HIGHER ORDER WHITEHEAD PRODUCTS AND POSTNIKOV SYSTEMS

BY

GERALD J. PORTER¹

In an arcwise connected CW-complex, higher order Whitehead products are determined, as are all homotopy operations, by the Postnikov invariants of the space. This fact has been used implicitly in [3] to prove that certain products are non-zero. In this note we calculate this relationship explicitly. This is done by relating Whitehead products and classical obstruction theory. Let $P^{n}(C)$ denote *n*-dimensional complex projective space. As an application we show that if $\iota \in \pi_{2}(P^{n}(C))$ is a generator, then the set of $(n + 1)^{\text{st}}$ order Whitehead products $[\iota, \cdots, \iota]$ equals $(n + 1)! \sigma$, where σ is a generator of $\pi_{2n+1}(P^{n}(C))$.

The author would like to thank M. Arkowitz for raising the question about $P^{n}(C)$ which led to this note.

Let T denote the subset of the cartesian product, $\times_{i=1}^{k} S^{n_i}$, consisting of those points with at least one coordinate at a base point. We assume throughout that $n_i > 1$, all i, and $k \ge 2$. Choose a generator $\mu \in H_N(\times S^{n_i}; Z)$, where $N = \sum n_i$. Given a map $g: T \to X$, the k^{th} order Whitehead product, $W(g) \in \pi_{N-1}(X)$, is defined by $W(g) = g_* \partial H j_*(\mu)$, where j_* is induced by the inclusion,

 $j: (\times S^{n_i}, *) \to (\times S^{n_i}, T),$

H is the Hurewicz homomorphism, and ∂ is the boundary in the homotopy sequence of the pair $(\times S^{n_i}, T)$. These products were defined and studied in [2]. It was shown there that *g* can be extended to the cartesian product if and only if W(g) = 0.

On the other hand classical obstruction theory yields an element,

$$o(g) \in H^{\mathbb{N}}(\times S^{n_i}, T; \pi_{\mathbb{N}-1}(X)),$$

such that g can be extended if and only if o(g) = 0. (We use here the fact that the (N - 2) skeleton of $\times S^{n_i}$ equals T.)

Let \langle , \rangle denote the Kronecker pairing

$$H^{\mathbb{N}}(\times S^{n_i}; \pi_{\mathbb{N}-1}(X)) \otimes H_{\mathbb{N}}(\times S^{n_i}; Z) \to \pi_{\mathbb{N}-1}(X).$$

The following lemma is then evident.

LEMMA 1. $\langle j^*o(g), \mu \rangle = W(g).$

Given a fibre space (E, p, B) with fibre F and a map $g: T \to E$ such that pg can be extended to $h: X S^n \to B$, the usual obstruction theory for cross-

Received May 26, 1966.

¹ The author was an Office of Naval Research postdoctoral research fellow during part of the period in which this note was written.

sections of a fibre space extends in an obvious manner to yield a cohomology class,

$$u(g) \ \epsilon \ H^{\scriptscriptstyle N}(ig X S^{n_i}, \ T; \pi_{\scriptscriptstyle N-1}(F))$$

such that g can be extended to cover h if and only if u(g) = 0; u(g), of course, depends upon the choice of h. The inclusion map $l: F \to E$ induces

$$l_*:\pi_{N-1}(F)\to\pi_{N-1}(E)$$

which in turn induces

$$l_{\#}: H^{N}(\times S^{n_{i}}, T; \pi_{N-1}(E)) \to H^{N}(\times S^{n_{i}}, T; \pi_{N-1}(F)).$$

The next lemma follows at once from the definition of u(g).

LEMMA 2. $l_{\#} u(g) = o(g)$.

In particular if $\pi_{N-1}(B) = \pi_N(B) = 0$, then $p_*W(g) = 0$ and there exists an extension, h, unique up to homotopy. If in addition E is induced by $\zeta \in H^N(B; G), j^*u(g) = h^*(\zeta)$. Combining this with the above lemmas we have:

THEOREM 3. Let E be the fibre space induced by $\zeta \in H^N(B; G)$ and suppose $\pi_N(B) = \pi_{N-1}(B) = 0$. Given $g: T \to E$

$$W(g) = \langle l_{\#} h^{*}(\zeta), \mu \rangle$$

where h is any extension of pg to the cartesian product.

We note that the above hypothesis implies that $l_{\#}$ is an isomorphism.

Applications

The Postnikov system of a space X is a sequence of spaces and maps $(X_n, p_n, q_n), q_n : X \to X_n, p_n : X_n \to X_{n-1}$, such that

- (i) p_n is a fibre map with $K(\pi_n(X), n)$ as fibre,
- (ii) q_n is an *n*-equivalence,
- (iii) X_0 is a point,
- (iv) $p_n q_n = q_{n-1}$,

 X_n is induced from X_{n-1} by $k_{n+1} \epsilon H^{n+1}(X_{n-1}; \pi_n(X))$. Since $\pi_N(X_{N-2}) = \pi_{N-1}(X_{N-2}) = 0$, Theorem 3 implies

COROLLARY 1. If $g: T \to X$, $(q_{N-1})_* W(g) = \langle l_* h^*(k_N), \mu \rangle$ where h is any extension of $q_{N-2} g$ to the cartesian product.

This determines W(g) since q_{N-1} is an (N-1)-equivalence. We recall that

$$[f_1, \cdots, f_k] = \{W(g) : gj_i \cong f_i, \text{ for each } i\},\$$

where j_i is the canonical injection of $S^{n_i} \to T$.

COROLLARY 2. The set of $(n + 1)^{st}$ order Whitehead products $[\iota, \cdots, \iota]$ is a single element which is equal to $(n + 1)!\sigma$, where

 $\iota \in \pi_2(P^n(C))$ and $\sigma \in \pi_{2n+1}(P^n(C))$

are generators of their respective groups.

Proof. It is well known that if $X = P^{n}(C)$ then

$$X_{2n} = X_{2n-1} = \cdots = X_2 = K(Z, 2)$$

and $k_{2n+2} = \alpha^{n+1}$ where $\alpha \in H^2(Z, 2, Z)$ is the fundamental class. Since X_{2n} is an *H*-space, the map $S^2 \vee \cdots \vee S^2 \to X_{2n}$, which, restricted to each S^2 , represents a generator of $\pi_2(K(Z, 2))$, can be extended to *h*, mapping the cartesian product of (n + 1) copies of S^2 to X_{2n} . Moreover $h \mid T$ can be lifted to $g: T \to P^n(C)$. Clearly, $W(g) \in [\iota, \cdots, \iota]$.

A straightforward calculation such as $[3, 3.15]^2$ shows that for all such extensions, $h^*(\alpha^{n+1}) = (n+1)! s$ where s is a generator of $H^N(\times S^{n_i}; Z)$. Thus by Corollary 1

$$(q_{2n+1})_* W(g) = \langle j_{\#} k^*(\alpha^{n+1}), \mu \rangle = (n+1)! \langle j_{\#} s, \mu \rangle.$$

Since $\langle j_{\sharp} s, \mu \rangle$ is a generator of $\pi_{2n+1}(X_{2n+1})$ it follows that $(q_{2n+1})^{-1}_{*}\langle j_{\sharp} s, \mu \rangle$ is a generator of $\pi_{2n+1}(P^{n}(C))$.

We close by noting that our characterization of W(g) differs in spirit from that given by J-P. Meyer [1] in the case of the usual Whitehead product. One wonders if his characterization can in some way be extended to the general case.

BIBLIOGRAPHY

- 1. J-P. MEYER, Whitehead products and Postnikov systems, Amer. J. Math., vol. 83 (1960), pp. 271-280.
- 2. G. J. PORTER, Higher order Whitehead products, Topology, vol. 3 (1965), pp. 123-135.
- Spaces with vanishing Whitehead products, Quart. J. Math. Oxford Ser. (2), vol. 16 (1965), pp. 77-85.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS BRANDEIS UNIVERSITY WALTHAM, MASSACHUSETTS UNIVERSITY OF PENNSYLVANIA

Philadelphia, Pennsylvania

² We take this opportunity to note that [3, 3.15] requires the additional hypothesis that each k_i is even. This does not affect the validity of the results of [3].