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BY
R. D. Dixont

Introduction

The problem which motivated this research is that of obtaining @ results of
the type obtained by Hardy [4] and Landau [6]. Erdés and Fuchs [2] and
later Bateman, Kolbecker, and Tull [1] have generalized the classical @ result
for the circle problem.

Richert [8] showed that the classical @ results for the divisor problems are
also indicative of results in a class of problems involving the multiplication of
Dirichlet series. In particular, his results concerned series whose generating
functions have only finitely many poles in a strip to the left of the region of
convergence.

In this paper we present some preliminary work necessary to extend his
results to a class of Dirichlet series and Laplace Transforms whose generating
functions are analytic in a strip to the left of the region of convergence with the
possible exception of a bounded region. This class of functions is interesting
because of the unity of exposition it allows and because there are available in
this class examples which show why certain restrictions imposed by Richert are
necessary if a proof is to be given along his lines.

1. An analytic continuation

Let A(w) be a complex function of the real variable » which is of bounded
variation on every finite interval. Further, we assume A(w) = 0 forw < 0.
Define

Z(s) = f: ¢ dA (o)

for every value of s = o + 4t for which the integral converges.
We say Z(s) belongs to the class Z(ao, P), where 0 < P < 0y, in case the
following three conditions are satisfied by Z:

(i) [§ ¢ dA(w) has abscissa of convergence o ;
(i1) for N > P there exists a T\ > 0 such that Z(s) has an analytic con-
tinuation into the regiono > N\, | t| > Th;
(iii) for each N > P there exists a gy > 0 such that Z(s) = 0(| ¢|)™) as
t — o uniformly forN < o < R, forall R > \.
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For any complex function C'(w) which is of bounded variation on [0, K] for
every K > 0, we define C”(w) = C(w) and if « is a positive integer we let

C(—x)(w) =] C(~x+1)(u) du.
0

C(w) is a multiple of the «™ Riesz Mean of C.

We now list some hypotheses which we shall use in the statement of Theorem
1. Theorem 1 gives the relationship between the availability of an analytic
continuation for Z(s) and the asymptotic behavior of A(w) as w — .

Hl. o =glb{y|A(w) = 0(") asw — »}.
H2(\, G). There exists a positive integer x = & such that
AT (0) — G7(w)= 0(€") as w — .
H3(M, @). G(w) = 0for w < M and G(w) is continuous for w > 0.
H4(M, @). Define Argz so that —7 < Argz < 7. For ¢ > 0let
Ry = {z||Argz| < ¢, | 2| 2 M}.

There exists a ¢ > 0 such that there is a function which is analytic on some
domain containing R4 and agrees with G(w) on Ry .

H5(M, @). Given ¢ > 0, if ¢ > 0 is sufficiently small, z ¢ Ry implies
G(2z) = O(exp (o0 + ¢) Rlz2).

H6(G). Given ¢ > 0, the variation of G(w) from w; to ws

V Glan , we] = 0(| eerlote) ewl(rro-i—e)l)
as wy, wp —> ©,

THEOREM 1. Z(s) belongs to the class (oo , P) if and only if A(w) satisfies
H1 and there exists for each N such that oo > N > P, a function G\(w) and an
My > 0 satisfying H2, H3, H4, H5, and H6.

Remark. The M that the theorem produces may be chosen arbitrarily.

Proof. We first suppose that Z(s) is in (oo, P). Choose N > P and let
« be an integer greater than 8\ . Then from [10, Theorem 8.1] we have

oo+1+iT s Z(S)

(—x) 1.
A (w) = 5 lim o

271 1o Jogt1—iT

ds.

Let T > Th,1>6>0. Weapply Cauchy’s Theorem to the above integral
over the contour obtained by connecting each of the following list of points to
its successor with a line segment:ao + 1 — ¢T,N — 2T, N — T\ ,00 + 6 — T\,
g0+ 6+ ¢TI , N+ T, N+ 4T,00 + 14 2T,00 + 1 — 2T. The part of the
contour between N — ¢7 and N + <7 will be denoted by C. Notice that the
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integral over C is independent of . We then obtain that

A(—x)(w) 1 f w8 Z(S) ds + 0(6)‘w).

x+1

Pick M > 0. Let
Gw) =0 for w < M

f € — V2 E  for o> M
21:'1 s

Then
Hw) = —f ‘“’Z(s)d +0(1)
and after integrating « times we have
—K w8 Z
¢(w) = o [ e 28 4 4 o).

Hence A7 (w) — @77 (w) = O(e"“’). It is clear that A and G satisfy H1,
H2 and H3, and since [ ¢ ¢*Z(s) ds/s is an entire function of z, H4 is satisfied.
Also M satisfies the remark.

To verify H5 we note that forze Ry, ¢ < /2, > 0

G(z) = O(exp (max,e Rl (2s)).
Now
Rlzs = 20 — yt < x(o0 + ¢/2) + |y | Th

since the value of G is independent of § and we have here chosen § = £/2. For
¢ sufficiently small z € Ry implies | y | < (&/2T\)z and thus

Rl (2s) < (o0 + ¢) Rlz.
To verify H6 we consider for w > M

o) = o [ e Z(s)(ds/s) + hy
2wt Jo
where k; is a constant. Then

@) = o [ 2(s) ds = 0(=").
2wt Jo
and
VGlwr, @l = f | @ () | do

w1

— O(ew2(00+e) _ ewl(o'(ﬁ—e))‘

This completes the proof of one-half of the equivalence.
We now assume that 4 (w) satisfies H1, H2, H3, H4, H5 and H6.
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Pick N withoo > N > P andlet x = x,
B(w) = By(w) = A(w) — G\(w) = A(w) — G(w).
We set
Y(s) = fow e dB(w) and W(s) = fom e dF(w).

By H1 and H5 both these integrals converge for ¢ > ¢ and by [10,
Theorem 2.3a]

(1) Z(s) = s f” 4 (0) do
(2) Y(s) = s fo " ' B(w) do
(3) W(s) =s fow ¢ G(w) do

for ¢ > oy and these integrals all converge absolutely for ¢ > op. Fore > oo
Z(s) = Y(s) + W(s).

We wish to find analytic continuations for Y(s) and W(s).
By H2, B™(w) = 0(¢*) and hence

(4) sx+1f e—st(—x)(w) dos
0

converges absolutely for ¢ > N. Now, integrating (2) by parts « times we have

0

k+1 ® ——awB(-x) do = —op d
s fo e (w) dw Sfo e () dw

for ¢ > oo. Thus (4) provides an analytic continuation for Y (s) into the
region ¢ > \.
We consider now

(5) Wes™ = [ e*6(w) do.
M
Fix ¢ > 0. Let Cg be the boundary of theset R > |2 | > M,0 < Argz <¢

where ¢ is from H5. Applying the Cauchy Theorem to the right side of (5)
around Cr, we have fors = ¢ > 0o + ¢

R .
W(s)e "' = lim {f G(we™) exp (—woe™)e dw
R—>® M
6 -
+ M f G(e”M) exp (—oe”M)e” db
o

¢ . . .
— iR f Q(e”M) exp (—oe”R)e” dﬁ}.
0
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Thus, by H5
® . . .
W(o)o ' = f G(we*) exp (—woe®)e*® dw
M

¢ ) . )
(6) + iM /0 Q(e® M) exp (—oe®M)e” do

= ¢i(o, ) + 9:(0, ¢).

Formally substituting s for ¢ we obtain a function g:1(s, ¢). The integrand
of the associated integral is dominated by

exp (((o0 + €) cos¢p — g cos ¢ + tsin¢)w)

Now, the coefficient of w in the exponent is < —8& < 0 when s is in the region
defined by

(7) t < —(go + €) cot ¢ + o cot ¢ — 8/sin ¢

The line t = cot (0 — (go + €)) is the boundary for the union of all such
regions. The integral for gi(s, ¢) converges uniformly in each region defined
by (7). Thus ¢g:1(s, ¢) is analytic to the region L, :

—¢: — /2 < Arg (s — a9 — ¢€) < —¢. + /2.
Since gs(s, ¢) is entire and
W(s)s_l = gl(S’ ¢) + g2(81 ¢)

for s real and greater than oo, gi(s, ¢) + ga(s, ¢) is an analytic continuation
for W(s)s™ into L .
If we let Cr be the boundary of the set

R>|z|>M, 02>Argz> —9¢,

and proceed as before we get an analytic continuation for W(s)s " into the
region U, .
¢ — /2 < Arg(s —ap — €) < ¢ + 7/2.

Thus we have an analytic continuation for W(s)s™" into
Q= {s]|o > oo} U (UsoUs) u (Uso Le)

which excludes only a bounded portion of the half plane s > N. The analytic
continuations for Y(s) and W(s) now give us an analytic continuation for
Z(s) into the region

{s]e >N nQ

We now investigate the behavior of W(s)s " ast— — o whena <o < b.
Here a and b are finite real numbers. We choose To(@) large enough so that
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t < —T, implies s is in the region of convergence of

01(s, ¢) = fM G(we™) exp (—wsz™)e™ du
=0 (fM exp (((oo + €) cos ¢ — o cos ¢ + ¢ sin ¢)w) dw>

eMtsin¢
- o(Gg)
tsin ¢

=0(t|™ as t— — oo,

Also, we have

¢ . . .
go(s, ) = 1M _£ Q(e”M) exp (—se?M)e” d9

¢ )
—_ O (f eMt sin 8 d9> - 0 <f e2Mt0/1r d0>
0 0
=0(t™ as {— —ow,
Therefore, using the symmetry of the situation, we have
(8) W(s)s™ = 0(|t]™)
uniformly for | ¢ | > To(a),a < o < .
From (8) and the absolute convergence of (4) we have
Y(s) = 0(|t|™) and Z(s) = O(|¢|")
uniformly for [t| > To(a),a < o < b where M < a.
This completes the proof of Theorem 1.
2. The Carlson » function

In this section we assume the integral defining Z(s) has an abscissa of
absolute convergence a; and P is as in the previous section.

DeriniTiON. Leto > P,0 < p < 1. Then the Carlson function, »,(¢) is
defined by

. I e Y :
00, 2) = vo(o) = inflt >0 | _T~f | Z(o +t) |7 dt) = 0(T%)
r
where [*7 means [Z% + [7, with T, sufficiently large. Also we let vo(c) =
lim,,_,0+ VP(O').

This definition differs from that given in [7] only in that »,(¢) is by definition
nonnegative here. The following theorem is proved in exactly the same way as
that for ordinary Dirichlet series which is found in [7].

THEOREM 2. On the region of the (p, o) plane defined by s > P,0 < p < 1,



AN ANALYTIC CONTINUATION FOR CERTAIN FUNCTIONS 19

vo(a) is a continuous function, a convex function, a decreasing function of o, a
decreasing function of p, equal to 0 for ¢ > a1, and v,(¢) + p is an increasing
Sfunction p.

Now, as in [7] it can be shown that » (o) is the maximum of the well-known
Lindelof u function and 0.
From [8], »,(¢, W) = 0. Thus, by Minkowski’s Inequality, for0 < p < 1,

v(o, Z) < Max (v,(v, Y), v,(c, W))
1/,,(0', Y)

IA

and
vp(o, Y) < Max (v,(0, Z), v,(s, W))

< v(o, Z).
Therefore, v,(c, Z) = v,(0, Y) fore > P,0 < p < 1.
DrriNiTioN. For 0 < p < 1, let
v(Y) = inf {o > N|»(0, Y) = 0}
Y(Z) = inf {c¢ > P | (o, Z) = 0}.

It is clear that limy.r v,(Yy) = v,(Z). The following two theorems are
proved in [7].

TureorEM 3. For 0 < p < 1, v, 7s a continuous, convex and decreasing func-
tion, and for 0 < py < pp < 1,0 > v, ,

Vpl(tf) <p—p1.
THEOREM 4. For0 < p < 1L, P < <o<y,,

v(0) < XZ Ty (o).
Y g1

»

These elementary results show, among other things, that the behavior of Y
and Z on vertical lines is the same. Furthermore, if Z(s) is a Dirichlet series
it is possible to show that some very strong results of Richert concerning
v,(a, Z) are now valid in the region ¢ > P whereas they were previously known
only in the half plane where Z(s) is analytic except for finitely many poles.
The proofs of these theorems rest on the extension of the theory of strong
Riesz summability to the associated Y (s).
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