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1. Introduction

An R module M is said to be quasi injective if every homomorphism

where T is a submodule of M, can be extended to an endomorphism of M.
See [5], [6], [10] for properties and applications of quasi injective modules.
Phrased in terms of diagrams, a module M is quasi injective if every diagram

OTM

can be embedded in a commutative diagram

OM

where j is ghe nagural ineegion of T ingo M.
In his paper we shall be concerned wih a eoneep dual o quasi invectives.

A module M is said o be quasi proeeive if every diagram

MM/O

can be embedded in a commutative diagram

MM/TO
where n is the natural mup of M on M/T.
From the duality of the definitions of quasi projective and quasi injective,

it is easy to deduce a number of properties of quasi projectives from the dual
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properties of quasi invectives. In Section 2, we list some of these properties
supplying proof only where it isn’t obvious how to dualize from the quasi
iniective case. In Section 3 we obtain a structure theorem for indecompos-
able finitely generated quasi projectives over semi-perfect rings. This struc-
ture theorem connects quasi proectives with the two sided ideal lattice of the
ring. We can then obtain theorems relating quasi proiectives and quasi
]ectives with the indecomposble module problem (which rings have many
indecomposable modules? See [3], [8], [12]).
Throughout the paper we shall use the following notation" All modules are

R-modules for a ring R. Q(M) will denote the iniective hull of M; that is,

0-- M J- Q(M)

is exact, Q(M) is in]ective and if X Q(M) such that X n j(M) 0 then
X 0. We shll use P(M) for the proective cover of M (if it exists);

P(M) - M -- 0

is exact, P(M) is proiective and if X P(M) such that X W Ker P(M)
then X P(M). In]ective hulls lways exist. See [4] for the iniective
hull nd [1] for the proiective cover. We shall denote by E(M) the R-endo-
morphism ring of the R-module M. M then becomes an R-E(M) bimodule.

2. Quasi injectives and quasi projectives

The following is a theorem proved by Johnson and Wong [10], and it is a
fundamental tool in studying quasi iniective modules.

THEOREM. M is quasi injective if and only if M is an R-E(Q(M) sub-
module of Q M).

Since not every module has a proective cover, this theorem does not dualize
completely. However, we do get the following propositions on quasi proiec-
rives by duliing each half of the above theorem.

PoPosTIo 2.1. If 0 --+ T ----> P ---> M ---+ 0 is exact with P projective and
T is an R-E(P) submodule of P then M is quasi projective.

POPOSITON 2.2 If M is quasi projective and has a projective cover

0-- Ker -- P(M) --% M ----> 0

then Ker r is an R-E(P(M) submodule of P(M).

Both of these propositions can be proved by dualiing the proofs of the
two hlves of the Johnson and Wong theorem. For an example of what we
mean by dualiing a proof, we include below a proof of Proposition 2.2. Com-
pare it to the proof of Theorem 1.1 of [10].

Let
0 -- Ker -- P(M) _5. M -- 0
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be the projective cover of M with M quasi projective and let , e E(P(M)).
We shall show that (Ker r)

___
Ker r. Let T Ker r -t- ,(Ker r) and we

see that since ,(Ker r) T, induces ff :P(M)/Ker r --. P(M)/T. This
lifts to a map ,’ M -- M/r(T) so we have the diagram

M

M M/-(T) ---. 0

which by the quasi projectivity of M can be embedded in the commutative
diagram

M

M M/r(T) -- O.

Now using the projectivity of P(M) we have the commutative diagram with
a e E(P(M)

P(M) -- M 0

P(M) M O.

Now let X {PIP P(M), ,(p) a(p) eKer r} and we shall show
X P(M). We do this by first showing X Ker r P(M); then the
fct that P(M) is the projective cover of M implies X P(M).
Note that both a and , induce maps from M to M/-(T) where a induces a’

P(M) M

P(M) M M/.T
and , induces

P(M) -- Mf(M)

By chasing the diagram and using n 7’ we see that ,’ a’ 0.
It follows, therefore, that (, a)(P(M))

___
T. For each p e P(M),

,(p) a(p) ]1 7(/2) with/ e Ker r bythe definition of T. It follows
that p k. e X and we have shown that X - Ker r P(M).
The fact that P(M) is the projective cover of M implies that X P(M).

Therefore ,(Ker r) Ker r since a(Ker r)

___
Ker . This completes the

proof of Proposition 2.2.
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As shown in [5], the class of quasi injectives is not closed under even finite
direct sums. It is not hard to give examples showing that the class of quasi
projectives also is not closed under finite direct sum. However, quasi pro-
jectives (and quasi injectives) are closed under taking direct summands and
other operations.

PROPOmTION 2.3. If M is quasi projective and M S T (R direct)
then S and T are also quasi projective.

Proof.
quasi injectives.
Given the diagram

We note that the same proof (with arrows reversed) works for

it can be embedded in

S

S n_ SIX 0

S - T

f+iT

S + Tn---4- S/X + TO.
Then using the quasi projectivity of S + T, the above diagram can be em-
bedded in a commutative diagram

S+T

It is clear that g] S ] will be a lifting of f; this completes the proof.
The following theorem relates indecomposability of M, where M is quasi

projective, with indecomposability of P(M), its proiective cover.

PROPOSITION 2.4. If M is quasi projective and has a projective cover

P(M) M --. 0

and if P(M) P @ P. (R-direct)then M- M @ M (R-direct)and

is the projective cover of M where ri " Pi

Proof. The corresponding theorem for quasi injectives is proved dually.
The R-decomposition, P(M) P1 @ P2, is achieved via two orthogonal

idempotents El, E2 e E(P(M)), P P(M)E. But since Ker v is an
E(P(M)) submodule of P(M), we have Ker r (Ker z)E @ (Ker z)E2,
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R direct. Thus we caa induce a decomposition in M by letting
M =P(M)E/(Ker r)E and it follows that

0 -+ (Ker r)E---+ P(M)E M ---+ 0

is exact and M M1 @ M2 R direct.
If X

_
P(M)E1 such that X + Ker P(M)EI then

X - P(M)E2 + Ker r P(M)

so X + P(M)E2 P(M). Therefore X P(M)E and it follows that

P(M)E - M --+ 0

is the proiective cover of M. This completes the proof of Proposition 2.4.
We remark that if the decomposition P(M) P1 @ P is non-trivial then

so isM M @ M. For ifM 0thenPKerandP+Ker
P(M) implies P P(M) so P 0.

PROIOSITION 2.5. If M has a projective cover and if M is quasi projective
then @ nM M @ @ M (n copies) is also quasi projective.

Proof. Again the dual proof works for quasi injectives. In that case the
injective hull replaces the projective cover and one need not assume its ex-
istence.

Let
0-+ Ker -- P M _5+ M --- 0be the projective cover of M. The projective cover of @ nM is

@ _,nP(M), the direct sum of n copies of P(M) with appropriate projec-
tions [1]. By Proposition 2.1, it is sufficient to show the kernel of

@ P(M) +Z> @ M--0
is an E( @ n p(M)) submodule of @ n P. The endomorphism ring of
@ ’ P(M) can be viewed as the total n X n matrix ring over E(P(M)).
Also the kernel of the above map is @ Ker r. Since it is clear that any
map fj:P(M)-+ Pj(M) (from the ih copy of P(M) to the jth) must
carry Ker r into Ker r (because Kerv is anE(P(M)) module), it follows
that @ Ker is an E(@ P(M)) submodule of @ P(M).
This concludes the proof of the proposition.
We define a quasi projective cover in a manner analogous to the projective

cover.

DEFINITION.
QP(M) - M 0

will be called the quasi projective cover of M provided
(1) QP(M) is quasi projective;
(2) ifX+Ker# QP M thenX= QP M
(3) if 0 T Ker # then QP(M)/T is not quasi projective.
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Note how conditions (1) and (2) are almost the conditions for a proiective
cover. We have the following existence theorem for quasi projective covers.

PoosoN 2.6. If M has a projective cover

P(M) -- M ---. 0
$hen it has a quasi projective cover

QP(M) -- M --+ 0

which is unique up to isomorphism over the identity on M.

Proof. In the light of Propositions 2.1 and 2.2 it is clear how to construct
a quasi proective cover out of a proective cover. Let X be the (unique)
maximal R-E(P(M)) submodule contained in Ker . Existence is assured
by Zorn’s lemma and uniqueness follows from the fact that the sum of two
R-E(P(M) submodules contained in Ker is again contained in Ker .
Now let QP(M) P(M)/X map onto M by the induced map #. By

Proposition 2.1, QP(M) is quasi proiective. If Y -t- Ker QP(M) then
Y - Ker P(M) where Y is the pre-image in P(M) of I. It follows
that Y P(M) and QP(M). Condition (3) for a quasi proiective
cover is satisfied by the maximality of X.
Now we test uniqueness. Suppose now that M has another quasi projec-

tive cover
Z A M--- O,

satisfying conditions (1), (2), and (3). Since P(M) is projective we have
the commutative diagram

Z _, M.--.O

P(M) M O.

Since Im t -t- Ker Z, it follows from condition (2) that t is an epi-
morphism and Ker t Ker . Therefore the map

P(M) - Z --+ 0

is the projective cover of Z and by Proposition 2.2, Ker is an E(P(M))
submodule of P(M). By the choice of X above we see X Ker . If
X properly contained Ker we would have the condition 0 (X)

___
Ker }

with Z/t(X) P(M)/X QP(M) which is quasi projective. But this
would contradict condition (3) for Z --+ M -- 0 to be a quasi projective cover.
Therefore X Ker and induces an isomorphism so that the following
diagram is commutative.

Z --> M---O

QP(M) ---, M --o O.

This completes the proof of Proposition 2.6.
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Remark 1. We do not know of more general theorem on the existence of
quasi projective covers. However, they exist more generally thn projective
covers s the following examples show. Modules over the ring Z of integers
(that is belin groups) only hve projective covers when they re free [1].
However, finite belin groups always hve quasi proiective covers. To
show this it is sufficient to consider only the cse of p-primary belin groups
p prime since there re only trivial homomorphisms between primary groups
with different primes. If P ’-_ C is direct sum of cyclic groups o
order p’ with mx r, then P becomes Z/(p) module. In the cte-
gory of Z/(p) modules it hs projective cover nd quasi projective cover
by Proposition 2.6. It is not hrd to see that its quasi proiective cover in the
ctegory of Z/(pt) modules is lso its quasi proiective cover in the ctegory
of Z modules. In fct, in this cse its proiective cover in the Z/(pt)-ctegory
is its quasi projective cover in the Z-ctegory. It follows, since proiective
Z/(p) modules re free, that finite quasi proiective p-primary belin groups
re direct sums C where ech C hs order pt.

However, in the following we show that finitely generated belin group
A which is not finite does not hve quasi proiective cover unless A is free.
First note that if A F @ T with F free (0) nd T finite (0), then
F contains subgroup X such that there is non-trivial homomorphism
f T -- FIX which gives homomorphism g F T -- (F/X) @ T where
g(x, t) (f(t), 0). Now it is clear that in the following diagram the dotted
line cnnot be filled with n endomorphism of A

F@T

because elements of T must go into T under every homomorphism. The
bove rgument shows that no group of the form F @ T (F, T 0) cn be
quasi proiective. It follows that the only possible quasi proiective covers
for groups of the form F @ T re the free groups. But then the sme rgu-
ment that shows such groups don’t hve proiective covers lso shows they
don’t hve quasi projective covers [1].

Remark 2. We should note that we do not know if some form of Proposi-
tions 2.2, 2.4, 2.5, or 2.6 cn be proved without the ssumption of the exist-
ence of proiective cover, t least in some wek form s with the example
bove, of finite belin groups.

3. Quasi proiectives over perfect rings

Since most of our results in Section 2 depended upon the existence of pro-
]ective cover, in this section we shll begin by restricting our ttention to
rings ll of whose finitely generated left modules hve projective covers.
Such rings were defined s semi-perfect rings by Bss nd hve been studied
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by Bass in [1]. In addition to being able to use our results of Section 2, we
can also use the following characterization of left semi-perfect rings which
appeared in [1]:

THEOREM (Bass). For a ring R with Jacobson radical N the following are
equivalent:

1. R is left semi-perfect.
2. R/N is semi-simple Artinian and idempotents can be lifted modulo N.

By property 2 of the above theorem, many of the standard arguments for
rings with minimum condition carry over to left semi-perfect rings. In the
light of Proposition 2.3, in studying finitely generated quasi projectives over
semi-perfect rings, it is enough to consider indecomposable quasi projectives.
The following Theorem 3.1 gives a characterization of these.
We remark that finitely generated modules over semi-perfect rings are the

direct sum of a finite number of indecomposable modules (same proof as with
minimum condition) and that the Krull Schmidt theorem holds fo.r finitely
generated projectives over semi-perfect rings. We do not know if the unique-
ness part of the Krull Schmidt theorem holds for non-projectives over semi-
perfect rings, even in the finitely generated case.

THEOREM 3.1. If M is a finitely generated indecomposable quasi projective
over a left semi-perfect ring R, then

M Re/J n Re

where e is an indecomposable idempotent and J a two sided ideal of R.

Proof. By Proposition 2.4, if M is indecomposable, so is its projective
cover P(M). Conversely, the projective cover of a direct sum is the direct
sum of the projective covers. Thus M is indecomposable if and only if its
projective cover is indecomposable.

It is known [1] that P is an indecomposable finitely generated projective
over a left semi-perfect ring R if and only if P Re where e is an indecom-
posable idempotent. Using Propositions 2.1 and 2.2, we know that Re/L is
an indecomposable quasi projective"if and only if L is an R-E(Re) submodule.
So to complete the proof of the theorem it is sufficient to show that
the R-E(Re) submodules of Re are of the form Re J where J is a two sided
ideal, and conversely, Re J is an R-E(Re) submodule.
We note first that E(Re) can be realized as right multiplications by

elements of the subring eRe. Certainly any right multiplication by an ele-
ment of ere gives an element of E(Re). Conversely, if f E(Re), then
el(e) =f(e2) eroe eRe and it follows that f(xe) xf(e) xe(ero e).
Thus, f is given by a right multiplication by ero e.
Now suppose L Le is an R-eRe submodule of Re. Let

] Le LeR(1 e), where the sum is direct as left R modules by the
orthogonality of e and 1 e. The following strings of containments
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show that J is a two sided ideal"

LeR LeRe + LeR(1 e)

_
J

and
LeR(1 e)R LeR(1 e)Re + LeR(1 e) R(1 e)_

LeRe LeR(1 e)

_
J.

Note that J ,’, Re L.
Conversely, if J is two sided then J Je -t- J(1 e) is a decomposition

of J into left ideals, where Je J c, Re. Now form JeeRe

_
JRe Je.

Thus J n Re is an R-eRe submodule of Re.
This completes the proof of Theorem 3.1.
In the following theorem we obtain a connection between quasi proiectives

and the indecomposable problem. The indecomposable problem is "Which
rings have infinitely many non-isomorphic indecomposable modules?" It is
usually asked about rings with minimum condition and in the following theo-
rem we shall deal with such rings.

To 3.2. If R is a ring with minimum condition of left ideals then R
has an infinite number of non-isomorphic quasi projective indecomposable left
modules if and only if the two sided ideal lattice of R is infinite.

Proof. First decompose the identity of R into indecomposable orthogonal
idempotents 1 el -t- -en and fix this decomposition. Let I be the
set of ideals of R, s the finite set of idempotents el, e, and let Q be the
set of equivalence classes (under isomorphism) of indecomposable quasi pro-
jective R-modules. Since R has only a finite number of indecomposable
projectives [1] and each indecomposable quasi projective is realized as a factor
of one of these, it is clear that the equivalence classes of indecomposable
quasi projectives form a set.
NowdefinethefunctionF I X s - Q,F(J, ei) the class of Rei/J Re

We first show that the function F is onto Q. If M is indecomposable quasi
projective then M has one of the Re as projective cover [1], Re -- M -- O.
By Theorem 3.1, M Re/J Re and F(J, e) is the class of M. It fol-
lows that if Q is infinite so is I, because s is finite.
To show the converse we first cite a theorem proved in [2] for rings with

minimum condition" If Re/L Re’/L’ then these isomorphisms can be
realized by right multiplication by elements a and/ of R. In particular,
there exist elements a, e R such that L --’" La L and L --" LP L.
Applying this to isomorphic quasi projectives" if Re/Je Rej/Ie where
I, J are ideals, then Je a Ie and Iej Jei. Using the fact that I and
J are ideals, we have Je

_
I and Ie

_
J.

Now, if Re/Je Re/Iei for i 1, ..., n then _.,Je J

_
I and

_,Ie I J or I J. Stated contrapositively, if I J then the two
sets F(J X s) and F(I X ) are distinct subsets of Q. It follows that if I
is infinite then Q is also infinite. This completes the proof of Theorem 3.2.
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If we specialize to finite dimensional lgebrs over field we obtain the
following corollary"

CorollAry 3.3. If R is a K algebra, K a field and JR:K] finite then the
following are equivalent:

1. R has an infinite number of indecomposable quasi projective left modules.
2. R has an infinite number of indecomposable quasi projective right modules.
3. R has an infinite number of indecomposable quasi injective right modules.
4. R has an infinite number of indecomposable quasi injective left modules.
5. R has an infinite ideal lattice.

Proof. The functor (.)* Hom(. K) gives perfect duality from the
ctegory of finitely generated left R modules to finitely generated right R
modules, nd similarly right to left. This functor carries indecomposble
quasi projectives to indecomposble quasi injectives nd the reverse. It fol-
lows that 1 nd 3 re lwys equiwlent nd similarly 2 nd 4. Theorem 3.2
establishes the equiwlence of 1 nd 5. But since 5 is left-right symmetric,
it lso establishes the equiwlence of 2 nd 5. Thus they re 11 equiwlent.
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