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1. Introduction

In a joint paper [1] Blumenthal and Getoor obtained local times for a large
class of Markov processes by considering local time as an additive functional
of a Markov process. Abstract representation theorems insure the existence
of continuous additive functionals with prescribed potentials. By prescrib-
ing a certain potential Blumenthal and Getoor were thus able to obtain a
continuous additive functional that they called local time. The connection
between local time and occupation times was then made under Hunt’s hy-
pothesis (F), [5, III]. Thus this method of obtaining local time is an indirect
one.

It is of interest whether local time can be constructed for processes satisfy-
ing hypothesis (F) and certain regularity conditions by more direct and in-
tuitive methods than those employed by Blumenthal and Getoor. In this
paper local time is constructed s the limit (in some sense) of tural p-
proximating densities.

2. Preliminaries

We refer the reader to Getoor’s expository pper [3] for notation, definitions
and results used below concerning Hunt processes and additive functionals.
Lt X {X, >= 0} be a Hunt process on state space E. E is assumed

to be a locally compact separable metric space with a point A adjoined to E
as the point at infinity if E is not compact or an isolated point if E is compact.
By convention 11 extended rel valued functions on E ure defined on E u {A}
by f(A) 0. We denote the -potentiul operator of the process for >= 0 by
Ux, i.e.,

UXf(x)- E, fo e-X*f(X*) dt

where f is bounded rel-vlued universally mesurble function on E. Re-
call that if Hunt process stisfies hypothesis (F) [5, III, p. 154] then there
exists meusure on E und point kernels UX(x, y) defined on E X E for X >= 0
such that

(2.1) Uf(x) f (x, ,):(,)
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We will need the following facts implied by hypothesis (F)"
(i) The measure is strictly positive on non-empty open sets and finite on

compact sets [5, III, p. 154].
(ii) Given a measure t on E one can define the k-potential, U, of as

follows"

UX,(x) f UX(x, y) d(y).

UX, is positive lower semi-continuous and it is ),-excessive when finite almost
everywhere with respect to [5, III, p. 169].

3. Regularity conditions
Local time will be constructed as an additive functional of X under the

regularity conditions given below. First we need the following definition"

A point x e E is regular for itself if P{T. 0} 1, where
T inf {t > 0 Xt x/is the hitting time for x.

In the sequel we assume X is a Hunt process that satisfies hypothesis (F).
We assume that X also satisfies the following conditions"

(1) Each point of E is regular for itself.
(2) For each ), > 0, limy UX(x, y) UX(x, Xo) uniformly in x, for all

x, y, x0 in E.

We remark that condition 1 implies that for fixed y, UX(x, y) as a function
of x belongs to C0(E) if k > 0, where C0(E) is the class of functions continuous
on E that vanish at infinity. This is true since then Hunt’s hypothesis (I) is
true; see [5, III, pp. 196 and 200]. Also condition (1) implies that
UX(x, y) =< UX(x, x) < oo if )‘ > 0, for all x, y in E; see [5, iii, p. 200].

4. The construction

In this section we fix an arbitrary point Xo in E and )‘ > 0. We wish to con-
struct the local time at x0. The additive functional that is constructed first
depends on )‘. The dependence on ), will be removed later.

Define a new process Xx as follows"

XXt X if <S
A if > S

where Sx is an exponentially distributed random variable with parameter ),

completely independent of X, i.e., P{Sx > t} e-xt for all x. X is a Hunt
process satisfying hypothesis (F) with respect to the same reference measure .

Let {B,} be a decreasing sequence of open sets with compact closures each
containing the fixed point x0 e E and x0 [’l,/,.
We define continuous additive functionals of Xx for our fixed X as follows"

tAx
Let AX (t) h,(Xs), where h,(x) I,,(x)/(A,)
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(a/ b denotes the minimum of a and b). Note that 0 < (B) < oo by com-
ment (i) in Section 2. For each n, AX {A(), >= 0} is a continuous ad-
ditive functional of Xx and A(t) AX(S) for Sx.

For a fixed time > 0 and fixed sample point we can define a measure
(., t, w) on E as follows: for a Borel set B in E let

(B, t, ) Jo I,(X,() ds,

where I is the indicator function of B. One may call (., t, ) the "occupa-
tion measure" up to time for the path , for (B, t, ) gives the amount of
time spent by the path in B up to time t. Note that

A(t, ) u(Bn Sx, )/(Bn).
These latter quotients are of the kind that arise in differentiating one measure
with respect to another, so that the A(t) can be interpreted as approximate
densities of the occupation measure u(’, t, ) with respect to the measure .

Letf be the potemial (of parameter zero) of A. That is,

f(x) E, A( E A(8x) E, g(Z,) ds

N xe-x (X) d d

+ e (X) (by ingegragion by pargs)

E e g(X) du

f UX(x, y)g(y) d(y) (by equation (2.1) in Section 2)

f (x, y)I(y)/(B,) d(y)

1 fs UX(x, y) d(y)
(B)

Define measures on E as follows: if D is a Borel set we define

(D) f g(y) d(y) (DB)
(B)

Then f(x) xu(x) f u(, ) d(). Note lso th
(B) 1, for each n.
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Now
1 fs U)’(x, y) d(y),f(x)

(B,O

Since {/} x0 and U’(x, y) --> U’(x, Xo) uniformly in x as y -- x0 by regu-
larity assumption (2), it is clear that the sequence {f} converges uniformly
to fx, where f’(x) U’(x, Xo). This observation is of basic importance in
what follows.
We will show the existence of an additive functional Ax of Xx such that the

potential of A if f and A is the limit in an appropriate manner of the A.
The following remarks will be needed for the lemm that follows: One way

of stating the strong Markov property is to require that if h is a bounded
-measurable function (see [3] for the definition of and r) defined on the
sample space then

E{h(Or )1 r} Exr h, .e. P
for any stopping time T, where 0r o is the sample point defined by the equation
X,(Or ) Xu+r()(). We write Xuo 0r X+. We also note that if T
is stopping time then

Sx(0r ) S(0) T(o), .e. P,

on {T < Sx} for all x; see [4, p. 24].

LEMMA. Let A {A(t) and f be defined as before. Then,

E,{A( )[ t^s} A(t) + f(Xt), a.e.

Proof. For notational conveneince let T Sx and

f du.
v0

a. e. P, Q. E. D.

Then,

A(t) + E. g.(X. o 0.) dul

A(t) + I[t<sExrh (by the strong Markov property)

A(t) + I,<s f(Xr)
A(t) + f(X),

By this lemma, if we let

M (t) d (t) +
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then {MX(t), t^sx, P} is a martingale for each n and x. This martingale is
separable because fx(X t) is almost surely right continuous in by a theorem of
Hunt [5, I] since fX is X-excessive and AXe(t) is clearly almost surely continuous
in t. The phrase "almost surely" is used to denote a.e. P for all x in E.
By standard inequality for separable martingales (see [3, p. 353]) for

t>0,

P{supt M(t) M(t)[ >- }
--2 X X=< t E{(M,( M,( ))2}

(4.1)
--2 h k 2} Xti E{(A() A,()) (since f(X) =f(A) 0)

-E{ (AX(Sx) Ax(Sx) )2}.

Now

Therefore,

2E fo e-X’g(Xu)f du

the latter equality is obtained by using the fact that Sx is exponentially dis-
tributed with parameter .
But applying equation (2.1) in Section 2 to the latter expression we obtai

E,{AX(Sx)} 2 f (x, y)g,(y)fX(y) d(y).

By a similar computation,

E{ (Ax(S) Ax .x
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2 f UX(x, y)(g,(y) g,(y))(fX(y) fX(y)) d(y)

2 J U’(x, y)(fx (y) f,n(Y) )(d,,,(y) d,,(y))

<_ 4(x, x) f f .
The ltter inequality follows from the fct that

UX(x, y) VX(x,x) < nd ] 1.

Since the sequence {f} converges uniformly to

lim., E{ A S xA(S))} 0.

Hence, by expression (4.1) we obtain

(4.2) P[supt iMP(t) ML(t)] } 0 s n, m

for 11 > 0.
But since M(t) A(t) + f(X),

P{supt A(t) A(t)] }

P{supt [M(t) Mx(t)] > U2} + P{supt [f(X) f(X)] > $/2}

Reclling thatf f uniformly nd pplying (4.2) we hve

(.3) {sup g(t) A(t)] 1 0 s n, m

for all ti > 0.
Thus the sequence {AXn(t)} converges in P-probubility uniformly in for

all x. Hence, for each x there is a subsequence {Ax x,(t)} of {A,(t)} which
converges almost everywhere (P) uniformly in t. The subsequence {AX,(t)}
in general depends on x. Let BX(t, 0) lim_. AX(t, w). The subscript x
is to denote the dependence of the limit on x. BX(t, w) is almost everywhere
(P) continuous in since it is the uniform limit in of the Ax which are
almost surely continuous in t. We now define AX(t, w) BX(t, o) on the set
{w X0X(o) x}. It is easy to check that A {AX(t); >__ 0} is an additive
functional of Xx. Also -+ A(t, 0) is almost surely continuous since-- BX(t, w) is almost everywhere (P) continuous. Thus Ax is a continuous
additive functional of Xx.

The following argument shows that the potential of Ax is f. As before

E(AX()2) 2 f (x, y)g,(y)fX(y) d(y)

2 J U(x, y)f(y) d,n(y)

2U(x, x)IIf



60 RICHARD J. GRIEGO

Recall that fx -- fx uniformly and

o <-f() V(x, Xo) <= U(x0, x0) <
and also I111 1 for alln. Therefore, E(AX()) K < for large
enough n, where K is u constant depending on x.
For large n the random variables A( are thus uniformly integrable, so

E A( E lim A( lim EA(
limf(x) fX(x) VX(x, Xo).

Thus, Ax {AX(t)} is continuous dditive functional of Xx with po-
tential fx.
We wish to obtain a dditive functional of X (independent of ) with

X-potentil fx. The following rgument is standard (see [1, p. 53] or [4,
p. 49]).

Let , u > 0 nd Sx, S" be independent rndom wribles exponentially dis-
tributed with pmmeters k nd u respectively nd independent of X.
By the bove there exist dditive functionls Ax of Xx nd A of X such

that EAX(Sx) fX(x) nd EA(S) f’(x).

E{A(Sx S) EA(S) E{A(S) A(SX), Sx < S}

f(x) E{A(S) A"(Sx), Sx < S}.

Using the fact that Sx und S" are exponentially distributed and applying
Fubiui’s theorem we obtain

E{A"(S) A"(Sx); Sx < S} x E{A"(S) A"(t);t < S’}e- dt

X ElS(A(S"));t < S}e-x dt

X E{f(X), < S}e-x dt

X, E{f"(X) }e-"e-x ds dt

h Ef’(Xt)e-(’+x)t dt

XE e-(+x) tf, (Xt) dt

xv+f.().
Thus EA"(Sx S) f(x) UX+"f"(x). But by the resolvent

equation
V?(x) xv+VT(x) v+?(z)
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for all bounded measurable functionsf and x in E. Since Ux(x, y) is the kernel
for the operator Ux, this implies

U’(x, y) XUX+’U’(., y)(x) UX+’(x, y)

for all x, y in E. However, fX(x) Ux(x, x0), so

f XV+f. fx+.
fx+, is symmetric in X and , so by Meyer’s uniqueness theorem [3, p. 416]
AX(t) A"(t) a.s. on {t < Sx / S"}. It now follows from a standard con-
struction that there exists an additive functional A of the process X such that
for each X > 0,

A (t) AX() if < Sx, and A (Sx) AX($) if >- S. See [4, p. 50].

Hence the X-potential of A is fx for each X > 0"

UX (x) E fo e-xt dA (t)

X fo E(A (t))e-xt dt
(by integration by parts
and Fubini’s theorem)

EA(S) EAX() =fx(x).
We thus obtain the following theorem.

THEOREM 4.1. Assume the process X satisfies hypothesis (F) and regularity
conditions (1) and (2). Fix Xo in E. Let fX(x) UX(x, xo) for X > O. Then
there exists a unique (up to equivalence) continuous additive functional
A A (t) of X such that the X-potential of A is fx for each X > O, and if X > 0
then the sequence of additive functionals

AXn(t) 1
(Bn) Jo

[sn(Xu) du

converges in P-probability for each x, uniformly in to A(t) on {t <- S}. Also
for each x there is a subsequence AXn (t) of AX (t) such that AX (t) converges
to A t) almost everywhere P) uniformly in on <-_ Sx}

DEFINITION. The additive functional, A, of Theorem 4.1 is called the
local time of the process X at the point x0.

The local time constructed here coincides with that obtained by Blumenthal
and Getoor since the two local times have the same X-potentials.

5. An alternative condition

In this section we give a useful condition that together with hypothesis (F)
and regularity condition (1) implies condition (2). In general the state space
E need not have an algebraic structure. In this section we assume E is a
linear space over the real or complex numbers with an invariant metric d, so
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that
d(x, x) d(x- x, x- x) for all xl,x,x in E.

We assume that the process X satisfies hypothesis (F), regularity condition
(1) and the following regularity condition:

(2’) The potential kernel U’(x, y) depends only on the difference y x
for all > 0; we write U’(x, y) U(y x) for all x, y in E.

As remarked before, UX(x, y) belongs to Co(E) as a function of one variable
with the other variable fixed. Then by regularity condition (2’) thefunction
of one variable x -- U(x) also belongs to C0(E). The function U( is thus
uniformly continuous on E.

It is now easy to verify condition (2) that

limy+x0 Ux(x, y) Ux(x, x0)

uniformly in x, for all x, y, x0 in E. For by the uniform continuity of UX(
and condition (2’), given > 0 there is a 8 > 0 such that if

then
d(y, xo) d(y- X, Xo- x) <

u(, u) U(x, xo)l u(u x) U(xo- x)l <
for all x. Therefore the hypotheses of Theorem 4.1 are fulfilled.

6. Examples
In this section we give examples of large classes of processes which satisfy

hypothesis (F) and the two sets of regularity conditions.
Let X be a real-valued process with stationary independent increments and

right continuous paths. Then as is well known (see [1, p. 64]),

E.( eyx() e
where

o- y: I ei iyu(y) imy + - + 1-
i+ u

(du)

with m a real number, o? -> 0 and a measure such that

( + z)-(z) < .
or simplieigy assume m 0. Denoting ghe real parg of by , we
assume for all X > 0 gha

(6.1) (h + (x))- dx < .
If in Hunt’s hypothesis (F) we let be Lebesgue measure then X is a Hunt

process that satisfies hypothesis (F). Moreover, the k-potential kernel for



LOCAL TIME AS A DERIVATIVE OF OCCUPATION TIMES 63

X is given by

1 I e-(-)(6.2) UX(x’Y)
k W b(z)

dZ"

By assumption (6.1) this integral exists absolutely and UX(x, y) is bounded
and continuous in x and y. Also each point is regular for itself (see [1, p. 64]).
Hence X satisfies regularity condition (1). It is clear that condition (2’) is
satisfied. It is easy to see that condition (2) is satisfied directly by consider-
ing the real and imaginary parts of the integrand in the integral defining
U(x, y).
The stable processes of index a, 1 < a =< 2, on the real line axe included in

the above example. The potential kernel is given by (6.2) where

(6.3) (z)=lz,I1Wi([-[[tana)l, with [l =<1.

If a 2 then X is one-dimensional Brownian motion. It is clear that (6.1)
is satisfied since (z) z and a > 1.
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