpiy q- klcv has maximal height in
x/Sx/S*.

Case 3. to ph for some integer h. Then set x x tly. Since
px Vo, x has finite order. By Case 2, the coset x’ -- S x -t- S contains
a element of maximal height.

We next generalize Lemma 2 to the situation with which we are concerned.

LEMM 3. Let G be a reduced group and let S be a finitely generated sub-
group of G having torsion-free rank one. If x is an element of G such that
px S, then there is an x’e G such that px’e S, Ix’, SI {x, S} and the coset
x’ + S contains an element of maximal p-height.

Proof. We my write S Y} -- V where 0(y) and V is finite. We
may assume that G is imbedded in a reduced J*-module M such that the
elements of G have the same p-height in M as in G. Then 1, S 11, Yl -- 1, V
is a subgroup of the reduced J-module 1, M. By Lemma 2, there isa

zelMsuchthat {z, 1S} {lx, IS} and thecosetz if- lShasanele-
ment of maximal p-height. Moreover, by the proof of Lemma 2, we may
assume thatz l(Xxq-s0) wheres0eS and(),,p) 1. Setx’ ),xff-s0
and observe that {x’, S} {x, S}. Choose v V and an integer such that
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z -- tl y -t- 1 v l(x’ -t- ty -- v) has maximal p-height in z -t- 1 S. Then
x’ -- ty - v has maximal p-height in x’ -- S.
With but a simple argument to handle the case h(x) , the proof of

Lemma 5 in [9] can now, with the aid of our Lemma 3, be reproduced to yield

LEMMA 4. Suppose that G and H are reduced groups having the same Ulm
invariants for the prime p. Let S and T be finitely generated subgroups of G and
H having torsion-free rant one, a height preserving isomorphism of S onto T
and x an element of G such that x S but px e S. Then can be extended to a
height preserving isomorphism of {x, S} onto a suitable subgroup of H con-
taining T.

Our main result will follow rather readily now. But first we must introduce
the invariant we have promised. Let x be an element of G and let p be a
prime. Then we associate with x the p-Ulm sequence

u(x) (-0, ,-, "")

of x in G where a is the p-height of px in G. We say that any two sequences
(a0, a, and (0, B, "") are equivalent if there exist integers
nandmsuchthata+ m+’forj 0, 1, .... Letpl,p., "",p,-"

be the increasing sequence of primes. Then with each x e G we associate an
infinite matrix U(x) (aj), which we shall call the Ulm matrix of x, where
the i-th row is just the p-Ulm sequence of x. We now define an equivalence
relation between such infinite matrixes, the motivation for which will be
evident shortly. We write (a.) (.) if and only if for almost all i the i-th
rows of the two matrices are identical and for the remaining i’s the i-th rows
are equivalent as sequences. It is easy to check that we have indeed defined
an equivalence relation. If x and y are elements of G such that nx my
for nonzero integers n and m, then it is immediately seen that U(x) U(y).
Therefore, if G has torsion-free rank one, we associate with G the equivalence
class U(G) of matrices determined by U(x) where x is any element of infinite
order in G. If G and H have torsion-free rank one and if U(G) U(H),
then G and H contain elements x and y such that U(x) U(y). Indeed,
if x’ and y’ are elements of G and H having infinite order, then there exist
nonzero integers n and m such that U(nx’) UH(my’).

THEOREM 1. Let G and H be countable mixed groups of torsion-free rantc one.
Then G . H if and only if Gt ._ Ht and U(G) U(H).

Proof. The conditions are clearly necessary, so let us assume that they
are satisfied. Also we may assume that the maximal torsio subgroups are
reduced. Then the only possibility that G not be reduced is that G -- Gt - Q.
But it is obvious that this happens if and only if U(G) contains the matrix all
of whose entries are ’s. Therefore w.e may assume that the groups G and
H are reduced. Since U(G) U(H), we can find elements x G and y e H
having infinite order and such that U(x) Un(y). The mapping x - y then
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yields a height preserving isoinorphism of {x} onto [y}. Since our groups are
countable and have the same Ulm invariants for all primes p, we can with the
aid of Lemma 4 extend this mapping in the usual step-by-step back-and-forth
method (see the proof of Ulm’s theorem in [2], [5], or [6]) to an isomorphism
between G and H.

3. Existence theorem

We now turn to the question of the existence of countable mixed groups
with given invariants. First we must look at our invariant more closely.
By an increasing sequence of ordinals and symbols oo, we mean a sequence
(a0, ..., a, ...) where each a is either an ordinal or a symbol and
where a+ > a if a is an ordinal and Cn-t-1 if a . An increasing
sequence (a0, a, of ordinals and symbols is said to be p-com-
patible with the reduced torsion group T if

(i) Otn+l > a -t- 1 only if the a-th Ulm invariant of the p-primary
component of T does not vanish; and

(ii) if am , then am < X -t- 0 where X is the length of the p-primary
component of T.

The restriction (i) is, of course, familiar (see Lemma 22 in [5]) and the
restriction (ii) is also easily seen to be essential to our discussion. Indeed,
suppose G is a mixed group of torsion-free rank one having T as its maximal
torsion subgroup and that pG pG contains an element of infinite order
for some a _> X - 0. Note that if T Tp + S, then pXG/S is torsion-free
of rank one. It follows that pXG/pG is torsion and consequently isomorphic
to C(p). This, however, implies that pXG pX+lG pG.
Now let (ai.) (i 1, 2, ;j 0, 1, be an infinite matrix whose rows

are increasing sequences of ordinals and symbols . Then (a.) will be called
an Ulm matrix for the reduced torsion group T if for each i the i-th row is
p-compatible with T. Our existence theorem can now be stated.
THEOnEM 2. Let (aii) be an Ulm matrix for the countable reduced torsion

group T. Then there exists a mixed group G of torsion-free rank one with
Gt T and (ai) U( G).

We first reduce the proof of Theorem 2 to the case of primary groups. For
each positive integer i, let T be the p-primary component of T, and suppose
that we have constructed a mixed group G- of torsion-free rank one having T
as its maximal torsion subgroup and such that U(G) contains a matrix whose
i-th row agrees with that of (ai) and that has ’s elsewhere. Then set
K 2_,i= G and observe that T can be considered to be the maximal torsion
subgroup of K. Observe that, for each i and each ordinal a, we have

p K p G + G.
The equation is also valid for a .
infinite order and such that (a0,

Now let x be an element of G having
a, is its p-Ulm sequence in G.
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Then choose x to be that element of K whose Gi-component is xi for each i.
Finally we let G to be that unique pure subgroup of K containing Ix,
and having torsion-free rank one. Since K/G is torsion-free, heights com-
puted in G are the same as computed in K. Therefore, to show that
U(x) (a,), it suffices to observe that U:(x) (a). This latter equa-
tion is readily checked. Indeed, from the decomposition of p K noted above,
we see that U:(x) U(x) U(x).
Given a countable reduced p-primary group T and a p-compatible sequence

(a0, a, ...), we now wish to construct a mixed group G of torsion-free
rank one such that Gt

__
T, U(x) (no, a, ...) for some x G having

infinite order and nG G whenever n is prime to p. This latter condition
guarantees enough ’s as entries in the matrices in U(G). By an existence
theorem of RotmaI nd Yen [10], there is a J-module M such that Mt T
nd M contains an element x having zero order ideal with U(x)=
(a0, a, ). It suffices to take G to be the minimal pure subgroup of M
containing T nd x.
The proof of Theorem 2 is now complete.

4. Uncountable groups

Although Theorem 1 does not hold in the case of uncountable groups, it
can be established for uncountable groups with certain types of maximal
torsion subgroups. But before considering such extensions of the theorem,
we give an example that demonstrates the inadequacy of the invariant U(G)
for uncountable G.

Example. Let p be a prime and let/ be the torsion subgroup of -,=* {b},
where 0(b) p for each i. Set B i=1 Ibm} and let H be a pure subgroup
of B such that B H and f?,/H -- C(p). Clearly H is not a closed p-group
and in particular H B. We shall need the following observation" If H is a
pure subgroup of a group C with C 0 and C/H C(p), then C -- /.
Indeed, B is a basic subgroup of any such group C and there is a canonical
monomorphism of C into / that leaves the elements of B fixed (see [2,
pp. 111-1!2]). I fact, leaves the elements of H fixed. The mapping of
C/H -- C(p) into [/H _,’,.z C(p) induced by is necessarily onto and thus
/is an isomorphism of C onto/.

Let M be a reduced group containing B as maximal torsion subgroup and
such that M/B Q and iV/ 0. Since H is not a closed p-group,
Pext (C(p:), H) O, and therefore there is a subgroup N of Ext (C(p), H)
such that Nt H, N/H Q and N 0. It is evident that U(M) U(N)
since each class contains a matrix having (c0, d- 1, co -4- 2, in the row
corresponding to p and ’s elsewhere. It is easily seen that the mapping
b - b d- M takes B into a pure subgroup of M/M and has cokernel iso-

The author wishes to thank the referee for calling his attention to the pper [10]
and thereby materially shortening his original proof of Theorem 2.
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morphic to C(p’). It follows that M/M is a direct sum of cyclic p-groups
and indeed M/M B (see Theorem 33.4 in [2]). Similarly, the mapping
h - h -t- N takes H into a pure subgroup of N/N and has cokernel isomor-
phic to C(p). It follows then from the observation cited in the preceding
paragraph that N/N [.
Now define groups G B -t- N and K M -t- H. Then Gt B H Kt

and U(G) U(N) U(M) U(K). However G Ksince G/G
B + [ B + H -- K/K.When the maximal torsion subgroups are direct sums of cyclic groups, our
invariant does suffice.

THEOREM 3. Let G and K be mixed groups of torsion-free rantc one such
that Gt --- Kt and U( G) U(K). If Gt is a direct sum of cyclic groups, then
G ’-’ K.

Proof. Let S be a countable pure subgroup of G containing an element of
infinite order. Then, it is easily seen that G {S, Gt}. Since Gt is a direct
sum of cyclic groups, we can find a direct summand U of Gt having a count-
able complement and such that S n U 0. It is evident that G A -t- U,
where A is a countable subgroup of G containing S. Similarly, we have a
direct decomposition K B + V with B countable and V torsion. Since any
two direct decompositions of a direct sum of cyclic groups have isomorphic
refinements, we may assume that At

__
Bt and U V. Since U(A)=

U(G) U(K) U(B), we conclude :from Theorem 1 that A B and, con-
sequently, that G K.
A similar rgument yields the following generalization of the preceding

theorem.

THEOREM 4. Let G and K be mixed groups of torsion-free ranl one such that
Gt Kt and U( G) U(K). If Gt is a direct sum of countable groups, then
G--K.

The following lemma may sometimes be useful in reducing considerations
to the countable ease.

LEalMA 5. Let G and K be mixed groups of torsion-free ranlc one. Suppose A
is a pure mixed subgroup of G and that is an isomorphism of A onto a pure
subgroup of K. If dp At extends to an isomorphism of Gt onto Kt, then
extends to an isomorphism of G onto K.

Proof. If B is the image under of A, then G {A, Gt} and K {B, Kt}.
Define a mapping of G onto K by (t -t- a) (t) + (a) whenever eGt
and a e A. It is routine to verify that is a well-defined isomorphism of G
onto K such that IA 0.
We call a torsion group T closed if T is a closed p-group for each prime p.

Recall that closed p-groups have been characterized by the property that any
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isomorphism between basic subgroups can be extended to an automorphism
(see [7]).

THEOREM 5. Let G and K be mixed groups of torsion-free rant one such that
Gt --_ Kt and U( G) U(K). If Gt is closed, then G K.

Proof. Let S be a countable mixed pure subgroup of G such that
S n p’G 0 whenever p’G O. This latter requirement insures that
U(S) U(G). Since St is countable, it is a direct sum of cyclic groups and
therefore is contained in a basic subgroup of Gt. We see then that there is a
mixed pure subgroup A of G such that U(A) U(G) and At is a basic
subgroup of Gt. Similarly, there is a mixed pure subgroup B of K such that
U(B) U(K) and Bt is a basic subgroup of Kt Since Gt Kt At Bt
and, by Theorem 3, A _-- B. Since Gt and Kt are closed, Lemma 7 can be
applied to yield G _-- K.

It is perhaps noteworthy that the classes of groups for which our invariant
has been shown to be adequate are classes where the maximal torsion sub-
groups are characterized by their Ulm invariants.

5. Applications

Rotman has applied the invariant U(G) to solve cancellation, square-root
and isomorphic refinement problems. We refer the reader to [9] for these
applications. We also mention that it is a simple exercise to verify that
Kaplansky’s first test problem (see [5, p. 12]) has an affirmative answer for
countable mixed groups of torsion-free rank one.
Given a mixed group G of torsion-free rank one and given any matrix

(aij) in U(G), we can, of course, recover the factor group G/Gt from the
matrix. Indeed, we define a sequence (/cl, ,/, as follows: k
if the n-th row of (ai.) either contains an infinite ordinal or symbol or has
infinitely many gaps, and k aj j if the n-th row contains only integers
and has no gaps after a-_l. The sequence (/1, /, ...) is then just
the height sequence of some element of G/Gt and therefore determines the
factor group (see [2, pp. 146-149]).

If G is a countable mixed group of torsion-free rank one and if (ai) U(G),
then it is easy to give a criterion for the splitting of G. Indeed, G splits into
the direct sum of a torsion and a torsion-free group if and only if the following
conditions are satisfied"

(1)
()
(3)

almost every row in (aij) is free of gaps;
the rows not free of gaps have at most a finite number of gaps; and
if a row contains entries other than integers, then it contains an .

If is a collection of primes, then a similar criterion can be given for p Gp
to be a direct summand of G.
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In some instances our invariant U(G) can be simplified. For example,
suppose Gt is a p-primary group. Then one sees readily that the rows of any
matrix in U(G) that correspond to primes different from p are determined by
G/Gt. Therefore the structure of G is determined by Gt, G/Gt and the row
in some matrix of U(G) corresponding to p. To be more precise, if we let
U’(G) denote the equivalence class of p-Ulm sequences determined by
elements in G of infinite order, then we have the following:

THEOREM 6. Let G and K be countable mixed groups of torsion-free rantc
one whose maximal torsion subgroups are p-primary. Then G K if and only
if G Kt G/G ._ g/gt and U’( G) U’( K).

The countability restriction in the preceding theorem can, of course, be
dropped if we assume that the maximal torsion subgroups are direct sums of
cyclic p-groups. It is perhaps worth mentioning that a proof, which is wholly
independent of our Theorem 1, can be given for Theorem 6 based on the
theorem of Kaplansky and Mackey [6].
Another instance when the invariant U(G) can be modified is when Gt

is elementary; that is, when each element of Gt has square-free order. If G
has torsion-free rank one and Gt is elementary, then, by Theorem 3, G is
determined by Gt and U(G). Suppose (a.) U(G). Since for a given prime
at most the 0-th Ulm invariant is nonzero, we have a. al + j 1 when-
ever j >_ 1. It is then evident that G is determined by G/Gt and the first
column of any matrix in U(G). Therefore we associate with (a.) a se-
quence (el, ..., e, ..’) such that e 0 if an a0 + 1 and e 1 if
an > a0 -t- 1. If we define an equivalence relation among such sequences
of O’s and l’s by agreeing that two sequences are equivalent if and only if
they differ in at most a finite number of terms, then clearly we have assigned
to G an equivalence class e(G) of such sequences. In order to see that G is
determined by Gt, G/Gt and e(G), it is enough to observe that if e 1,
then ai0 0. Therefore we have

THEOREM 7. Let G and K be mixed groups of torsion-free rantc one having
elementary maximal torsion subgroups. Then G K if and only if Gt - Kt
G/Gt K/Kt and e( G) e( K).
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