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Introduction

The problem which motivated this research is that of obtaining t results of
the type obtained by Hardy [4] and Landau [6]. ErdSs and Fuchs [2] and
later Bateman, Kolbecker, and Tull [1] have generalized the classical 2 result
for the circle problem.

Richert [8] showed that the classical t results for the divisor problems are
also indicative of results in a class of problems involving the multiplication of
Dirichlet series. In particular, his results concerned series whose generating
functions have only finitely many poles in a strip to the left of the region of
convergence.

In this paper we present some preliminary work necessary to extend his
results to a class of Dirichlet series and Laplace Transforms whose generating
functions are analytic in a strip to the left of the region of convergence with the
possible exception of a bounded region. This class of functions is interesting
because of the unity of exposition it allows and because there are available in
this class examples which show why certain restrictions imposed by Richert are
necessary if a proof is to be given along his lines.

1. An analytic continuation

Let A() be a complex function of the real variable which is of bounded
variation on every finite interval. Further, we assume A (0) 0 for

_
0.

Define

Z(s) Jo e- dA ()

for every value of s - it for which the integral converges.
We say Z(s) belongs to the class Z(z0, P), where 0

_
P < z0, in case the

following three conditions are satisfied by Z’

e dA has abscissa of convergence a’o

(ii) for k > P there exists a T >_ 0 such that Z(s) has an analytic con-
tinuation into the region >_ k, >_ Tx

(iii) for each k > P there exists a x >_ 0 such that Z(s) 0(I I)) as
t-- oo uniformly for k

_
< R, for all R > k.
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For any complex function C(o) which is of bounded variation on [0, K] for
every K >_ 0, we define C()(o) C(o) and if is a positive integer we let

C-() C-+" (u) du.

C(-’(w) is a multiple of the th Ries Mean of C.
We now list some hypotheses which we shall use in the statement of Theorem

1. Theorem 1 gives the relationship between the availability of an analytic
continuation for Z(s) and the asymptotic behavior of A() as .
H1. 0 glb {]A() 0(e) as }.

H2(X, G). There exists a positive integer x such that

A(-() -G(-()= 0(ex) as .
H3(M, G). G(w) 0 for w M and G(w) is continuous for w 0.

H4(M,G). DefineArgzsothat- <Argz . For 0let

Ro {z[Argzl , [z M}.

There exists a > 0 such that there is a function which is analytic on some
domain containing R and agrees with G(w) on R0.

H5(M, G). Given e > 0, if > 0 is sufficiently small, z e R, implies
G(z) 0(exp (a0 + e) R1 z).

H6(G). Given v > 0, the writion of G() from t to

VG[, ] 0( e<
S 1 2 .
THEOREM 1. Z(s) belongs to the class (ao P) if and only if A() satisfies

H1 and there exists for each such that o > > P, a function Gx() and an

Mx 0 satisfying H2, H3, H4, H5, and H6.

Remark. The M that the theorem produces my be chosen arbitrarily.

Proof. We first suppose that Z(s) is in Z(a0, P). Choose k > P and let
be an integer greater than x. Then from [10, Theorem 8.1] we have

1 /0++
r Z s

lira e ds.A(-)() ’ ,0+-

Let T > Tx, 1 > > 0. We apply Cauchy’s Theorem to the bove integral
over the contour obtained by connecting each of the following list of points to
its successor with a line segment" a0 + 1 iT, iT, iTx o + iTx
ao + + iTx , + iTx , + iT,o + l + iT,o + l -iT. The partofthe
contour between k iTx and k + iTx will be denoted by C. Notice that the
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integral over C is independent of . We then obtain that

PickM > 0. Let

1 fc e8 Z(s)
ds - O(ex’)A(-K)() / s--

Then

G(0) 0 for < M

1 fc e8 Z(s)
ds + 0(1)G() -and after integrating K times we have

1 fc e" Z(s)
ds + 0()G(-)() - --Hence A(-K)() G(-K)() 0(eX). It is clear that A and G satisfy H1,

H2 and tI3, and since fc e’ZZ(s) ds/s is an entire function of z, H4 is satisfied.
Also M satisfies the remark.
To verify H5 we note that for z e R,, < 7/2, e > 0

G(z) 0(exp (max,,c R1 (zs)).
Now

Rlzs xa yt

_
x(ao + e/2) +

since the value of G is independent of it and we have here chosen e/2. For
sufficiently small z e R, implies Y < (e/2Tx)x and thus

R1 (zs) _< (a0 + e) R1 z.

To verify H6 we consider for w >_ M

1 fc e’Z(s) (ds/s) + kc() -where k is a constant. Then

G’(o) --VI fc e’Z(s) ds 0(e(+")).

VG[ool o] G’

O(e2(0+) el(0+)).
This completes the proof of one-half of the equivalence.
We now assume that A() satisfies H1, H2, H3, H4, H5 and H6.

1 fc (e. --eMs)Z(s)--ds for > M.
2vi s



16 R.D. DIXON

Pick with o > k > P and let K Kx,

B() Bx() A() Gx() A() a().

We set

By H1 and H5 both these integrals converge for > zo and by [10,
Theorem 2.3a]

(1) Z(s) s Jo e-’SA() d

(2) Y(s)

(3) W(s) s Jo
for > 0 and these integrals all converge absolutely for > o. For > 0

z(s) Y(s) + w(s).

We wish to find analytic continuations for Y(s) and W(s).
By H2, B(-) (0) O(ex) and hence

(4) s+ fo e-’B(-)(o) do

converges absolutely for a > ). :Now, integrating (2) by parts times we have

) d () d

for a > ao. Thus (4) provides an analytic continuation for Y(s) into the
region
We consider now

(5) W(s)s-l= e-’’G(o) do.

Fixe> 0. Let
where ff is from H5. Applying the Cauchy Theorem to the right side of (5)
around C, we have for s

W(a)a- lim G(oe’) exp -e*)e d

+ iM G(eM) exp (-reM)e dO

iR a(eM) exp --reR)e d
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Thus, by H5

G(oe4’) exp (-wae)e

(6) -q- iM f* G ei0M exp ereoM)e dO

,) +
Formally substituting s for z we obtain a function gx(s, ). The integrnd

of the associated integral is dominated by

exp (zo -t- e) cos cos + sin )w)

Now, the coefficient of w in the exponent is <--6 < 0 when s is in the region
defined by

(7) < --(a0+ e) cot+cot-- /sin

The line cot ( (a0 + e)) is the boundary for the union of all such
regions. The integral for g(s, ) converges uniformly in each region defined
by (7). Thus g(s, ) is analytic to the region L-- /2 < Arg(s z0 e) < -- + /2.

Since g(s, ) is entire and

for s real and greater than 0, g(s, ) + g(s, ) is an analytic continuation
for W(s)U into L.

If we let C be the boundury of the set

R ]zi M, 0 Argz -,
and proceed as before we get an analytic continuation for W(s) into the
region U.

-/2 < Arg(s-z0- e) < +/2.

Thus we have an analytic continuation for W(s)U into

{sl > z0} u (U,>0 U,) u (U,>0L,)

which excludes only s bounded portion of the hslf plsne > X. The nlytic
continustions for Y(s) and W(s) now give us sn nlytic continuation for
Z(s) into the region

We now investigate the behavior of W(s) s - when a b.
Here a nd b re finite rel numbers. We choose To(a) lsrge enough so thst
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< --To implies s is in the region of convergence of

g(, 4) (oe*) exp (--o*)e* &o

0 exp (((0 -t- e) cos cos -t- sin

0
\ sin /

o(Itl-) as t--

Also, we have

g(s, ) iM G(eM) exp (-seM)e d

o(Itl-) as t-.-, _o.

Therefore, using the symmetry of the situation, we have

(8) w()s- o(Itl-)
uniformly for It[ >_ T0(a), a _< _< b.
From (8) and the absolute convergence of (4) we have

Y(s) o(I +) nd Z(s) O([ti+)
uniformly for ti >_ T0(a), a _< (r _< b where ) < a.

This completes the proof of Theorem 1.

2. The Carlson function

In this section we assume the integral defining Z(s) has an absciss of
absolute convergence a and P is as in the previous section.

DEFINITION. Let > P, 0 p

_
1. Then the Carlson function, () is

defined by

(z,Z) () inf >0] Z(r + it) /dt O(T)
T

where f* means ]r_ + frr0 with To sufficiently large. Also we let 0()
lim,_.o+ ().

This definition differs from that given in [7] only in that () is by definition
nonnegative here. The following theorem is proved in exactly the same way as
that for ordinary Dirichlet series which is found in [7].

THEOREM 2. On the region of the (p, (r) plane defined by a > P, 0 <_ p <_ 1,
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vo(z) is a continuous function, a convex function, a decreasing function of , a
decreasing function of p, equal to 0 for > al and v(z) q- p is an increasing
function p.

Now, as in [7] it can be shown that 0(z) is the maximum of the well-known
LindelSf function and 0.
From [8], v,(a, W) 0. Thus, by Minkowski’s Inequality, for 0 < p _< 1,

and

v(, Z) _< Max (v(, Y), ,,(z, W))

<__ v(o-, Y)

%(, Y) _< Max (v(z, Z), vp(, W))

_< v(, Z).

Therefore, v(z, Z) v(, Y) for > P, 0 _< p

_
1.

DEFINITION. For 0 _< p _< 1, let

%(Y) inf {a > vo< , Y) 0}

%(Z) inf {z > P lvo(z, Z) 0}.

It is dear that limx+e %(Yx) %(Z). The following two theorems are
proved in [7].

THEOREM 3. For 0 <_ p <_ 1, % is a continuous, convex and decreasing func-
tion, and for 0

THEOREM 4. For 0 <_

() < u ,(,).

These elementary results show, among other things, that the behavior of Y
and Z on vertical lines is the same. Furthermore, if Z(s) is a Dirichlet series
it is possible to show that some very strong results of Richert concerning
uo(, Z) are now valid in the region z > P whereas they were previously known
only in the half plane where Z(s) is analytic except for finitely many poles.
The proofs of these theorems rest on the extension of the theory of strong
Riesz summability to the associated Y(s).
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