
ON A CONJECTURE OF ERDS AND RNYi
BY

R. J. MIECI-I

Let G be a finite Abelian group of order n, al, a1 be a sequence of
elements of G, and let

B B(al, al) =. {el a + + ’k al t:i 0 or 1, i 1, l}.

Note that if B G then we must have lc >_ (log n)/log 2. In a recent paper
[1] ErdSs and Rnyi raised the question" how large must lc be in order that
every element b of G have approximately the same number of representations
of the form

b : al -t- - ’1 al

for nearly every sequence a, a of G? In other words, how large must ]c

be n order that nearly every sequence a, ak of G will generate G in a
miform fashion? They proved that any lc such that

lc _> (2 log n + c)/log 2,

where c is a certain coastant, is sufScient and they conjectured that the
coefScient of log n in this inequality, 2, could not be replaced by anything
better. The purpose of this paper is to show that the 2 can be replaced by

for most groups and that the conjecture, if it is true, is valid only for groups
of a particular nature.

Several definitions are needed before precise results can be stated. Let G
be the Cartesian. product of k copies of G, let P be the probability measure on__
G whose value at each point of GI is n and let, for each b in G, V(b) be
the random variable whose value t each point (a) (al, -.., a) of G
is given by

V(b,(a)) N{(e, -..,) eal-k +eka b}

where Nil/l} is the number of elements in the set 1I. Suppose, furthermore,
that if G is expressed s a direct sum of cyclic groups of prime power order
then r of the summands have orders that are powers of 2. Then wc have
the

THEOREM. Let G be a finite Abelian group of order n and let P, V(b),
and r be defined as aboe. Let and be any fixed positive numbers. Then "]c is any integer such that

lc > max log n, log n -t- r log -F 4 log
1

-F log -F 8
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we have

It is also quite easy to show, using a result of [1], that if all of the summands
of G are of order 2, in which case G is of order 2r, then the conclusion of this
theorem holds provided that

log---- flog2 + logr + 21og- +5.

Thus, the Erd6s-tl6nyi conjecture will hold only if the direct sum decomposi-
tion of G contains a relatively large number of groups of order 2 and a small
positive number of groups whose order exceeds 2. I suspect thag the eo-
ettieient of log n can be reduced to for these exceptional eases, but so far I
have been unable to prove it.
A large part of this paper is devoted to an examination of 3 X lc and 4 X k

0-1 matrices, for the proof of the theorem is based on the wlue of a fourth
moment and the calculation of this moment depends on certain properties of
these matrices.

Section

It will be evident later that the main problem we have is that of finding
the number of solutions of the system of equations

(1) e,il al + -t-- e a b

where i 1, ,j, A (e) is a 0-1 matrix of rankj andj 1, 2, 3, or 4.
Under certain circumstances the problem is very simple, for since row and
columns can be interchanged and rows can be added and subtracted in (1)
without changing the nature of the system it is equivalent to a system of the
form

th a - - t a b

(2) 22 a2 -k + k ak ti. b

tb a- + - tb al tb b

where the ’s are integers and till, ..., tb-i - tb’, is the determinant of a
j X jminor ofA forv j, ..., k. Thus if one of these determinants is
equal to 1 or, more generally, relatively prime to the order of the group G
the system has n- solutions for every b in G.
Those systems of the form (1) for which [det A. _> 2 where A. is any

non-singular j X j minor of A are less transparent. Since det AI
_

1 if
j 1 or 2 we begin with the case j 3. Then we have

(3) det A3 - 2

and, if any matrix that is obtained by interchanging the rows and columns of
a given matrix is considered to be equal to the given matrix,
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(4) if [detAs[ 2 then As

To prove (3) note that if As is a non-singular 3 X 3 0-1 matrix then As must
contain a 0, hence its determinant can be expressed as a sum of at most two
2 X 2 0-1 matrices; (4) is a consequence of the facts that if det Aal 2
then no row or column of As contains two or three O’s and if A3 contains
no, one or two O’s, then det Aal 1. In short, if A is a 3 X It matrix that
is of interest to us it must contain the three columns C1 (1, 0, 1)’,
C2 (1, 1, 0)’, and Ca (0, 1, 1)’, where the prime indicates the transpose.
One can also show that A cannot contain any other non-zero column C, for
if it did then at least one of the minors (C1, C2, C), (C1, Ca, C) or (C2, Ca, C)
would have a value of 1, that is, the absolute value of the determinant of one
of these minors would be equal to 1. These results imply that till ti22 1,
tiaa 2, t3 0 or :t:2 for v j + 1, k, ta 1 in (2), and that the last
equation of this system can be written as

2(aa -- 4 a4 2r- - )% ak) b,

where ki 0 or 1. Suppose now that G is expressed as a direct sum,

G H (R) (R) Hr @ K (R) @ Ks.
where Hi, which is generated by hi, is of order 2 and Ki, which is generated
by ki, if of order p/ where pi is an odd prime. Then if

and vi =-- 0 rood 2 for i 1, 2, r the system of equations has 2n-a solu-
tions, If b is not equal to 2g where g is some element of G there are no solu-
tions. Since there are n/2 elements b of G for which the system is solvable
we have proved:

LEMMA 1. Let A be a 3 X k 0-1 matrix that is of rank 3 and let p(b,
the number of solutions of the system of equations (1). Then

A) be

Note also that if R is the set of rank 3 3 k matrices A such that
det As 2 for every non-singular 3 X 3 minor of A then N(R), the number

of such matrices does not exceed 3! 4, for A can only contain the columns
C, C., Ca and the zero column. Furthermore if A is in R1 and b 0 then
(1) has 2rn- solutions since the condition v 0 mod 2 for i 1, 2, r
is always satisfied if b 0.

If j 4 we can prove

LEMMA 2. Let A be a 4 X k 0-1 matrix that is of rank 4 and let q(b, A)
be the number of solutions of (1). Then
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(5) o q(b, A) Enk-3

where E 1 or E 2r. Moreover, the number of matrices A for which E 2
does not exceed 4! 8.
We assume as usual that if A4 is any non-singular minor of A then
det A41 _> 2. Equation (5) will be proved once we establish that

(I) detA4 _< 3

This implies that we can set tin ti22 3a 1 in (2).

(II) If]detAil 3 for some minor of A then ]detA’l 0or3, where
A is any other minor of A, and t, the coefficient of b in the last equation
of (2), is equal to 1.

Under these circumstances the last equation in (2) can be written as

3(a4 + Xha5 -t- a) =t=b

where IX 0 or 1. Hence, if the direct sum decomposition of G into cyclic
groups of prime power order contains s groups whose orders are powers of 3,
the system has no or 38n- solutions and there will be n/38 elements b of G
for which it is solvable.

(III) If det A4 2 for some non-singular minor of A then i4 G 2and
the last equation of (2) can be written as

2(a4 -- X5 a5 + + k ak) 34 b.

Thus if a 0, 2, or --2 the system, will have 2rn’- solutions for every b
in G; if t4 1 or -1 the system has no or 2rn--4 solutions and there are n/2"
elements b of G for which it is solvable.
These facts will be proved by classifying 4 X 4 matrices according to the

number and distribution of their O’s. The pattern of our argument will be
determined by non-singular mtrices which have at least two l’s in each
row and each column and t least one row or column that contains two O’s.
We begin by examining exceptions. Suppose first of all that a non-singular

minor A4 of A contains three O’s in a column. Then system (1) assumes a
form which can be treated by the methods employed for the case j 3.
Equation (5) holds with E 1 in this case.

Suppose next that no non-singular minor A4 of A contains three O’s in a
column but that one of these minors has a row that contains three O’s. Then,
since det A. >- 2,

(6) A= 0
1 1

wherex, y, and z are O’s or l’s and x + y + z O.
andti4 1 x y + zin (2).

We also have 144 2
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We have to find the type and number of matrices A that can contain (6)
as a minor. To this end, let us list the possible non-zero columns of A as:

C C. C C4 C C C Ca C C10 C1 C1. C C4 C1

0 0 0 1 1 1 1 1 1 0 1 1 0 0 0

1 0 1 1 0 0 1 1 0 1 1 0 1 0 0

0 1 1 0 1 0 1 0 1 1 1 0 0 1 1

1 1 0 0 0 1 0 1 1 1 1 0 0 0 1

Set V (1, x, y, z)’; thus A4 (V, C1, C2, C3). Suppose next that A
contains a non-zero column C (a, , ti, e)’ that is distinct from those of
We have

det(V, C1,C,C) a(x + y z) it+

det(V, C1,C3,C) a(x- y- z) -ti+s

det(V,C.,C,C) a(x- y+z) --ti- e

and we know that A cannot contain any column C for which one of these
determinants is equal to 1.

If, for example x 0, y 0, z 1 then V C6 and all columns C, except
except C C4, C5, or C can be eliminated from consideration. We also
have det (V, C1, C, C) 0, 2, or -2 when C C4, C5 or C, consequently
the last equation in (2) can be written in the form

A similar result holds for the remaining values of x, y, z for which
ti 1 x y - z 0 or 2: V must be one of the columns C4, C, C6,
Cll, the remaining three are the only others that might appear in A, and the
last equation of (2) has the form given above. These matrices give us the
ti 0, 2, or 2 case of (III); in addition since they contain at most eight
distinct columns, the seven just mentioned and the zero column, their number
does not exceed 4!8.
We consider next those values of x, y, z for which ti4 1 x y + z +/- 1.

If x 1, y 1, z 0 then V C7 and, as an examination of the three de-
terminants above shows, the only non-zero columns that can be adjoined to
A are Cs and C. Furthermore since det (C7, C, C, C) 2 for j 8 or 9
the last equation of (2) assumes the form given in (III). Similar results
hold ifx 1, y 0, z lorx 0, y 1, z 1. In each case V is one of
the columns C, Cs, C, the remaining two are the only non-zero columns that
can be adjoined to A, and the last equation of (2) tkes on the form given in
(III). The conclusion of Lemma 2 holds with E 1 for these cases.
We can now assume that any non-singular minor A4 of A has at most two

O’s in any row or column; we would also like to assume that A has a row or
column containing two O’s. If it doesn’t then it contains at most 4. But if
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A4 has no, one, two, or three O’s then det A4I <:: l.
we can have

If it contains four O’s

1 1 l 0

! 1 1 i(7) A 0 (C, C, C, Co),

1 0

sinceldetA41 3. Since, ifC (a,C,t,e)’,

det (C9, C8, C7, C) -2a + + -- e,

det (C9, Cs, C10, C) --a t + 2,

det (C9, C7, Co, C) a + 26 -t- ,
det (C8, C7, Clo, C) -o - 2 e,

and since at least one of these determinants is equal to 4-1 for every non-
zero columns C distinct from those of A4, one can say that A must contain
the columns C, Ca, C7, C10 and cannot contain, any other non-zero column.
Straight-forward calculations show that 14 1 in this case, so the situation
here is the one described in (II).
We can now assume that for every non-singular minor A4 of A: (M),
det A41 2; (M2), no row or column of A4 contains three O’s; (Ma), at

least one row or column of A4 contains two O’s. Then

0 0 1 1\
1 1 x
1 y z

where the roman letters denote O’s or l’s. To see this set

A4 (ai-), i,j= 1,2,3,4.

If we assune that a column of A4 contains two O’s then, after interchanging
rows and columns, we can conclude that al a 0. Hence, by M2,
aa a41 1 Now, if ai. 1 for i 1, 2 and j 2, 3, 4 then the first two
rows of A are identical; thus at least one of these elements must be a 0.
Assume that al 0. Since al a 0 we have, by M, a a 1.
If a 0 then, by M, aa a24 1, and the first two rows of A are identical,
hence a. 1. ConditionM also implies that aa 1 or a 1; assume that
aa 1. Similarly, a 1. If we assume that A4 has a row containing two
O’s we get the same result. The following form of A4 will be more convenient
than the one above for our purposes:

(8) A4

1 1 y
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Note that

(9) det A4 V -- Z W y -+- (1 x)(1 u).

Let us first consider mtrix A which stisfies conditions M, M, M
and which contains a minor A4 SLlch that det A4[ 3. Then, by (9),
x 0, y 0, z 1, u 0, v 1, w 0, so

A (C, C, C, C:).
Since, if C (, , , )

det (C, C, C7, C) -a -{- 2 +
det(C, C, C, C) -a - 2/ ti.-[- e

det(C,C,C,C) -2a+/3 +ti- e

we can now show in the usual fashion that ny mtrix A that contains A4
contains precisely four distinct kinds of non-zero columns, C, C, C and C.
Since 64 1 in this case, (II) holds.
We can now replace the condition M,, [det A _> 2, by [det A 2.

Then (44 2, (4v 0 or 2 for v 5, lc, and ti v y in (2). If v y
there is no problem; (5) holds with E 1. If v y 0, then by (9)

detA4l iv y + z w + (1 x)(1 u) 2,

and it follows that z 1, w 0, x 0, u 0. If v y 0 then
u v w 0 and the matrix A of (8) has three O’s in a row so this pos-
sibility need not be considered. If v y 1 then

A (C, C,, C, C=).
Since

det (C, C,, C, C) -a 5 q- ti q- e

a matrix A that contained the columns C, C, C,,, C,. might also contain
the columns Ca, C4, C, but it cannot contain any other non-zero columns.
Since all the matrices of this type were included when the previous bound
was computed the number of matrices A such that E 2 does not exceed
4! 8. This completes the proof of Lemma 2.
We now turn to the problem of determining the number of solutions of a

system (1) where the matrix A has no row that is identically zero, does not
have two identical rows, and is not of rank j. If j 1 or 2 there is no problem.
If j 3, A might be of rank 2. In this case one of its rows, say the third,
is a linear combination of the other two, so, if A (eq), there are numbers
1 and = such that

(1 elq + (2 e2q

where hq 0 or 1, for q 1, ]c. Moreover, there nre integers v and
such that the system of equntions
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has one solution. Solving it, we see that 5i -1, 0, or 1. Now, we cannot
have 61 0 or ti2 0 for then one row of A would be identical to another.
If 1 2 1 then we must have

(cq,C2q)’ (1, 0)’ or (0,1)’ or (0,0)’
and

(t’,e2,e3,)’ (1,0, 1)’ C or (0,1,1)’ C or (0, 0, 0)’.

That is, if 6 1, A must contain the columns C1 and C2 and cannot
contain any other non-zero columns; similar considerations for those cases
where 6 2 -1 lead to a matrix that can be obtained by interchanging the
rows of this C, C matrix. Thus, if the 1t through the ut columns of A
are of the form C and the (u - 1) through the wt are of the form C then
the system (1) must be of the form

B b

(10) B1 q-B b

B= b

whereB a + - aandB a+ -- + a.. This system has
n solutions if b 0 and no solutions if b 0. Furthermore, if Q0 is the
set of 3 X k matrices associated with a system of the form (10) then N(Qo),
the number of such matrices, does not exceed 3! 3.

If j 4 nd A is not of rank 4 then A is of rank 3. For if it were of rank
2 then B, the matrix that consists of the first three rows of A, would bc of
rank 2. However, if B is of rnk 2 then it contains but two distinct kinds
of non-zero columns; this implies that A has two identical rows, a contradic-
tion to our assumptions. The essential facts about rank 3 matrices are
summarized in

LEMMA 3. The set of 4 X k matrices A of rank 3 such that no row of A is
identically zero and no two rows of A are identical can be split into three sets
Q Q Q. relative to the system of equations (1). QI consists of those matrices
for which the associated system is solvable if and only if b O, Q those for which
the system is solvable if and only if 2b O, and Q3 those for which the system
is solvable for every b in G. Moreover, if in. each case the system is solvable then
there are n- solutions. We also have N(Q)

_
4! 4 and N(Q)

_
4! 6.

This lemm will be proved, as usual, by considering the possible forms the
columns might take. If it is assumed that the last row of A (’q) is a
linear combination of the first three then there are numbers til, ti, 5 such that
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wherehq 0orl, forq 1, ..-,k. Since A is of rank 3 one can show, by
solving an appropriate system of equations, that 5 0, :i:1/2, +1, or 2.
It is clear that not all three of the numbers 51,52,53 are negative. Further-
more if 51,52, and 53 are fixed and x, y, and z are considered to be the first
three entries of a column of A then the equation

(11) 5x- 5y + 5z 0orl

must have three distinct non-zero solutions, since A is of rank 3. Finally,
if (11) has exactly three non-zero solutions (x, y, z) then the matrix

( x3tXl X2

Y Y Y
Zl

t te

where t 5 x -- 5 y -- 5a z, cannot have two identical rows nor can any
row be identically zero if it is to be of interest to us.
We shall now consider particular values of 5, 5, 53. Suppose first of all

that for some fixed selection of 51,52,53 at least one of the 5 is equal to --1/2-.
We cannot have exactly one of them, say 5, equal to +1/2 for then the first
row of A would be identically zero. If exactly two, say 51 and 5 were equal
to +/-1/2- the first and second row of A would be identical. We can have
5 5 5a 1/2or5 5 =,5
have the forms

1 1 0

Then the non-zero columns of A

1 1 0

0 1 1 or 1 0 1

1 0 1 0 1 1

1 1 1 0 0

and simple computations show that A belongs to Q1 in each case. These
two selections, and their permutations, exhaust all the selection of 51, 5, 5a
thatcontain at least one --1/2. The only other possibility 51 1/2-, 52 53
can be ruled out since (11) has only two distinct non-zero solutions under
these circumstances.
We can now assume that the 5 are integers. Since a selection of 5, 5, 5

that contained two or three O’s would lead to a matrix which has two idetical
rows or a row of O’s any selection of these numbers that contains at least one
0 contains exactly one 0. Thus, if the three conditiots on the 5 given two
paragraphs above are applied to the possible choices, we see that the only
selections of 5, 52, 5 that contain a 0 are 5 0, 5 5 1 and 51 0,
5 1, 5 --1. These three conditions also yield the fact that the only
choices of these numbers that contain a +/-2 are 5 2, 5. -1, 5 1;
5 1,52 5 -1;and51 -2,5 5 1. Observe that in all these
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cases 61 -- 62 -- 63 )k 0 or 2. Consequently, since the last equation of a
system associated with these choices is the sum of the first three,

Xb 841 al -t- 4- ce4k ak b.

That is, the system is solvable only if b 0. To establish the converse note
that for any one of these particular choices of 61, 2,63 there always exist two
’s whose sum is not equal to 0 or 1. Therefore B, the matrix consisting of
the first three rows of A cannot contain a minor whose value is 2. For if

101)
1 0/

were a minor of B then the corresponding elements of the last row of A,
being a sum of two of the a’s, would not consist of O’s and l’s. In short, B
contains a minor whose value is 1, so if b 0 the system has nk-3 solutions.
Those selections of the a’s which consist solely of 4-l’s and -l’s remain.

If 61 a2 a3 1 or if 1 1, a aa -1 the corresponding matrices
must contain the columns

1 0 0 1 1 1

0 1 0 0 1 0
or

0 0 1 0 0 1

1 1 1 1 0 0

and cannot contain any other non-zero columns. Since, upon adding the
first three equations of the system together, we have

Xb e41 al -}- nt- 84 a b

where X 3 or 1, it is not difficult to show that these matrices belong to Q.
Finally, since the second block is a permutation of the rows of the first block,
N(Q)

_
4!4.

If til i 1, 6 -1 then the columns of A must have one of the fol-
lowing forms

1 1 1 0 0 0

1 0 0 1 1 0

1 1 0 0 1 0

1 0 1 1 0 0

Since 61 -/f + 63 1 and since no 3 X 3 determinant that can be derived
from the first three rows of this block has a value of :t=2 any rank 3 matrix
whose columns are elements of this block has n-a solutions for every b in
G. We also have N(Q3) _< 4! 6, so this completes the proof of Lemma 3.
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Section 2
We shall now prove the theorem of this pper. By Tchebichev’s inequMity

( r (x
beG beG

where E[X] s the expectation of X. Since

E[max (v(b) 2/n)] E[(Y(b) 2/n)],
the theorem will be proved once suitable bound is established for this sum
of expectations.
SeverM definitions re in order. If () (v, ’) is 0-1 ]c-tuple

and (a) (a, a) is a element of G let the notation

(v a) b
denote the fct that

a va b

for i , 2, ,j. Set

-.., ’ a) b},

where the index of summation runs over those j-tuples ((v), ..-, ())
that stisfy the conditions"

() (0) for i l, 2, j.

(’) (v) for p q, 1 p, q j.

Let be the set of rnk 4 4 mtrices A for which the number E of Lcmm
2 is cquM to 1, let be those for which E 2, and let Q, Q, Q bethose
described n Lemm 3. FinMly le

u(j) (- )(-) (-j).
Then we hve

S(j) u(j)/n- for j 1, 2, 3

(4) -() ( ) (() ()) ()

8ine he proof o he fir hre equion i iilr o nd ipler hn he
proof of he fourh, he deil eoering he ls equation will be he only
one given here.
A for hee deil, le ((), ()) be onidered X lc mrixA

hoe i row i (). hen, if A i in ,
Eb, p{(l, a) b} 1In

Consequently, since the index of summation of the inner sum of S(4) runs
over (2 1) (2 4) u(4) j-tuples, we hve
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S(4) u(4) (N(?I.) -t- N(Q1) + N(Q2) -Jr- N(Q3)) + F

where F consists of those terms of S(4) for which ((1), (e4)) is not in
/ll. According to Lemma 2,_,El(, ..., a) 1 (r/)N(.).
According to Lemma 3, for i 1, 2, 3

EbeG EQi p{(,l, "’’, L,n; a) b} N(Qi)w(i)

wherew(1) 1In, w(2) 2tin, andw(3) 1In. If these results re
brought together we have the stated equation for S(4).
The results of (12) will be used to prove:

E[V(D)] v(O) / j(j 1)v(1) (j-- 1)(j--2)v(2)
beg 2 n 2 n

forj :[, 2, 3, and

E[V4(b)] v(O) -beg

4N(Q0)
n-t- N(Q)(1

(r 1) (4N(R1) + N(OA.) + N(Q))

wherev(l) 2(2 1) (2 1). As before, only the last equation
will be considered.
To prove the last equation let, for each fixed b and (a’), X[b, el be the random

variable whose value at the point (a) (al, a) of G is given by

X[b, , a] 1

Then
-0 if (v, a) b

V..( b X[b, 0] -+- (.)(0) X[b, ’1 Y -- Wwhere Y X[b, 0] and W is the sum, and

oE[V(b)] c,E[Y + 4Y.W -+- 6Y.W -k- 4. Y.W -k- W].

Now, since X[b, O]X[b, c] 1 only if b 0,

E[Y] E[X[0, 0]] 1,

_,(E[Y.W] E[()#(0)X[0, ] (2 1)In u(1)/n,

Y’., E[Y.W] E[(Y’()(0) X[0, ])] u(1)In at- u(2)/n,
and, by the comments following Lemma 1 and (10),
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E[Y-W] E[( X[O,v])]
b ()(0)

_u(1)n 3u(2)2 -t- u(3)___ -t- N(Q)(1 -)+ n
Elementary combinatorial arguments yield the equation

,E[(u)(o)X[b, d)4] S(1) + 7S(2) + 6S(3) + S(4).

If these results are combined with those of (12) we hve the desired result.
We now have, after few more calculations,

E
beg

3.22(1--)(1--+)+n n (1 --)
+ +

+ (N(?I.) + N(Q2) + 4N(R1)) (2 1)
n

(2r- 1)N(R1)

According to (10), Lemma 1, Lemma 2, and Lemma 3,

4N(Q0) + N(Q3)_ 4! 4k -t- 4! 6k
_

(36).6

N(?I2) --t-- N(Q.) -i-- 4N(R1)

_
4! 8 --I- 4! 4 -t-- 4! 4

_
(36)8k

fork > 2. Hence

,E[(V(b) 2/n)4]
_

2 + 3.22/n -t- 36"6k/n + (36)8k(2r- 1)In’.
This gives us

P max V(b)----
5e n

n 3 n 36<= e-q 2-s +
n- 3 36 n
03’ -- -- (2r 1) 2-,

which completes the proof of the theorem since each of the terms in this sum
does not exceed /4 provided that

log [max{- log n, log n + r log 21 + 4 log 1+ logl? - + log (144)

To prove the comment following the theorem suppose that

G H (R) (R)H,.

where the H are of order 2. Then since G is a vector space over the integers
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modulo 2 any sequence hi, hk of G that generates G must contain a sub-
sequence hl, hr that is a basis for G. Using these facts one can show,
by induction, that if h, hk generates G then every b in G has the same
number of representations, 2k-v, of the form b el h, + q- e h. Now,
ErdSs and RSnyi have shown (see Theorem 2 of [1] that if G is a finite Abelian
group of order n, if 6 > 0, and if

k > __1 Vlog n
log 2

then

(!og+ lg
\log 2 +

P{min V(b) > 0} > 1- 6.

That is, nearly every sequence h, ..., h generates G. This, of course,
yields what was claimed.
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