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0. Introduction

In this pper, 11 rings re to be ssocitive, nd 11 mppings re to be
written (t least in spirit) to the let. We shll consider certain portions of
Q(U), the group of quasi-regular (q.r.) elements of ring U, portions which,
in prticulr, extend the Jcobson rdicl J(U) of U. The portion under con-
sidertion will depend upon the wy in which U is regarded s n lgebr.
Our principal device will be the introduction of different multiplication on U,
n introduction brought bout by employing q.r. operator on U. We shll
show (Theorem 1 that if suitable change of multiplication is introduced into
the bimultipliction ring M(U), [5], on U, then this modified M(U) cn be
injected into the bimultipliction ring of modified version of U which is ob-
tined from U by making related change of multiplication theorem. By era-
employing properly chosen commutative subring S(U) of M(U), it is pos-
sible to turn U into n S( U)-lgebrm If U is n lgebr over commutative
ring T, nd if U hs trivial bicenter [5], [3], then the mp a which effects the
ction of T on U cn be fctored through S(U) (Theorem 2).

Let ( U, a, T) be the set of 11 q.r. eleInents of U which re lso q.r. with
respect to M1 the changes of multiplication on U which re induced by the
members of Q(T). One finds that : >_ J(U). If Q(U) is central in U, nd
if U is treated s n S( U)-lgebr, the resulting ., here clled (U), is
(Theorem 3) subring of U, n lgebr over certain of S(U). If U is
without divisors of zero, is commutative, is not rdicl ring, nd hs its
underlying belin group U+ irreducible s U-module, then 9(U) vnishes
Theorem 4).
If a ring extension is not too formidable, it is possible to obtain information

about its Jacobson rdical. We select an uncomplicated extension V( U, a, T)
of U by T (going bck to Dorroh [1]) which happens to be splitting. If T is
an integral domMn, and if ( U, a, T) has been turned into an appropriate
algebra, then the obvious K of V is a related extension of ( U, a, T) by
certain of T (Theorem 5). If T is commutative and if the members of
J(T) operate on U in such way that ru ru for all r e J(T) and all u e U,
then J(V) is a related extension (Theorem 6) of J(U) by J(T). Finally, if
U+ is an irreducible [/’-module T commutative nd U a T-algebra), and if the
members of J(T) do not ct as utomorphisms on U+, then (Theorem 7)
J(V) reduces to the algebra direct sum of J(T) nd U.
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We shall take for granted the reader’s knowledge of the introductory por-
tions of [5]. See also [3]. If is a bimultiplication on U, then the endo-
morphisms L and x are to be the respective left and right mappings on U+

induced by . Similarly, if u U, then uL and u are to be the respective left
and right multiplications on U by u. Such standard objects and concepts as
q.r. elements u, their quasi-inverses (q.i.’s) u*, the circle composition, and the
Jacobson radical and its properties are treated as in such easily available
sources as [2] and [4]. A subset A of a ring U is said to be central in U if A is
extended to the center of U. For any subset B of U, C(B, U) is to be the
centralizer of B in U. The center of U is, of course, just C(U, U). If is a
map with domain B, and if A __< B, then. f lA is just with its domain cut
down to A. The symbol f- will be used whenever a complete inverse image
is required whether or not/" is one-to-one. If A and B are sets, then A" has
its usual meaning of all functions with domain B md range included in A.
The symbol (R) denotes direct sum. A subset A of ring U is said to have the
left (right) ideal property in U if ua(au) A. for each u U and each a A.

1. Symmetric bimultiplications

let U be a ring with bimultiplication ring M(U). Choose any M(U)
which is symmetric in that ru ur for each u U. Write

gr(ul, U2) Ul U2 TI U2

for all u, u e U. Under -k and g, the set U is reconstituted as ring U
where U+ U+. If, for instance, r is the zero of M(U), then U is the same
ring as U, while if r is the unity of M(U), then U is the zero ring on U+. Let
, be the member of Horn U, M(U) which crries each u e U onto that inner
bimultiplication ,(u) which consists of the pair of maps u, nd u,. One
calls T eM(U) permuting if (zu)v z(uv) and if (u)a (uz) for each
u U and for each a e M(U). It is known [5] that the members of Im , are
permuting in M(U), although the only symmetric maps among these re the
images of the central members of U.

THEOREM 1. Suppose that e M(U) is both symmetric and permuting. Then- is central in M(U), and r’ ’M W) (’) is symmetric in M(M(U) ). If,
further, r is q.r. in M(U), then M( U) , can be injected into M(U) in such a
way that the image of r is central.

Proof. Foreachx e U andeach eM(U),x(r") x(r) (xr)r (rx)r,
this last since r is symmetric. Likewise, x(r’) x(ar) (xa) r r(xz)
(rx)z, this last since r is permuting. Thus r’a and at’ are equal as right oper-
ators (similarly, equal as left operators). Thus, r’ is symmetric as a member
of M(M(U) ), so that (M(U) , exists. Because r’z at’ can be rewritten
as rz at, is central in M(U).

For each n (M(U)),,, construct a pair of maps ),,,, X,. from U, to U,
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via

Xa 7(a-- ra) and aX., (a- ra)n

for each ae U. For a, be U one can establish such relationships as
g,(a, , b) g-r(aX,, b) by appealing to the assumptions on r and 7. In this
routine way we can show Chat X, e M(Ur). We define X Irj X by setting
X(v) Xn. We find that X preserves both addition and g,,-multiplieation.
If, for any r, X(v) 0, then hn a 0 aXn for all a e U. Upon expanding, we
have r M(U). Let here denote the unity of M(U). We now have
( r)r 0. But r was assumed to be q.r. so that r is regular, whence

0, and X is an injection.
To show that X(r) is central in M(U,), we first note that r*, the q.i. of r,

is symmetric; for, r, r, and therefore r)- r are symmetric.
From this it is easy to show that r* M(U). Thus U,)., is meaningful; but
a brief calculation shows that this last reduces as a ring to U. Now if W is a
ring and if e M(W) is symmetric, then one readily shows that M(W)
M(Wo). In particular, M(Ur) _< M( U), M(U). Thus, under the
supposition that , e M(U,),

Since r is central in M(U), this las sum is zero, so ghag each "r e M(U,) com-
mutes with X,, as we wished go show. ,
One should observe ghag the quasi-regularity of r implies ghagX(r -r

* M(U,),as members of M(U). For, since r e M(U) _< M(U,), X(r -t- r e

and
(X, -t- r)b ,r*(b rb) + ’b 0

for each b e U (likewise for operators on the right).

2. :actorization of some o]oebra-producino mops

If U and T are rings, then U is said to be a T-algebra via a Hom( T, End U+)
if Im a centralizes all left and all right multiplications on U by elements of
U" (a(t)u)v a(t)(uv) u(a(t)v) forallte T andallu, v e U. Weshalleall
such an a a T-algebra-producing mapping (or map) for U. The set Sm (U)
of symmetric bimultiplieations on U, though closed under addition and sub-
traction, cannot be multiplieatively closed if SIn(U) is non-commutative.
Nevertheless, the intersection S(U) of Sm (U) with the centralizer in M(U)
of Sm (U) is easily shown 15o be a subring of M(U). The members of Sm (U),
and therefore of S(U), are certain pairs of equal endomorphisms on U+. Let
v be the map which carries each /e S(U) onto the common endomorphism
of its endomorphism pair. Not only is v in Horn (S(U), End U+), but U is
an S(U)-algebra via monomorphie v. Let U be any commutative ring.
Then U is a U-algebra via w ,v. We shall call this algebra the multiplication
algebra on the comnutative ring U, and we shall have occasion to refer to it in
the sequel.
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Recall [5] [3] that the bicenter of U is defined as ker ,rJ. If U has a unity,
or any other left or right non-divisor of zero, then the bicenter is trivial.

THEOREM 2. a) f U is a ring with trivial bicenter, then Sm(U) S(U).
b Let U, a ring with a trivial bicenter, be a T-algebra via a where T is corn-

mutative. Then there exists eHom (T, S(U)) such that a

Proof. () Let U be the ide! ia U which is generated by ll the com-
posite members of U, that is, by ll u U where u ab for some a, b e U. If, e Sm(U) then

(ab)o- 5[a(b)] (a)(bz) [(a)b] [a(b)] (ab)().

Likewise, (ab) z(ab), so that ti and tiz are equal if their domains are cut
down to U.
Now suppose that one could find n a e U for which b (ti ti)a - 0.

Since U hs trivial bicenter, there must exist some c U such that at least
one of bc nd cb is non-zero. From bc 0, ( z)(ac) O, contradicting
the statement that ( 5)1 U 0. From cb O, c[(ti tz)a]
ca(z ) O, again contradiction. (In this lst step, we first use the s-
sumption that a lies in Sm (U), not just in M(U).) We have proved that
tiz nd zti coincide s left mappings. Similarly, they coincide s right mp-
pings, giving ().

(b) If End U+ has the property that it centralizes both the left nd the
right multiplications by the elements of U on U, define pair of mps , from
U to U by ,u ,u u,. Then , Sm (U) which last equals S(U), by
(a). For each T, take (t) (a(t)), and observe that v(a(t)) a(t).
It is clear that f preserves addition; and the commutativity of T, used only
here, causes to preserve multiplication, completing the proof.

3. Change of multiplication

Let T be a commutative ring, and let U be a T-algebra via a. For e T,
form s(t) (a(t)) eS(U), as in the proof of Theorem 2. Introduce new
production U, as in Section 1, by setting

()(u, ) u- ((t))(u).
It will simplify notation considerably if we write gt instead of g(t), if we write
uv a( uv or uv t( uv instead of uv a( uv and if we write
Ut instead of U(t). If 0 is the zero of T, we shall write U instead of U0. To
sty that u Q(Ut) means that there exists (an uctually unique) u(t) U such
thntgt(u,u(t)) u + u(t) gt(u(t),u). Onecallsu(t) (ifit exists) thet-quasi-
inverse t-q.i.) of u U nd sys that u is t-quasi-regular t-q.r.) in U. Here,
(u(t)) (t) u, and u(t) eQ(Ut). If u is q.r. we write the usual u* instead of u
and substitute the standard notations q.i. and q.r. for respective 0-q.i.
0-q.r.

Let ( U, a, T) [’lq Q(Uq) where q runs over 11 of Q(T). It will be
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convenient (i) to write (T) instead of (T, Kr vr, T), T here being con-
sidered as the multiplication algebra on T; (ii) to write J(U) instead of
( U, Ks, S(U). Just as we fashioned members of M(Ur) from elements of
M(U) in Section 1, we now construct Tt-algebra-producing maps for Ut from
T-algebra-producing maps for U where 7’. That is, if U is a T-algebra T
commutative) via c, let o/t (UU) T be defined by setting Olt(8)U a(8 ts)u
for all s 7’ and all u e U. Then at Horn (Tt, End U), and Ut is a Tt-alge-
bra via at. The basic computational result is as follows-

LEMMA l. Let U be a T-algebra T conmutative).
(a) If u e U and if q, qeQ(T), then u eQ(Uq) if and only if

U (qi q)u Q(Uq), in which case

* (q2) (ql) * U(ql)(u- (q q )u) u (qx q

(b) For each e Q( T), .(U, a, 7’) (Ut, at, Tt) as subsets of U.

Proof. (a) canbeverifieddirect]y. Asfor(b),fixteQ(T) throughoutthe
discussion. Then u (Ut, at, 7.’t) if and only if u e Q((Ut)) for each
r e Q(Tt). But u Q( (Ut),.) if and only if there exists v v(r) e U for which

gt(u, v) ott(r)gt(u, v) uv (t (r tr))uv u q- v

vu (t (r tr))vu at(Y, u) at(r)gt(Y, U).

By part a), r tr Q(T), whence u Q( (Ut)) if and only if u Q(U(r;t))
where d(r; t) to(r-tr)Q(T). We now have

(( Ut Olt Tt) f’r Q(

as r ranges over Q( 7’t) One easily finds that

r (t*od(r;t)) t*(t*od(r;t)).
Now suppose that j is any member of Q(7’). Define e(j; t) e T by

e(j; t) t* j) t*( t* j).

By part (a), e(j; t) Q(Tt). A short calculation gives d(e(j; t); t) j, so
that Q(Ua(;t)) fl. Q(U-) as j ranges over Q(T). But this last inter-
section is just -( U, a, T), completing the proof. We have, incidentally,
established that, for given e Q(T), Q((Ut)) Q(Ue(;t)) and Q(U.)
Q( (Ut)(i;t)) for all j Q(T) and all r e Q(Tt). These identities will be used
below without reference.

THEOREM 3. (a) Let T be a commutative ring with unity 1 r, and suppose
that U is a T-algeb ra via monomorphic o where oz( 1 r) is the identity automorphism
on U+. Suppose that Q( U) is central and that, for each u Q( U), there is
(necessarily precisely) one s e Q(T) such that u o( s*). Then ,( U, a, T)
is a subring of U in such a way that it is a ( T)-algebra.
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(b) If T is a commutative ring and unity 1 r, then ( T) is a subring of T.
(c) Let U be a ring for which Q(U) is central. Then ( U) is a subring of

U in such a way that it is a (S(U) )-algebra.

Proof. (a) Suppose that vl, v2 (U, a, T). In particular, v2 e Q(U)
so that hypothesis provides us with q Q(T) such that (v=)L a(q*). Since
vl ( U, a, T), Vle Q(U,). There exists, by hypothesis, p Q(T) such that
(v*)L a(p) Since vov* 0, a(q*op) (vov) 0. But a is a.monomorphism by assumption, so that q p 0, and p q. Using the
centrality of Q(U) and this last we have (I) vvl qvl vl v2

From vl + v[q) (lr q)vq)vl, we have

while

v v + )v ( q),)v ( q)v)v v
(lr q)vq)(qvl) q(lr q)v")v,

again by the central position of Q(U). Thus we have (II) v vq) vq)v.
It is now quite simple, employing (I) and (II), to show that (vl + v)*exists

q)v)ad equals v - 1 r
Suppose veQ(Ut) where teQ(T). Then, by Lemma I (a), w v
tv e Q(U) so that v w t*w. If u is any member of U, then gt(v, U)

(v tv)u wu s u for some s e Q(T), as provided by hypothesis. By
Lemma 1 (a), r s t*s r (t) * * *e Q(Tt), and s t*s from which s
r(t) tr (t). That is, gt(v, u) (r (t) tr(t))u at(r(t))u; thus, (III) each
v Q(Ut) can be realized as a left multiplication under gt-composition by
(xt(r (t)) for some r Q(Tt). The centrality of w in U as a member of central
Q(U) allows us to assert that uv uw t*uw wu t*wu vu, so that v is
central under ordinary, therefore under g t-, multiplication. We now have
that (IV) the center of Ut extends Q(Ut).
One can readily check that (V) T is commutative with unity 1, 1 t*.

Since at(1T- t*)U U, (VI) at(1Tt) iS the identity automorphism on U+.
If at(b) 0 for any b Tt, then a(b tb) 0. But a is a monomorphism,
so that b(lr t) 0. Since 1 is regular, b 0. Thus (VII) at is a
monomorphism. By (III)-(VII), Ut, Tt, at, and 1, can replace their re-
spective counterparts without in the hypothesis of (a). Recall, from Lemma
1 (b), that, as sets, (Ut, at, Tt) ( U, a, T). If we change from ordi-
nary to gt-multiplication, the steps of the argument can now be repeated to
put v + v in Q(Ut). It follows that v -[- v e ( U, a, T), whence this set is
closed under the addition of U.

If v e ( U, a, T), then v Q(Uq) for each q e Q(T), from which

(--v) -t- (--v(q)) (q- lr)(--v)(--v(q)) (q- lr)(--v(q))(--v).
Since q lr is a unit of T (with inverse q* lr), --v e Q(U,_q) where
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2r 2(lr), and (-v) (2r-q) -v(q). Ifr is any member of Q(T), then r
may be written in the form 2r q where q e Q(T) with q* 2r r*. That
is, 2, q is as general a member of Q(T) as is q itself, whence -v e ( U, a, T),
and this latter set is now closed under both addition and subtraction.

If v (U, a, T), and if q, e Q(T), then

v- tv v- (toq) oq*)v.
iS nee v (Utoq) Lemma 1 (a) places v tv in Q(Uq) Allowing q to run
over Q(T), we have v tve ( U, a, T), a set which was just shown to be
closed under subtraction. Thus, tve (U, a, T). If v, v e (U, a, T),
then the hypothesis provides us with r Q(T) such that v v r*v. But we
have just proved that all elements like r% lie in (U, a, T); that is, the set
(U, a, T) is a subring of U. If re(T), and ifue(U, a, T), then
r e Q(T), so that rue ( U, a, T). Since U is a T-algebra, and since (T)
operates on ( U, a, T), this last must be a ( T)-algebra, establishing all of
(a). Since T as the multiplicat,ion algebra satisfies the conditions in (a),
(T) is a subring of T, and we have (b).

(c) Since members of Q(U) are central, w Q(U) implies that uv(w)
(f(w))* for somef(w) eQ(S(U)). It follows that w v((f(w))*). Re-
call that S(U) has a unity and that v is a monomorphism which carries this
unity onto the identity automorphism of U+. Since the conditions of (a) hold,
we have (e).

COnOLLn. .Let U, a ring with trivial bicenter, be a T-algebra (T commuta-
tive with unity 1 r) via monomorphic a, where a( 1 r) is the identity automorphism
on U, in such a way that, for each u e Q(U), ur a(s and ua a(t*) for
some s, Q(T). Then ( U, a, T) is a ( T)-algebra.

Proof. IfueQ(U) andify, weU, then (uy)w u(yw) s*(yw)
y(s y(uw) (yu)w, so that (uy yu)w 0; and w(uy) (wu)y
(t*w)y w(t*y) w(yu), so that w(uy yu) 0. Ifuy- yu O, the
assumption that U has trivial bicenter provides us with at least one non-zero
w U such that t least one of (uy yu)w nd w(uy yu) is non-zero. The
resulting contradiction shows that each u e Q(U) is central. Now apply (a).

d. The Jocobson rod[col

Let T be a commutative ring, U be a T-Mgebra, and X be a T-subalgebra
of U. Recall [2] that (X’U) [s;seTandsueXforallueU]isanideal
= T-subalgebra) of T. Let Epen U* be the set of ependomorphisms on U*.

LEMMA 2. Let T be a commutative ring, and let U be a T-algebra via .
Then
() J(U) is a T-subalgebra of U via some az Hom (T, End (J(U))+);
(b) if (J( U)" U) n a--(Epen U*) is non-empty, then U is a radical ring;
(c) as sets, J( U) J( U) for each q e Q( T)
(d) J(V) 5 (V, , T), (U);
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(e) if .(U, a, T) has the (left, right) ideal property in U, then
(U, , 7’) J(U); and

(f) (J(U), aj, T) J(U).

Proof. (a) Suppose that s T and that u e J(U). Then, for each v U,
(su)v u(sv), q.r. since right multiples of radical elemenes u are q.r., so that
su has q.r. right multiples exclusively and is thus itself a radical element.

(b) If r (J(U)" U) n a-l(Epen U+), a(r) Epen U+, so that, to each
u U, there corresponds at least one u’e U with a(r)u’ ru’ u. Since
re (J( U) U), u ru’ eJ(U) from which U J( U).

(c) weJ(Uq) if nd only if v v(a) gq(W, a) eQ(Uq) for all ae U.
Equivalently,

v- qv w 2qw - q2w a w’a Q U

wherew’ w 2qw q2w. Butw’aeQ(U) for eachaeUifandonlyif
w’ J(U). Now suppose that w J(U). Since J(U) is a T-subalgebra,
w’ e J(U). By what we have just shown, w e J(Uq), giving J(U) J(Uq).
By an exchange of roles, J(Uq) J(U), and we have (c). From (c), (d) is
immediate.

(e) Ifue(U,a,T),andifaeU, thenuae(U,,T) shouldthisset
have the right ideal property. Since ( U, , T) <_ Q(U), ua e Q(U) so that
u is a radical element. That is, ( U, a, T) __< J(U). Combining this last
with (d), we have the right case of (e). The left case is similar. As for (f),

J( V) J(J( V) <_ (J( V), a T) <_ J( U).

THEOREI 4. Let U be a non-trivial commutative ring without divisors of zero.
Suppose, further, that U is not a radical ring and that U+ as a U-module is ir-
reducible. Then U O.

Proof. Since U+ is irreducible, and since J(U) U, we must have
J(U) 0. Nowue(U) if and only ifueQ(U) for eacheQ(S(U)).
If we let w u ,u, we can solve for u to obtain

u w- w (-,)w

where, here, is the identity automorphism on U+.
If v is a non-zero member of U, then v is a monomorphism on U* since U

has no divisors of zero. Since U+ is U-irreducible, U is strictly cyclic on v

[2, Prop. 1, p. 6], so that v is an ependomorphism and, therefore, an auto-
morphism on U+. Since U is commutative, it is possible to construct
r v..) e Sm(U) where r v. See the proof of Theorem 2 (b).
We shall show that e Q(S(U) ).
Suppose that v e Sm (U). For each w e U,

()w (- )w w v() w (,)w

n(w vw) n(+- v)w
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making rv and w equal as left operators (similarly, as right operators). Thus
’S(U).
Leg i be he auomorphism on U+ which is inverse o v. Wigh n and w as

above, v(w) (vw)n. Replacing w by z where z vw and operaging on
bogh sides of ghe resulting idengiy by , we have (z)n (zn). Since z is
as general a member of U as w is, we have established he permutation
propery / ir (similarly, c in) which will be of use presently.

In his eontex only, le us write w’ &v for all w e U. If , b, e U, hen
(--)(ab) =ab--v(a’b) =ab-’b=b-(a)b= [(-)a]b. Simi-
larly, (- )(ab) ab ab’ [(-/)b]. Moreover,

[(-- )a]b ab a’b ab va’b’ a[.( i)b].

Thus, it is possible to construct a ( i) Sm(U) where
The permutation property of i, above, can now be used to show that
for each e Sm (U). At once, a e S (U), and it is readily verified thatz and r

are q.i. to each other, placing both in Q(S(U) ).
For u e 9?(U) and v e U,

vu v u )u )( *)w
3’* *"foreaeheQ(S(U)). That is, vu (- (to ))w. Buto ’r is

as general a member of Q(S(U) as is , itself. That is, vu
where Yo W,oo e Q(U). Equivalently, vu ovu e Q(U) for each o e Q(S(U)
since the expression in question reduces to Y0. By the initial remarks in the
proof, vue 9(U) giving this last the left ideal property. We can now apply
Lemma 2 (e) to show that 9(U) J(U). But J(U) has already been shown
to be 0, so that the proof is complete.

5. A splitting extension

Let U be a T-algebra via a where, throughout this section, T is a commuta-
tive ring. Then there is a standard way, which goes back to Dorroh [1], of
extending the T-algebra U to a splitting extension by the T-algebra T; let
V(U, a, T) be the set of all (s, u), where se T and ue U, under direct-sum
addition, with multiplication given by

(s, u)(t, w) (st, sw + tu -t- uw) (s, te T and u, weU)

and with V turned into a T-algebra via the a in Horn (T, End (T* @ U+)
which is defined by setting a(t) (s, u) t(s, u) (ts, tu). This extension
of U by T is not the most general splitting extension [3], but it does have enough
inherent commutativity to make questions concerning the radical accessible.
One readily checks that Q(V) is the set of all (q*, x) e V where q e Q(T)

and x e Q( Uq) here,
(q*, x)* (q, x(q) (q q(x(q)).

If e is the map which carries each such (q*, x) onto q*, then the sequence of
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groups (each under circle composition)

0 -+ Q(U) -- Q( V( u, a, T) Q(T) - 0

is exact. Note that, as a map from a set to a set, Q Q(V) where is the
map given by (s, u) s, this making

0 --+ U --+ V -*-- T -+ 0

exact as a sequence of T-algebras. Likewise, let O lJ(V), a T-algebra
homomorphism which makes

0 -- J(U) -- J(V) - J(T)

exact. In particular, if (r, u) eJ(V), then r eJ(T), while the Lie product
[u, x] ux xu lies in J(U) for every x e U.

Similarly, if ueJ(U) nd if reJ(T) ra(J(U):U), then (r, u) eJ(V).
For, taking ny (t, y) V, rt J(7’) _< Q(T) so that rt q* for some q e Q(T),
and (r, u)(t, y) (q*,z) wherez ry - tu +uy. SinceJ(U) is both an
ideal and a T-subalgebra in U, tu - uy J(U). But r e (J(U) U) so that all
ofz lies inJ(U). It follows that, forech seT, z szeJ(U) _< Q(U).
Now take s q, so that Lemma 1 (a) gives z Q(Uq). By our remarks on
the nature of the elements of Q(V), q*, z) is in this last so that (r, u) J(V),
as we wished to show.
The case where T is a field is discussed from a somewhat different point of

view in [6]. We shall say something below about the case where T is an
integral domain. Let aa a (T), a ring map whenever (7’) is a sub-
ring of 2’. If (U, a, T) is a T-algebra it is also a (T)-algebra via aa
whenever ;i(T) is a ring. In this cae

B B(U, , T) -V(( U, , T), o, (T))

is a subring of V(U, a, T). It is also a (T)-algebra: if s e :h(T) and if
(p, x) e B, then s(p, x) (sp, sx) B, and the operators from T commute
with the left and right multiplications on B. Let A A( U, a, T) denote
(V(U, a, T), a%, T), and let IB.
THEOREM 5. Let T be a commutative ring with unity 1 r, and let U be a T-alge-

bra via a where a(lr) is the identity automorphism on U+. Suppose that
U, a, 2") is a T)-algebra as a subring of U. Then
(i) B(U, a, T) <_ A(U, a, T);

(ii) O-- (U, a, T) ----> B(U, a, T) 2a- (T) --O

is an exact sequence of ( T)-algebras; and
(iii) ifA U, a, T) is closed under the subtraction of V( U, a, T), or if 2’ is an

integral domain, then A( U, a, T) B( U, a, T).

Proof. First observe that the identity automorphism on the direct-
sum group T+ (R) U+ is also a ring isomorphism on V(Ut, at, Tt) onto
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(V( U, a, T) )t for each e Q(T). That is, as sets,

A C, ((V(U, , T)),) , (V(U,, ,
running over Q(T). Hence (p, x) eV(U, a, T) lies in A if and only if

p C(T) and

x Ot Q( (Ut)p() f’lt Q( Ud((

as we can see by appealing to our earlier results and definitions. Since
d(p(t);t) eQ(T), f"ltQ(Ue((t);t)) > (U,a, T). Nowsupposethat (p,z) eB
so that p e .-C(T) and x e ( U, a, T). By what we have just done, (p, x) e A,
whence B __< A, and we now have (i). The exactness of the sequence of (ii) is
immediate.
Let us assume that A is closed under the subtraction of V( U, a, T), and

let us take (s, u)cA. By our above remarks on A, s e (T). Since
Oef’ltQ(Ue(8();t)), we have (s, 0) cA; therefore (s, u) (s, 0) (0, u)
That is, u e lt Q(U(0;o). But d(0; t) t, whence u e ["It Q(Ut)
( U, a, T). It thus appears that (s, u) e B, whence A _< B.
Assume, alternately, that T is an integral domain and thus (p, x) A so

that p e (T) and x e t Q(U(();t)) as runs over Q(T). Recall that
r 2r s e Q(T) whenever s e Q(T). Since p e ,(T) _< Q(Tr), Lemma
1 (a) provides that

lr r)p -( lr s)p e Q( T).

The quantity 1 r + 1 r s)p is thus a unit of T, and one can show that

t(s) lr (lr s)(lr q- (lr s)p)-1 eQ(T).

From this, one has
p(t(.)) __(1, s)p p

p s p + p q_ p(,(,)) p(p q_ p(t)) t(s)p(t(8))) pd(p(t(")); t(s)).

If p - 0, the integrity of T yields s d(p(t(")); t(s)). A consequence is that

where both and s range over Q(T). We saw, however, (VIII) that x lies in
this last intersection so that x e ( U, a, T), and (IX) that p e (T). From
the definition of B, we now must have (p, x) e B.

If p 0, then we have p(t) O, d(p(t) t) t, and again x e tilt Q(Ut)
(U, a, T). That is, (0, x)eB. In any event, A _< B, completing the
proof.

6. The radical of the extension

Let az. a J(T), where, as before, U is a T-algebra via a, and T is,
throughout this section, a commutative ring. Observe that V(J(U),
a.,..r, J(T) is a T-algebra, a subalgebra of V( U, a, T).
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THEOREM 6. Let U be a non-trivial T-algebra T commutative) via a.

pose that r(u u2) 0 for each r J(T) and for each u e U. Then

J( V( u, , T) V(J( U), ,, ,Z(T)).

Proof. For (r, u)eV(U, a, T), (r, u)eJ(V(U, a, T)) if and only if
(r, u)(s, x) (rs, rx if- su q- ux) is q.r. for each (s, x) V. That is, equiva-
lently, rs is q.r. and rx if- su q- ux Q(U(r,).). Equivalently, again, r e J(T),
and rx q- su q-ux (rs)*(rx q- su q-ux)e Q(U).

If e J(T), and if v e U, then

tv + t*v (t -- t*)v (tt*)v (tt*) (tv)(t*v),
by the special condition in the hypothesis. That is, tv is q.r. with (tv) * t*v.
For w U, (tv)w t(vw) so that, by what we have just done, (tv)w is q.r. for
each w e U. But this means that tve J(U) from which J(T) _< (J( U)" U).

If (r, u) e J(V), then (r, u) (0, x) is q.r. for each x e U, which is to sy that
rx + ux Q(U). We know lso that r J(T). Replace x by xy to obtain
(rx + ux)y Q(U) for ech x, y e U, from which rx - ux J(U). But
J(T) .<_ (J(U)’U) gives rxeJ(U). Hence uxeJ(U) <__ Q(U) for ech
x eU, so that u J(U). We have established that J(V(U, a, T)) <_
V(J(U),a.z,J(T)).

Conversely, if (r, u) is in the right-hand set of the preceding inclusion, then
(X) r e J(7.’), and u J(U). We have rx, su, and ux lying in J(U), so that
(x)

rx c su + ux (rs)*(rx - su -ux)eJ(U) <__ Q(U).

But (X) and (XI) are equivalent to (r, u) J V U, a, T) ), completing the
proof.
We should observe that the condition r(u u2) 0 holds for any Boolean

ring U which is also a 7’-algebra. To obtain another example, let p be prime,
T be the ring of p-adic integers, and U be any ring of characteristic p. It is
easy to see that U is T-algebra. Recall [2] that J(T) is the principal
ideal generated by the p-adic integer p. Since pv 0 for ech v e U,

2r(u 0 whenever r e J(V).
Ifwehver(u u) 0foreachreJ(T) andeaehueU, thenra 0

forechaeQ(U), andru -r u. For, raa (ra)aa r + raa so
that 0 ra ra. Also, (r - r*)u r(r*u) ra where a r*u J(U)

Q(U),sinceJ(T) (J(U) U). Thtis, ra 0fromwhichru r*
(Cf., X(r*) nd -r in Section 1.)

COnOLIAY. Under the conditions of the theorem, for no r e J(T) is a(r)
an ependomorphism on U+.

Proof. By Lemma 2(b), U is a radical ring whenever any member r0 of
J(T) acts as an endomorphism on U+. But, by the above remarks, r0 u 0
for every u e U since U Q(U) under these circumstances.
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THEOREM 7. Let U be a T-algebra T commutative) via a where U+ is an
irreducible T-module.

a) Suppose that no member of J(T) is carried by a onto an automorphism
of U+. Then J( V( U, a, T)) is, to within an isomorphism, either J(T) or the
algebra direct sum of the T-algebras J(T) and U.

(b) If a is a monomorphism, then V( U, a, T) either has trivial radical or
has its radical essentially U.

Proof. (a) Since T is commutative, (ker a(r)) + is a T-submodule of U+

for each r e 7’. By the irreducibility of U+, this submodule would have to
vanish if a(r) were to be an ependomorphism. But a(r) would then have to
be an automorphism, contrary to assumption if r is taken from J(7’). Hence,
if r e J(T), Im a(r) < U. But (Im a(r) + is a T-submodule of irreducible
U+. Thus, Im a(r) reduces to the trivial algebra, and J(T) operates trivially
on U+ via alJ(T). Now suppose that (r, u) eJ(V) so that reJ(T).
For allyeU, (r,u)(0, y) (0, ry + uy) eJ(V). Burry OsinceJ(T)
operates trivially on U+, giving (0, uy) eJ(V) and uyeQ(U). Thus
ueJ(U).

Conversely, if re J(T), and if u e J(U), then

rx + su + ux rs)*(rs + su + ux)

reduces to su + uxeJ(U) <_ Q(U), from which (r, u)eJ(V), as we see
from the proof of Theorem 6. Since J(T) acts trivially on U+, it is readily
verified that (r, u)(s, w) (rs, uw) where r, seJ(T) and u, weJ(U).
To within an isomorphism, J(V) is just J(T) (R) J(U). Finally, the irre-
ducibility of U* shows that J(U) 0 or U.

(b) Since U+ is irreducibile via faithful , T is primitive and thus has
zero radical [4]. The members of J(V) are thereby seen to be all (0, u)
where su ux e Q(U) as s runs over T and as x runs over U. For a special
case, take s 0 from which ux e Q(U) for all x U, so that u J(U) when-
ever (0, u) e J(V). As a T-algebra, therefore, J(V) is isomorphic to
J(U) =0orU.

7. Some examples
Let T Z, the ring of integers modulo 24. Then

J(T) (T) (6).

Let 7’ Z.:, and let U (2) N T, so that U is a T-algebra, and each(b)
multiplication on U by a member of Q(U) can be realized by an operation
from Q(T). Again J(U) ( U, , T) (6), although a is no monomor-
phism.

(c) Let T be Z, and let U be the T-algebra of two-by-two matrices
over T. Note that J(U) (6I) where I is the identity matrix. Now

3
(U,a, T)J(U);
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likewise for

Nevertheless, their sum

is not even q.r. in U. Notice that there are left multiplications on U by
elements of Q(U) which cannot be realized by multiplications from Q(T).
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