DECOMPOSITIONS OF $E^{\scriptscriptstyle 3}$ WITH A NULL SEQUENCE OF STARLIKE EQUIVALENT NON-DEGENERATE ELEMENTS ARE $E^{\scriptscriptstyle 3}$

BY Ralph J. Bean¹

Donald V. Meyer has recently proven [4] that if an upper semi-continuous decomposition of E^3 has only a null sequence of non-degenerate elements and if each of these is a tame 3-cell then the decomposition space is E^3 . We generalize this result to include any null sequence of continua provided only that each is equivalent, under a space homeomorphism, to a starlike continuum. Thus our result includes not only tame 3-cells but tame disks, triods, whiskbrooms and any combination of these.

There are still several very interesting unsolved questions in this area. For example, is the decomposition space E^3 if the non-degenerate elements

- (1) form a sequence of sets, each equivalent, under a space homeomorphism, to a starlike set? This question is not answered even when each element is a tame cell.
- (2) form a null sequence of strongly cellular sets [1]? i.e., for each $g \in G$ there is a cell C in E^3 with $g \in I$ nt C, and a homotopy $f: C \times [0, 1] \to C$ such that
 - (a) h(x, 0) = x, for all $x \in C$ and h(x, t) = x for all $x \in g$, $t \in [0, 1]$
 - (b) $h|_{BdC\times[0,1)}$ is a homeomorphism onto C-g
 - (c) $h(C \times 1) = g$.

It is known that cellular (in place of strongly cellular) in question 2 is not enough to insure that the decomposition space is E^3 [2]. The answer to question 1 is yes if each element is taken to be starlike [3].

We will use standard notation. A collection of disjoint continua G filling up E^3 is called upper semi-continuous if for each $g \in G$ and each neighborhood U of g there is a neighborhood V of g such that if $g' \in G$ and $g' \cap V \neq \emptyset$ then $g' \subset U$. The decomposition space G' is defined by letting a set $U' \subset G$ be open in G' if the set $U = \bigcup_{g \in U'} g$ is open in E^3 . H denotes the collection of all non-degenerate elements of G and $H^* = \bigcup_{g \in H} g$. A continuum g is starlike with respect to $g \in G$ if every line through $g \in G$ in either an interval or the point $g \in G$. A null sequence of sets is a sequence such that given $g \in G$ there are only a finite number of sets in the sequence whose diameters are greater than $g \in G$.

THEOREM. Let G be an upper semi-continuous decomposition of E^3 such that H is a null sequence of continua and each continuum $g \in H$ is equivalent (under a space homeomorphism) to a starlike continuum. Then G' is E^3 .

Received April 29, 1965.

Work on this paper was supported by the National Science Foundation.

Proof of theorem. As shown in the proof of Theorem 1 of [3], the theorem is an immediate consequence of the following lemma.

LEMMA. Let G be as above. Let $\varepsilon > 0$ be given and let U be a neighborhood of H^* in E^3 . Then there exists a homeomorphism h of E^3 onto itself such that $h \mid_{E^3-U}$ is the identity and diam $h(g) < \varepsilon$ for each g in H.

Proof of lemma. Since H is a null sequence there are only a finite number of elements of H whose diameters are $\geq \varepsilon$. Let g be such an element. We will describe a homeomorphism of E onto itself which is the identity outside U and outside a very small neighborhood of g and which shrinks g to diameter $\leq \varepsilon$ while not expanding any other element of H to have diameter $\geq \varepsilon$. Clearly, a finite composition of such homeomorphisms will be the one we are seeking in the lemma.

Since g is equivalent to a starlike continuum there is a homeomorphism f of E^3 onto itself such that f(g) is starlike with respect to some point f(p), and for some neighborhood V of g we can find a $\delta > 0$ such that if $|f(x) - f(y)| < \delta$ and $x, y \in V$, then $|x - y| < \varepsilon$. Let k be an integer so that

$$k \cdot \delta/16 > \operatorname{diam} f(g) + \delta/8$$

and let S_1, S_2, \dots, S_k be neighborhoods of f(g) such that

- (1) $S_k \subset U \cap V \cap S_{\delta/16}(f(g));$
- (2) $f(g) \subset S_i \subset \bar{S}_i \subset S_{i+1}$;
- (3) if $f(g') \cap S_i \neq \emptyset$ for some $g' \in H$ then diam $f(g') < \delta/16$ and if $i \neq k$, $f(g') \subset S_{i+1}$;
- (4) each S_i is ideally starlike with respect to f(p), i.e. if r is a ray from p, then $r \cap S_i$ is one point.

One may find such neighborhoods since G is upper semi-continuous, H is a null sequence and f(g) is starlike.

Let
$$R_i = \{x \mid |x - f(p)| < i \cdot \delta/16\} \ i = 1, 2, \dots, k.$$

As in the proof of Lemma 4 of [1] we will define a homeomorphism h' of E^3 onto itself by defining it on each ray r from the point f(p). Let $S_k \cap r = s_k$ and $R_k \cap r = r_k$. Then let

$$h'(s_k) = r_k$$
 if r_k is closer to $f(p)$ than s_k
= s_k if not.

Extend h' to all of r by taking $[s_i\,,\,s_{i+1}]$ linearly onto

 $[h'(s_i), h'(s_{i+1})]$ $(i = 1, 2, \dots, k-1), [f(p), s_i]$ linearly onto $[f(p), h'(s_i)]$ and let h' be the identity on $[s_k, \infty)$. Clearly h' is a homeomorphism of E^3 onto itself which is the identity on $E^3 - f(U)$. We need only show that h' "shrinks" without "expanding". Clearly h'(f(g)) has diameter $<\delta$. Let g' be such that $f(g') \cap S_k \neq \emptyset$. To see that diam $h'(f(g')) < \delta$ we observe that if f(g') is moved at all by h' it is moved toward p. Since diam

 $f(g') < \delta/16$, f(g') is contained in the annulus between R_{i-1} and R_{i+1} for some i. Since by the definition of S_1 , S_2 , \cdots , S_k it is also contained between S_{j-1} and S_{j+1} , for some j, we know h'f(g') is in the annulus between R_{j-1} and R_{j+1} and $j \leq i$. Since the angular size (from f(p)) of f(g') is unchanged by h' we immediately verify that diam $h'f(g') < \delta$. $f^{-1}h'f$ is the homeomorphism we are seeking.

REFERENCES

- R. H. Bing and A. Kirkor, An arc is tame in 3-space if and only if it is strongly cellular, Fund. Math., vol. 55 (1964), pp. 175-180.
- R. H. Bing, Decompositions of E³, Topology of 3-manifolds, edited by M. K. Fort, Jr., New York, Prentice-Hall, 1962.
- 3. ——, Upper semi-continuous decompositions of E³, Ann. of Math. vol. 65 (1957), pp. 363-374.
- Donald V. Meyer, A decomposition of E³ into points and a null family of tame 3-cells is E³, Ann. of Math., vol. 78 (1963), pp. 600-604.

University of Wisconsin Madison, Wisconsin