
DECOMPOSITIONS OF WITH A NULL SEQUENCE OF STARLIKE
EQUIVALENT NON-DEGENERATE ELEMENTS ARE

BY

Donald V. Meyer has recently proven [4] that f an upper semoconnuous
decomposition of E has only a null sequence of non-degenerate elements and f
each of these s a tame 8-ceII then the decomposition space s3. We genera1ze
ths result to nclude any null sequence of continua provided only that each
s equivalent, under a space homeomorphsm, to a starlike continuum. Thus
our result ncludes not on|y tame 8-cells but tame dsks, trods, whskbrooms
and any combination of these.
There are still several very interesting unsolved questions in this area.

For example, is the decomposition space E if the non-degenerate elements

(1) form a sequence of sets, each equivalent, under a space homeomor-
phism, to a starlike set? This question is not answered even when each ele-
ment is a tame cell.

(2) form a null sequence of strongly cellular sets [1]? i.e., for each g e G
there is a cell C in E with g e Int C, and a homotopy f C X [0, 1] --> C such
that

(a) h(x, O) x, for all x e C and h(x, ) x for all x eg, e [0, 1]
(b) h Ic[0,) is a homeomorphism onto C g
(c) h(C X 1) g.

It is known that cellular (in place of strongly cellular) in question 2 is not
enough to insure that the decomposition space is E [2]. The answer to ques-
tion 1 is yes if each element is taken to be starlike [3].
We will use standard notation. A collection of disioint continua G filling

up E is clled upper semi-continuous if for each g e G and each neighborhood
U of g there is a neighborhood V of g such that if g e G and g’ n V then
g’ U. The decomposition space G’ is defined by letting a set U c G be
open in G’ if the set U [Ju, g is open in E. H denotes the collection of all
non-degenerate elements of G and H* [J, g. A continuum g is starlike
with respect to p e g if every line through p intersects g in either an interval
or the point p. A null sequence of sets is a sequence such that given > 0
there are only a finite number of sets in the sequence whose diameters are
greater than .
THEOREM. Let G be an upper semi-continuous decomposition of E such that

H is a null sequence of continua and each continuum g e H is equivalent (under
a space homeomorphism) to a sarlie continuum. Then G’ is E.
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Proof of theorem. As shown in the proof of Theorem 1 of [3], the theorem
is an immediate consequence of the following lemma.

LEMMA. Let G be as above. Let " > 0 be given and let U be a neighborhood
of H* in E3. Then there exists a homeomorphism h of E onto itself such that
h IE3-u is the identity and diam h(g) < for each g in H.

Proof of lemma. Since H is a null sequence there are only a finite number
of elements of H whose diameters are >_ . Let g be such an element. We will
describe a homeomorphism of E onto itself which is the identity outside U
and outside a very small neighborhood of g and which shrinks g to diameter
< while not expanding any other element of H to have diameter >_
Clearly, a finite composition of such homeomorphisms will be the one we are
seeking in the lemma.

Since g is equivalent to a starlike continuum there is a homeomorphism f
of E onto itself such that f(g) is starlike with respect to some point f(p), and
for some neighborhood V of g we can find a ti > 0 such that if f(x) f(y)
andx, yeV, then Ix y] < . Let k be an integer so that

/c.ti/16 > diam f(g) + /8

and let S, S., S be neighborhoods of f(g) such that

(1) S U n V n S/(f(g)
(2) f(g) c S c S c S+I
(3) if f(g’) n S’ 0 for some g’ e H then diam f(g’ < /t/16 and if i

f(g’) c S+I
(4) each S is ideally starlike with respect to f(p), i.e. if r is a ray from

p, then r n S is one point.

One may find such neighborhoods since G is upper semi-continuous, H is
null sequence and f(g) is starlike.

Let R {x II x f(p) < i.ti/16} i 1, 2, ..., k.
As in the proof of Lemma 4 of [1] we will define a homeomorphism h’ of E

onto itself by defining it on each ray r from the point f(p). Let S a r

andRr rk. Then let

h’(sk) r if r is closer to f(p) than s

s if not.

Extend h’ to all of r by taking [s, s+] linearly onto
[h’(s), h’(s+)] (i 1, 2, ,/ 1), If(p), s] linearly onto If(p), h’(s)]
and let h’ be the identity on [sk, ). Clearly h’ is a homeomorphism of E
onto itself which is the identity on E f(U). We need only show that h’
"shrinks" without "expanding". Clearly h’(f(g) has diameter <it. Let
g’ be such that f(g’) n S 9. To see that diam h’(f(g’) < we observe
that if f(g) is moved at all by h it is moved toward p. Since diam
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f(g’) < /16, f(g’) is contained in the annulus between Ri_l and R+I for
some i. Since by the definition of S, S, Sk it is also contained be-
tween S)._1 and S.+, for some j, we know hf(g’) is in the annulus between
R)_ and R’+I and j <_ i. Since the angular size (from f(p)) of f(g’) is un-
changed by h’ we immediately verify that diam h’f(g’) < . f-lh’f is the ho-
meomorphism we are seeking.
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