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I. Intfroduction

Let X be a non-empty set, B, a o-algebra of subsets of X and A, a o-finite
measure on ®. Let L,(\) be the collection of all real-valued, N-essentially
bounded ®B-measurable functions defined on X, and let @(\) be the collection
of all finite, signed measures on ® which are absolutely continuous to .
Let M be an operator satisfying the following conditions:

MI1. if feLo,(N\) then Mf e Lo(N),
M2. feLe(N) and f > 0 a.e. (N\) imply Mf > 0 a.e. (N),
M3. f.eLo(N) and f, | 0 a.e. (N\) imply Mf, | 0 a.e. (N).

Based on M1, M2 and M3 we can then define vM for any » ¢ @(\) to be a
signed measure satisfying

va(dx)f(x) = fv(dx)Mf(x)

forevery f € Lo(N). Then»M is again an element of @(N\). Such an operator
is a A-measurable Markov operator of E. Hopf if an additional condition
M1 < 1a.e. (N) is satisfied (ef. [4]). An M satisfying M1, M2 and M3 shall
be called a N-measurable positive operator or simply, a positive operator. In
this paper, the main concern is the “periodic” or “cyclic moving” behavior of
sets. If X is discrete and N is the measure which assigns measure 1 to every
singleton then a positive operator M is just a non-negative matrix M (<, 7).
If M (4,j) isirreducible, a period for M (%, j) may be defined in the same manner
as that for a probability matrix. In [8] the present author has treated the
period behavior of an ergodic conservative Markov operator. In this paper
the ‘“periodic’” behavior of a positive operator is investigated. It is discovered
that the rreducibility of M alone is enough to enable us to study the “cyclic
moving” behavior. Notions of ‘“N-continuity’”’ and the more general ‘“quasi
\-continuity” for a positive operator are introduced. If an irreducible M is
quasi N-continuous then M has a positive integer § as its period. This number
6 is characterized by the following fact: the space X is partitioned into &
cyelic moving sets Cy, Cs, -+ , Cs each of which is irreducibly M™-closed for
n = 1,2, ---. This fact has been proved for a N-continuous, egodic, con-
servative operator in [8]. This work, again, is inspired by Doeblin [2] and
Chung [1] although the method used here is quite different. In Section III,
positive operators with transition functions are studied. This kind of positive
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operators arises from Markov processes and branching processes. The rela-
tion between quasi N-continuity of the operator and properties of transition
functions is studied. It is shown for instance, that if the probability transi-
tion function satisfies a condition of Harris (see [6]) then the associated
Markov operator is irreducible and quasi M-continuous. This fact enables us
to apply a result of Section II to establish a period for the operator.

Il. Theory of periods for an irreducible positive operative

In this section all subsets of X are elements of ® and all functions on X are
®-measurable. Unless otherwise indicated, for two sets 4, B, A C B,A = B
are to mean N\(A — B) = 0,\(4 A B) = 0 respectively. For two functions
fgon X, f =g, f < g are to mean that the equality and the inequality,
respectively, are satisfied except on a A-null set. Occasionally we still indicate
= a.e. (\) or < a.e. (N) for emphasis. A set 4 is null or non-null according as
MA) = 0or NA) > 0. We shall always assume that & is non-trivial, i.e.,
®& contains at least one set A such that N\(4) > 0and M(X — A) > 0. For
any set A, 14 is to represent the function which is equal to 1 on A and 0 on
the complement A of A.  @*(\) is to denote the collection of all finite measures
which are absolutely continuous to N\. For any » e @ (), the support of
v, supp v is the set of all points « ¢ X such that (dv/d\)(z) > 0.

Derinrtion 1. A set C is M *_closed, where k is a positive integer, if
M*1z = 0 a.e. (\) on C where C is the complement of C. A set is closed if it is
M -closed.

LemMa 1. If {C,) is a sequence of M -closed sets then N, C, and U, C, are
M*-closed. An M"-closed set is also M*"-closed form = 1,2, -+ .

Proof. We shall prove the lemma for k = 1. For (\) almost allz ¢ N, C,,,
we have Mlg.(x) = 0 forn = 1,2, .-+ . Since Mly,z, < 2 » M1z, and
> wMlg, = 00on N, C,, we have

0= Mlyze, = Mlgz;

and N, C, is M-closed. The fact that U, C, is M-closed follows from the ob-
servation M1ge, < Mlg, forn = 1,2, .- -, therefore, M1gs; = Oon C,
forn =1,2,---.

If C is M-closed, then M1 = 1g-M1g, therefore, M*1g = M (1g-Mlg) <
(M1g)-a where a is a number for which M1 < a. Hence M*1g = 0 on C and
C is M*-closed. Proceeding in the same manner, we arrive at the conclusion
that C' is M™-closed form = 3,4, --- .

DeriniTioN 2. An M*-closed set C is decomposable if there are two non-
null M*-closed sets 4, B such that A u B € C and A n B = §§ (empty set).
An M*-closed set is indecomposable if it is not decomposable. An M*-closed
set C is irreducible if it is non-null and if A < C,N(4A) > O,N(C — 4) > 0
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imply A is not M*-closed. M is irreducible if X, as an M-closed set, is ir-
reducible.

It is clear that an irreducible M*-closed set is indecomposably M"*-closed.

LemMma 2. If M 4s irreducible then Mf > 0, provided f > 0 and f e Lo(N).
It follows that M"1 > 0 forn = 1,2, --- .

Proof. Let A = [x: M1(xz) = 0]. Then M1z = 0 on A for every set B,
hence every subset of A is closed. Since M is irreducible, either N(A) = 0 or
MX —A) =0. IfNMX — A) = 0, then there is a set D C A such that
ND) > 0andAN(A — D) > 0since we assumed that ® is non-trivial. D being
closed clearly contradicts the hypothesis that M is irreducible. = Hence
NMA) = 0and M1 > 0 a.e. (\). Now,letf > 0a.e. (\) and

E,=[x:f(x)>1/n], G=|x: Mf(z) =0] and D,=[r: Mlg(xz) =0];
then G € D, forn =1,2,---. Now M1z, T M1, hence M1 = 0 on G and
NM@) = 0 follows immediately.

LemMA 3. If a set C is decomposably M"-closed then C is also decomposably
M""-closed for an arbitrary positive integer n. If C is M *_closed and inde-
composably M*"-closed where n is a positive integer, then C is also indecomposably
M*-closed.

The above lemma follows immediately from Lemma 1.

LemMA 4. If u, v are elements of @ (N) such that u is absolutely continuous to
v then supp uM"* < supp vM" for an arbitrary positive integer k.

Proof. We shall prove for £ = 1. Let g = du/dv. Let
gn(z) = g(z), if g(z) < n;
= n, otherwise.

Let p, be defined by pa(E) = [&gadv. Then u, < nv, hence M < nvM so
that supp u,M C supp vM. Now for every set E, uM(E) T pM(E), hence
AduM/dANT duM /dN. Hence

supp uM = U, supp u.M C supp »M.

We remark that, for two measures », u in @*(\), » is absolutely continuous to
w if and only if supp » C suppu. Thus, Lemma 4 may be stated as follows:
yM* is absolutely continuous to uM* if » is absolutely continuous to p.

It follows from Lemma 4 that if supp » = supp u, then supp »M * = supp pM”

DeriniTion 3. For any set 4, define
Fo(A) = A, F.(A) = supp vM" for n=1,2, -,
F(A) = UsoF.(A)

where v is an element of @"(\) which has A as its support.
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By Lemma 4, particular » chosen in Definition 3 does not matter and
Fpa(A) = Fy(Fu(A4)) forn =0,1,2, --- .

The following lemma follows immediately from Lemma 4 and the fact that
the support of the sum of several measures is equal to the union of the supports
of measures.

Lemma 5. If Ay, A are two sets such that Ay C A, then F,(Ay) C F,(4s)
forn =0,1,2, -, therefore F(A1) C F(As). If {As} is a sequence of sets
then

F,,(ﬂ,Az) C nan(Ai) and U@Fn(A'L) = Fn(U@A.«,) fOT n = 0,1,2, DI

Lemma 6. 1. A set C is M*-closed if and only if C D Fi(C). If C is M"-
closed then Fi(C) D Fu(C) D -+ - and F,(C) is M*-closed forn = 0,1,2, - - - .

2. If a set C is M*-closed then
CuF(C)u -+ UuF1(C) and CnFy(C)n---nFr4(C)
are M -closed.
3. For any set A, F(A) is the smallest closed set containing A.

Proof. If C is M"-closed, then M*1z = 0 on C for every subset E of C.
Hence, if v € @T(\) has C as its support then »M *(E) = 0 for every subset E
of C. Hence Fi(C) = supp»M* < C. Conversely, if Fx(C) < C and if
v e @7(\), supp » C C then supp vM* C Fi(C) < C. Hence vM*(C) = 0 for
every » e @7(\) with supp » © €. This implies that M*1z = 0 a.e. (\) on C.
If C is M*-closed, C D Fi(C), then, by Lemma 5,

Fuo(C) D Frn(C) = Fi(Fu(C)).

Hence F,(C) is also M*-closed.
Let C be an M*-closed set, then, by Lemma 5,

Fi(CuFy(C)u---uFra(C))

=F(C)uFy(C)u---uF(C) CCuFy(C)u---uFr4C),
Fi(CnFy(C)n - nFra(C))

CF(C)nFy(C)n---nF(C) cCnFi(C)n - nFra(C).

Hence both sets Cu F1(C)u -+ - U F3_1(C) and Cn F1(C) n - - - n Fy1(C) are
M -closed.

For any set A. Mly 7 = 0 on Fu(A) forn = 0,1,2,---. Hence
Ml7 = Oon F(A) forn = 0,1,2, ---. Therefore M17c; = 0 on F(4)

and F(A) is closed. If C is an arbitrary closed set containing A, then
F(C) D F(A) by Lemma5. However,C D F(C). Hence C D F(A). Thus
F(A) is the smallest closed set containing 4.

The following lemma follows from Lemma 2 and Lemma 6.
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LemMA 7. If M is irreducible and if A is non-null, then F,.(A) is non-null
form=1,2,.-..

CoRrOLLARY 1. M s irreducible if and only if
X =[z: 2 naM"lg(z) > 0]
Sor every non-null set E.

Proof. If M is not irreducible, then, there is a non-null closed set C such
that B = X — Cisnon-null. Wehave M”13 = Oon C forn = 1,2, - - -so that

CCX —[e: 2 aaMls(x) >0] and X # [x: D nes M™"15(x) > 0].
Suppose that M is irreducible. If there were a non-null set £ such that
X —[x: 2 naM lg(x) >0 =D

is non-null, then M"1z = 0 on D so that F,(D) n E = @forn = 1,2, --- .
Hence
F(Fy(D))nE = U, F,(D)nE = 0.

By Lemma 6 and Lemma 7 F(Fi(D)) is a non-null closed set which con-
tradicts the supposition that M is irreducible.

Lemma 8. If M is irreducible and if Ci, Cy are two non-null, disjoint,
M*-closed sets, then F.(Cy), Fu(C2) are also two non-null, disjoint, M*-closed
sets where n 1s an arbitrary positive integer.

Proof. 1If Cy , Cy are two non-null M"*-closed sets then Fy(C1), F1(C:) are also
two non-null, M*-closed sets by Lemma 6 and Lemma 7. Now suppose that
Fi(Cy) n Fi(C:) is non-null. Then Fy(Fi(C1) n Fi(C:)) is non-null by
Lemma 7. However, by Lemma 5 and Lemma 6.

Fr1(F1(C1) n Fi(C2)) C Fr(Cy) n Fi(Cy) € Cin Cy.

Hence C; n C; would be non-null. Hence the fact that Cy n C; is null implies
that F1(C1) n F1(C:) is null. The conclusion for an arbitrary positive integer
n follows easily from mathematical induction.

Lemma 9. Let M be irreducible. Then, if E is decomposably M *_closed, so is
F.(E); if E is indecomposably M *_closed, so is Fo(E). k, n are two arbitrary
posttive integers.

Proof. 1If E is decomposably M*-closed, then, there are two non-null M’ k.
closed sets B and C such that BnC = §and BuC C E. By Lemma 8, F,(B)
and F,(C) are also non-null, disjoint, M’ *_closed sets. By Lemma 5, F,.(B) u
F.(C) C F,(E). ThusF,(E) is decomposably M *_closed. If E is M"*-closed
and F,(E) is decomposably M*-closed then there are two non-null *_closed
sets D and G such that D u G C F,(E), Dn G = §. Let m be a positive
integer such that mk > n. Then

ka—n(D) c ka(E)7 ka——n(G) c ka(E)-
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Both Fp—n(D) and Fopi_n(G) are M*-closed, non-null and mutually disjoint by
Lemma 8. E is also M™-closed, hence F.i(E) C E by Lemma 6. Hence

Foin(D) U Frrn(G) C E
and E is decomposably M*-closed.

Lemma 10. If M is irreducible and Cy , Cs , - -+ , Cn are M*-closed, non-null
and pairwise disjoint, then n < k.

Proof. Let Gp = Cnnu Fi(Cw) u--- U Fyy(Cp),m =1,2,--+-,n. By
Lemma 6, G, are closed. nNp—1 G 5 @ since M is indecomposable. Now
n,',ﬁ=1 Gm, = Uiy, +,ip) {F“(Cﬁ) n-:--nN Fi”(Cn)}

where (41, -+, 1,) is an arbitrary n-tuple of integers lying between 0 and
k — 1. There exists one n-tuple (%, *+ , ») such that

Fy(Cy)n .-+ nFi(Ch)

is non-null. Hence %1, - - - , 7, must be distinet integers, for to be other wise
would imply that the set #;,(C1) n - -+ n F; (C,) is null by Lemma 8. Hence
n < k.

LemMaA 11.  If M is srreducible and k is a positive integer then there is an inde-
composably M*-closed, non-null set.

Proof. If X is not indecomposably M*-closed, then there are two disjoint,
non-null, M*-closed sets Ci°, Cs”. If neither C§” nor (5" is indecomposably
MP"-closed, then there are four pairwise disjoint, non-null, M"-closed sets
c?, ¢, ¢, 0P, .-+ ete. By Lemma 10, this process must stop after
finitely many times and we obtain an indecomposably M *_closed, non-null set.

LemMma 12. Let M be irreducible and let C be a non-null, indecomposably
M*-closed set. Consider the following sequence of sets:

(1) C, F1(C), F5(C), F5(C), -+ .

Let & be the smallest posttive integer such that C n Fs(C) is non-null; then
1. for all non-negative integers m, n

(2) Fu(C)n Frs(C) 0 -+ A Frugns(C)

are non-null, indecomposably M *_closed,
2. fFy(C) nF,(C) isnon-null then § dividesm — . It follows that 6 divides
k and C, F1(C) --- , Fs_1(C) are pairwise disjoint.

Proof. Ttis clear that (2) is indecomposably M * closed. To show that (2)
is non-null we shall show that (2) is non-null for m = 0 and then apply Lemmas
5and 7.

We know that C n F5(C) is non-null. Assume that
C’nF;(C) n--- nFls(C)
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is non-null; then
Fs(CnFs(C)n---nFy(C)) CF:(C)nFayu(C)n -+ 0 Fyns(C)

so that
F.;(C) n F%(C) n---n F(1+1)(5)

isnon-null. IfCnFs(C)n -+ nFus(C) were null then
Cn Fa(C) n---n Fzs(C) and Fa(C) n Fzs(C) n---nN F(l+1)3(0)

would be two disjoint, non-null M*-closed sets both contained in F5(C) which
contradicts the fact that all sets in (1) are indecomposably M*-closed
(Lemma 9).

Suppose Fi(C) n F,(C) isnon-nullandm — 1 > 0. Letm — [l = nd + d
where n, d are non-negative integers such that0 < d < é. By the preceeding
result, ,(C) n Fi105(C) is non-null. Then F;(C) n Fi,..(C) n F,(C) is non-
null for if it were otherwise then F,(C) n Fis(C) and Fi(C) n F,,(C) would
be two disjoint, non-null, M*-closed subsets of F,(C') which is impossible. If
d > 0, then C n Fy(C) is null, which in turn implies that F i .s(C) n F,.(C) is
null (Lemma 8). Hence d = 0 and é divides m — [.

TarOREM 1. If M s irreducible and k s a positive integer, then there is a
unique positive integer 6 = 5(k), which divides k, such that

1. X s partitioned into & nmon-null, indecomposably M"-closed sets
C1,Ce, -+, Cswith F1(C1) = Co, F1y(C2) = Cs, -+, F1(C5) = Cy,

2. eachCi,i =1, -8, 1s also indecomposably M°-closed but not M*-closed
ford =1,---,86 — 1,

3. {Cy,Cy, -+, Cs) consists of all non-null indecomposably M*-closed sets.

Proof. By Lemma 11, there exists a non-null, indecomposably M *_closed
set C. Consider the sequence of sets, C, F1i(C), Fy(C), --- . Let & be the
smallest positive integer such that C n F;(C) is non-null. By Lemma 12,
6 divides k. Let &k = 8l. Let

Co=Cn F.s(C) n---n F(l_1)5(0).

Then Cy is M’-closed by Lemma 6. C, is non-null by Lemma 12. Since X is
irreducibly closed,
X = Cyu F1(Co) u---u Fs_l(Co).

Since Cy C C, F1(Co) < Fi(C), -+, F51(Co) C F51(C),
X = CouFi(Co)u---uF;s1(Co) = CuF(C)u---uF;4(C).

Sets C, F1(C), - -+ , F5_1(C) are pairwise disjoint by Lemma 12; hence C = C,
and C is M’-closed ; therefore C D F3(C). Now Co C F3(C), hence C = F3(C).
Let €y, = C, C, = F1(C1), F1(Cz) = 03, crry Cs; = F,s_l(C);thenCl, R ,Oa
satisfy conclusion 1 of Theorem 1. Since C; = C is M’-closed, Cs, - - - , C; are
also M’-closed. They are indecomposably M’-closed since they are inde-
composably M*-closed (Lemma 3 and Lemma 9). None of C; is M*-closed if
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d < 6 for C; and F4(C;) are disjoint. Now suppose that C’ is an arbitrary
non-null indecomposably M*-closed set. Then ¢’ < C, for some integer d,
1 < d < 6. Let us proceed for ¢’ as we did for C and let &' be the 6 for C’.
Since F,(C") C Fopa(C) forn = 1,2, --- | & must be an integral multiple of
d by Lemma 12. Interchanging the rules of C and C’, we arrive at the con-
clusion that é must be an integral multiple of . Hence § = § and

X =CuF(C)u--uFsa(C).

Since ¢’ < Cq, F1(C") € Cyya, -+, F51(C") C Cyg1, we have ¢’ = Cy and
{C1, .-+, Cy} consists of all non-null-indecomposably M*-closed set.

CoROLLARY 2. If M s irreducible, then every non-null indecomposably
MP*-closed set is also an irreducibly M*-closed set for every positive integer k.

Proof. 1If C is a non-null indecomposably M *_closed set, then C' must be
one of C;, say Ca, of Theorem 1. If ¢’ is a non-null, M*-closed set contained
in C, then ¢’ is also indecomposably M*-closed; therefore it is also one of C;,
say Cq , of Theorem 1. d’ must equal d for, if not, Csn Car = @. Hence C
contains no smaller non-null M*-closed subset. Hence C is irreducibly
M*-closed.

DerinitioN 4. Let M be irreducible and §(k) be the number of distinct,
non-null, indecomposably M"*-closed sets. Let

(3) s=sup[o(k):k=1,23, -]

8 may be a positive integer or + . If § is finite, we say that M has a
period = 8. If 6 = 1, we say that M is aperiodic.

Lemma 13.  Let M be irreducible and m, n be two positive integers such that m
divides n. Let 6(m), 8(n) be the numbers of non-null, distinct, indecomposably
M"-closed sets and M"-closed sets, respectively. Then §(m) divides é(n). Let
1 = &(n)/8(m). Then each non-null, indecomposably M™-closed set is par-
titioned into I non-null, indecomposably M"-closed sets.

Proof. Let C be a non-null, indecomposably M™-closed set. Consider the
sequence of sets: C, F1(C), F(C), --- . By Lemma 12 and Theorem 1, X is
partitioned into 6(m) sets C, F1(C), -+ , Fswm—-1(C) and Fi(C) n F;(C) = @
implies that 8(m) divides ¥ — j. Let D be a non-null indecomposably
M"-closed set. Then D C F;(C) for some j, say j = 0. Consider the se-
quence of sets: D, Fi(D), Fo(D), - -+ . Then X is partitioned into é(n) sets
D, F\(D), -+, Fsay1(D) and D = Fs,yD. Since D C C, Fsw(D) C
Fswy(C), C 0 Fsy(C) = @. Hence §(m) divides 8(n). Letl = 8(n)/é(m).
Now, sets D, Fy(D), - -+, Fsmy—1(D) are M*™ -closed. Let

Cy = D u Fsemy(D) u -+ U Faapm(D),
Cy = Fi(D) U Fseya(D) U -+ - U F g psema(D),

Csomy = Fsamy—1(D) U Fsy(D) U -+ U Fsmya(D).
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Then sets Cs, Csz, + -+ , Csemy are M*™-closed by Lemma 6. It is clear that
Ci, Ca, + -+, Csemy are pairwise disjoint, therefore, all distinct. Each C; must
be indecomposably M™-closed for to be otherwise would imply that the number
of distinet M™-closed sets is greater than §(m). Hence C1, Ca, ---, Cswm)
constitute the totality of all non-null, indecomposably M ™-closed sets. Each
C; is partitioned into ! non-null, indecomposably M"-closed sets by definition.

THEOREM 2. Let M be irreducible. M has a period = d if and only if (1) s
true.

(I) X 4s partitioned into d sets C1, Csy, -+, Cq, such that F1(C1) = C:,
Fi(C2) = Cs, -+, F1(Cq) = Ci and each C; is irreducibly M*-closed for

=1,2, .

M does not have a period if and only <f (I1) s true.

(II) There is an increasing sequence of positive integers my , ma , -+ - , such
that each m; divides its successor mi1(Mipr = my-liyy where i is a positive
tnteger) and for every ¢, X is partitioned into m; non-null, indecomposably
M™-closed sets C”, -+, C%) and each C” is partitioned into liys Ci* sets.

Proof. 1If (I) is true, then 8(k) of Theorem 1 is equal to d provided k = n d
where 7 is a positive integer. By Lemma 13, 8(n) < é(nd) = d. Hence the
8 given by (3) is equal to d. Hence M has a period = d. Conversely, if M
has period = d, then there is a positive integer k¥ such that 6(k) = d and X is
partitioned into d non-null sets C1, Cz, - -+, Cy4, each of which is both inde-
composably M*-closed and indecomposably M°-closed, such that F1(Cy) = Cs,
Fi(Ce) = Cs, ---, F1(Cy) = C1. The fact that each C; is indecomposably
M*-closed implies that 6(d) = d. By Lemma 13,8(nd) > d, henced(nd) = d
Hence each C; is indecomposably M™-closed; therefore, irreduciblyM™-closed
by Corollary 2.

It is clear that (II) implies that the & given by (3) is 4 «, hence, M does not
have a period. Conversely, if M does not have a period then there is an increas-

ing sequence of positive integers ny, ns, -+ - such that lim;,, 8(n;) = 0.
Let k; = ma- -+« -y ; then limi,, 6(k;) = 4. Let m; = 8(k;). Applying
Lemma 13, we conclude that the sequence my , ma, - - - satisfies the require-

ment of (II).

Lemma 14.  Let M be drreducible and possess no period. Let the sequence of
positive integers {m:} and the sequence of partitions {C1”, - -+ Y of X be as in
(IT) of Theorem 2. Let N\(X) = 1 and

ai = max N(Ci%) i k = 1,2, -+, mi].
Then {a;} is a decreasing sequence which converges to 0.

Proof. 1Tt is clear that {a;} is a decreasing sequence. Let lim;,, a; = a.
a; is equal to N( C?) for some k = k;. By rearranging the indices k¥ we may
assumek; = 1fori=1,2, ---. Ifa > 0, then there would be a subsequence
{7;} of the sequence {¢} such that ' 0+ 5 gforj = 1,2, - -+ , which, in
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turn, implies Ci%’ D C{+Y for j = 1, 2,---. Let D = nj= C“’; then
A(D) = a. Consider the following sequence of sets: D, F1(D), Fyo(D), - - - .
Since N(D) > 0, every set in this sequence is non-null by Lemma 7. Now,
D c € and

Ci’.j)r Fl(Ciij)), ) F’”‘j_l(ciij))

are pairwise disjoint, hence
D, FI(D)7 Tt Fmij—l(D)

are pairwise disjoint.  Since this is true for j = 1, 2, --- and since
lim;,, m;; = o, we conclude that the sets in the sequence D, Fi(D),
Fy(D), -+ - are pairwise disjoint. However, U1 F.(D) = F(Fy(D)) is a
non-null closed set by Lemma 6. D < X — Ui F,.(D) and D being non-null
contradict the fact that X is irreducibly closed. Hence a = 0.

TraEOREM 3. If M 4s irreducible and if M does not have a period, then the
measure N on & s non-atomaic.

Proof. If N(X) is not equal to 1, we replace it by an equivalent measure
which assigns measure 1 to X. The new measure is non-atomic if and only if
the original one is non-atomic. Hence it is sufficient to prove the theorem for
the case that A\(X) = 1. Let the sequence of positive integers {m.} and the
sequence of partitions {C{®, -+, C',(,f,.)} of X be as in (II) of Theorem 2. If
® had a N-atom 4 then

MA) < maxMC): k=1, -+, mi
which contradicts the conclusion of Lemma 14. Hence N is non-atomic.

DErinITION 5. A positive operator M is said to be N-continuous if there is a
real-valued, ® X ® measurable function m(x, y) such that

Mf(x) = fm(x, Y)f ()N (dy)

for every f ¢ Lo(N). The function m(z, y) is called the density function of M
with respect to measure N. The iterates M" of a M-continuous positive oper-
ator M are also A-continuous with density functions m™(z, y) defined in-
ductively by

m(l)(x, y) = M(x, y)}
m(n-l-l)(x, y) - fm(n)(x, Z))\ (dz)m(Z, y).

DEerFinITION 6. A positive operator M is said to be quast N-continuous if
there is a positive integer r such that 2" is the sum of two positive operators
M,y , M, one of which is non-zero and N-continuous.

It is clear that a N-continuous M is quasi A-continuous.
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THEOREM 4. An drreducible, quasi N-continuous positive operator M has a
period.

Proof. Suppose r is the positive integer such that M™ = M, 4+ M, where
M, , M, are two positive operators for which 3/, is non-zero and N-continuous.
Let mi(x, y) be the density function of M, with respect toN. Without loss of
generality we may assume A(X) = 1. Let E be the subset of X X X,

E = [(z,y) : ma(zx, y) > O].

Since M, is not zero, N X M(E) > 0. Now, if M did not have a period, then
(II) of Theorem 2 would be satisfied. Let the sequence {m;} and the sequence
of partitions {C{”, -+, C&)} of X be as in (II) of Theorem 2. We have
F(C?) = C8y, F(C5?) = €&y, -+, ete. (Here we let 0 = Ci” if
n>mi,1 <k<mi,n=k-+ lm;,k,1,nare positive integers.) If»e@"(N\)
has C,(-"’ as its support, then vM"(X — Cfi)j) = 0. On the other hand

[ [ e o (@) = »a(X = 02) < oM(X — C8)).
T
Hence

(4) [ra@ [ e,y @) =o.

Since mi(®, y) is non-negative a.e. (N X N), (4) implies that mi(x, y) = 0
a.e. A XN onCs? X (X — C%;). Thisistrueforj =1,2, -+ ,m;. Hence
ANXANE — Uk, ¢ x e =0

so that

(5) N X ME) <N X MU 08 x 0.

Leta; = max [N(CS?) 15 = 1,2, --- ,md; then A X N(U™, €5 X C%)) < as.
By Lemma 14, a; | 0. This fact, together with (5), implies that
A X N(E) = 0 which contradicts A\ X N(E) > 0. Hence M must possess a
period.

lll. Positive operators with transition functions

We call a real-valued function M(x, A) of two variables, ze X, A e®, a
transition function if the following two conditions are satisfied.

(T1) For every fixed x ¢ X, M(x, -) is a measure.
(T2) For every fixed set A e®, M (-, A) is a B measurable function.

This is a generalization of a probability transition function of a Markov process.
If the measurable space (X, ®) is the space of all types of a branching process,
then the first moment function of the process is a transition function. We
shall always assume that (T3) is satisfied by a transition function.

(T3) There is a number a such that M (z, X) < a for all z ¢ X.
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If M(z, X) is a probability transition function, then the stronger condition
(T3’) is satisfied:
(T3') M(x,X) =1forallzeX.
M®(x, A),n = 1,2, ---, are defined inductively as follows:
M®P (2, 4) = M(, 4),

M(n+1)(x’A) = /M(”)(x, dy)M(y, 4).

M"(x, A) are also transition functions. For a bounded, ® measurable func-
tion f, we define Mf by

(6) Mi(z) = [ Mz, dpiy).
For a bounded, countably addition set function » defined on ®, we define v by
(1) WM(4) = [ v (de)M (s, A),

vM is also a bounded, countably additive set function and Mf is also a bounded
®-measurable function. M"f and »M™ are then given by

i) = [ M, d)ity),

yM™(A) = fv (dz)M™(x, A).

Furthermore, if » is absolutely continuous to a finite measure =, then »M is
absolutely continuous to #M. Let 7 be an arbitrary finite measure and let
N = D> n0(2a)"#M". Then, if » is absolutely continuous to X, so is »M ; and
if fe Lo(N), sois Mf. Thus a N-measurable positive operator is generated.

We call a positive operator M given by (6) a positive operator with a transition
function. A N-continuous positive operator is a positive operator with a tran-
sition function. If ® is generated by a countable collection, and if M is a
positive operator with a transition function then the transition function
M(x, A) is uniquely determined up to a set of A-measure 0 by M in the sense
that, if M has another transition function M’(x, A) then M(z, -) = M'(z, -)
for (N) almost all .

Let M be a positive operator with a transition function M(z, A). Define
a measure 7 on & X ® as follows. If K is a B X ®-measurable subset of
X X X,

2(B) = [\ () [ Mz, dp)1sta, ).
7 is uniquely determined by the operator M as

2(A X B) = fo (de) M1(z)



36 SHU-TEH C. MOY

or all rectangles A X Bin® X ®. 7 is called the measure associated with M.
It is clear that » is absolutely continuous to N X A if and only if M is N-con-
tinuous. For the general case, 7 may be decomposed into two parts n¢ and
ns where ¢ is absolutely continuous to A X N and 5s is singular to A X A.  Let
mi(x, y) be a derivative of n¢ with respect to A X N and let us define a N\-con-
tinuous operator M by

(8) Mif@) = [ mala, )N (dy).

This N-continuous positive operator M is characterized by two facts:
(1) My < M; (2) if N is a M-continuous positive operator such that N < M,
then N < My. M,is called the N-continuous part of M.

THEOREM 5. If ® is generated by a countable collection, M is a positive oper-
ator with a transition function M(x, A), M is the N-continuous part of M and
mi(z, y) is a density function of My with respect to N, then there is a set Z ¢ & with
MX — Z) = 0 such that x € Z implies that mi(x, - ) is a derivative of the N-con-
tinuous part of M(x, -) with respect to N. Furthermore, M = M, + M, where
M is a positive operator with a transition function Me(x, A) such that Mz, )
s singular to N for every x e Z.

Proof. If ® is generated by a countable collection, then there is a sequence
of finite subalgebras ® C ®; C --- such that ® is generated by Ur_ &, .
Each ®, is generated by a partition Bi”, --- , B{" of X. We shall define a
sequence of functions {f.(z, y)} as follows.

fa(zy) = M(z, B™)/NB™),  if yeB{,N(B{”) > 0,
=0, if yeB™ NB™) = 0.
For any 4 ¢®,

foB«m Il y)A XA (dlz, ) = fAM(w, B\ (do) = n(A X B{™).

If we restrict the domain of definition of n and N X N to 8 X ®, , then f, is the
derivative of n with respect to A X N\. Since Ur_1 ® X ®, generates ® X ®,
{f+} converges a.e. (N X N) to the derivative of n¢ with respect to A X N\, which
isma(x,y) of (8). On the other hand, for each fixed z, the a.e. (\) limit of the
sequence {f,(x, - )} is the derivative of the N-continuous part of M (z, -) with
respect to A (See Example 2.7, pp. 616 of [3]). Hence, there is a set Z ¢ ® with
MX — Z) = 0 such that if zeZ, my(x, -) is the derivative of the N-con-
tinuous part of M(z, -) with respect to \. Now for z ¢ Z, A ¢®, define

My(z, A) = M(x,A) — fml(x, )N (dy)

and for z ¢ Z, define Ms(z, -) arbitrarily. Thus M.(x, -) is singular to N if
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zeZ and

Mf(@) = Maj(a) = [ Ma(z, dp)i(y)
forxeZ and M = M, + M, where

M,f(x) = sz(x, dy)f(y).

LEmMMA 15.  Let M be a positive operator with a transition function M (x, A).
If the N-continuous part of M s 0, then there is a set Z e ® with N(X — Z) =0
such that M (x, - ) is singular to N for every x € Z. The converse is also true if &
18 generated by a countable collection.

Proof. If the N-continuous part of M is 0, then the measure of 5 associated
with M is singular toAN X N\. Thereisaset S e ® X ® withA X A(S) = Osuch
that 9(SnE) = 9(E) forevery Ee® X ®. Let S, = [y : (x,y) €¢8]. Since
A X N(8) = 0, there is a set Z; with N(X — Z;) = 0 such that z ¢ Z; iraplies
A(S:) = 0. Now

0=MXxX—m=fumwmx—&y

Hence there is set Z;e® with M(X — Z:) = 0 such that z eZ, implies
M(x,X —8;) =0. Henceif xeZ = Zin Z,, then M(z, X — 8;) = 0,
N(S.) = 0 and the singularity of M (z, -) to N follows.

If ® is generated by a countable collection then the converse follows from
Theorem 5.

TuEOREM 6. Let M be a positive operator with a transition function M (x, A).
If M is not quast N-continuous, then there is a set Z ¢ ® with M X — Z) = 0 such
that, for every x € Z, M™ (x, - ) is singular toN forn = 1,2,3, --- . The con-
verse 1s also true if B is generated by a countable collection.

Proof. M is not quasi M-continuous if and only if the A-continuous part of
M" is zero for n = 1, 2, --- . This fact, together with Lemma 15, implies
Theorem 6.

CoroLLARY 3. Let M(x, A) be a transition function, = be a non-zero finite
measure on ® and N = 2 o (2a)""wM". Let M be the N-measurable positive
operator given by (6). If for (N) almost all &, D mes M™ (x, H) > 0 for every
set H with w(H) > 0, then M 1s irreducible and quasi N-continuous, therefore,
possesses o pertod by Theorem 4.

Proof. Clearly ¢ @"(N). Let G be the support of 7. Then
M — F(Q)) = 0.

If E is a non-null subset of @, then Y mey M1z > 0 a.e. (N) for ) neiM™1z(x)
= > naM®(z, E). Now, if E is a non-null subset of Fi(G@) then

H=Gnlz: M1g(z) > 0]
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is a non-null set. Hence D_n fg M®™(z, dy) M*15(y) > 0 for every z ¢ Z.
Hence D meyn M™1z > 0 a.e. (N\). Applying Corollary 1, we arrive at the
irreductibility of M. To show the quasi N-continuity of M, we set

v(, A) = 201 (20)"M ™ (x, A).

For each fixed z, v(z, -) is a finite measure and »(z, 4) > 0 if and only if
DomaM™(x, A) > 0. If M is not quasi N\-continuous, then, by Theorem 6,
v(z, -) is singular to N for (N) almost all z. But »(z, H) > 0 for every
non-null subset H of G. This fact implies the restriction of N to subsets of G
is absolutely continuous to the same restriction of »(z, -) for (N\) almost all .
This is incompatible with the statement that »(z, -) is singular to N for (\)
almost all x. Hence M is quasi A-continuous.

Now we turn to a probability transition function. We shall write P(z, A)
instead of M(xz, A) and operator P instead of M. A complete theory of
Markov process with a discrete parameter under a condition (D) of Doeblin
is given in Chapter V of [3]. In [3] the special case (c) is treated first. Com-
bining (D) and (c) one obtained a period for the probability transition
function. T. E. Harris gave a condition (H) on the probability transition
function in 1956. An extensive amount of theory of Markov process was
developed by T. E. Harris [6] and S. Orey [9] based on condition (H). In
both cases the existence of a finite period is established after a considerable
amount of knowledge of P™(z, A) is obtained.

Condition (D). There is a finite measure = on ®, a positive integer k
and a positive number & such that

(9) PPz, A) <1 —¢ forallz
whenever 7(A4) < e.
Special Case (¢). Supn<i P™(x, A) > 0 for all z ¢ X whenever 7(4) > 0.

Condition (H). There is a non-zero finite measure = on @ such that
(10) #(A) > 0 implies that the probability that A is visited infinitely
many times is 1 for all starting point x ¢ X.

Under either condition obtain a N-measurable Markov operator P by letting
N = 2% 2 "rP". Clearly, (9) implies that P® (2, -) is not singular to =,
therefore, not singular to N\, for all z. Hence, by Theorem 6, P is quasi
N-continuous under Condition (D). (e¢) is equivalent to (11).

(11) 7(A) > 0 implies that > _n_1 P (z, A) > 0 for all z ¢ X.
Hence, by Corollary 3, (¢) alone implies that P is irreducible and quasi N-con-
tinuous, therefore, possesses a period. (c¢) is a much weaker condition

than (10). Hence, under condition (H), we also have a irreducible, quasi -
continuous P. We summarize these facts in the following.

CoroLLARY 4. If the probability transition function satisfies Condition
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(D) then the N-measurable Markov operator P is quasi N-continuous. If Con-
dition (H) s satisfied by the probability transition function then (c) is also
saiisfied. (c) implies that P s irreductble and quast N-continuous and, there-
fore, possesses a period.

We remark that, in the above corollary, we do not assume that & is generated
by a countable collection as was the case in [6] and [9].
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