
A NOTE ON REFLECTION MAPS

BY

J. F. KENNSON

1. Introduction
Let be ctegory. Our terminology for ctegories will be bsed on [2]

and [8]. Thus full subcategory 6 of e is reflective if the functor which in-
jects (B into has an adjoint (or, in the language of [2], left-adjoint) from

onto 05. Equivalently, 6 is reflective in iff every object A of has a

reflection map, that is u morphism e:A B where B e (B and such that
whenever f: A B’ is a morphism with B’ 6 then there is u unique
g B - B’ such that f ge (see [2] or [8]). Reflection maps coincide with
the front adjunctions of [6].

In this paper we shall consider the problem of determining when a given
morphism e A -- B is reflection map. We shall also consider the more
general problem of determining when a class of morphisms, {e A -- Bi}, is
contained in the class of reflection maps associated with full reflective sub-
category. We have obtained results in the case in which the class
[e A -- B} is u set and also the case in which every e is an epimorphism.
In Section 4, theorem 1.1 is used to settle in the negative question implicitly
rised in [6] us to whether every reflection map is un epimorphism in the
category of Hausdorff spaces and maps. Another example discusses the
problem of obtaining a "universal covering space" for any Hausdorff space
with base with base point. Throughout this paper we shall assume that every
indexed collection of objects of e has product and coproduct. We shall
also ssume that every morphismf of cn be fctored us f me where m is a
monomorphism and e is an epimorphism. (This factorization and the as-
sumption of coproducts ure needed in the proofs of 2.1 and 2.2.)

In addition to the above terminology, we shall also assume that the reader
is familiar with the terms subobject, quotient object, well-powered and co-well-
powered as defined in [2]. We shull also make use of bicutegories in the sense
of Isbell for which the relevant definitions und known results shull be intro-
duced s needed.
We can now state our main result.

THEOREM 1.1. Let be well-powered. The set of morphisms {e A ---, B}
is contained in the class of reflection maps associated with a full reflective sub-
category iff every morphism f A -- B can be factored so that f ge for a
unique morphism g B ---+ B

COROAnY. Let be well-powered. A morphism e A ---> B is a reflection
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map iff every morphism f A --> B can be factored so that f ge for a unique
morphism g B --> B.

We have obtained a better result for the following special type of reflective
subcategory.

DEFINITION. A full subcategory ( of 6 is epi-reflective, in , if ( is reflec-
tire and if all of the associated reflection maps are epimorphisms.

THEOREM 1.2. Let be co-well-powered. A class of epimorphisms

lei A --> Bi}

is contained in the class of reflection maps associated with an epi-reflective
subcategory iff every morphism f A ---> Bj can be factored, so that f ge for
at least one morphism g B -- Bj.

Added in proof. The above corollary has also been obtained by J. R.
Isbell, Bull. Amer. Math. Soc., 72, p. 644.

2. Epi-reflective subcategories
In what follows, the class of all epimorphisms of ( shall be denoted by Ee,

or simply E, if there is no danger of confusion.
The following treatment of epi-reflective subcategories is for the most part

known and given in [4] and [7]. The key definition is:

DEFINITION. A monomorphism f of ( is an extremal monomorphism if
f hg and g e E imply that g is an equivalence.

We shall let Mg (or simply M if there is no danger of confusion) denote
the class of all extremal monomorphisms of (.

Remark. It is easily checked that if rd 1, an identity morphism, then
deM. For ifd hgandgeEthenrhg landsogrhg g. Hencegrh
is also an identity as g e E. Thus g is an equivalence as g-1 rh. It follows
that M contains all equivalences.
The following two results are proven in [7].

PROPOSITION 2.1. If he mg where e E and m M (as in Figure 1),
there then exists a morphism r such that re g and mr h.

eeE
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THEOREM 2.2. If is either well-powered or co-well-powered then (M, E)
is a bicategory structure in the sense of Isbell on . This means that M is
closed under composition and tat every morphism f can be factored as f fl fo
where fl M and fo E. Moreover this factorization is unique to within equiva-
lences in the sense that if f hg with h M and g E then there is an equiva-
lence e such that h fl e and eg f
COROLLAaY. Let fi Xi Y be an indexed subset of M. Let X II x

and Y IX Y be products and let p X X and Y Y denote the
pojections. Let f X ---. Y be the morphism determined by pf f p. Then
f eM.

Proof. Let f fl f0 where f e M and f0 E. In view of Proposition 2.1,
there is, los each i, a morphism r such that rfo p and fr pf. Let r
be the morphism for which pir r for all i. Then rfo lx since prfo p
for all i. By a previous remark, this implies that f0 M and so f f f0 M
as M is composition closed.

DEFINITION. Z is an M-subobject of Y if M n Hom (X, Y) 9.

DEFINITION. Let ( be a full subcategory of . Then is co-well-powered
relative to ( if each object X of has no more than a set of quotient objects in
(. (Extending a standard abuse of language, we shall say that a quotient
object, which is an equivalence class of epimorphisms, is "in (" if it has at
least one representative member e X -- Y for which Y is an object of B.)

Remark. In view of Theorem 2.2, we shall assume from now on that
(Ma, E) is a bicategory structure on .
THEOREM 2.3. Let be co-well-powered relative to the full subcategory qt.

Let be closed under the formation of products and M-subobjects. Then qt is
epi-reflective in .

Proof. The argument used by Isbell in his proof of Freyd’s theorem in [4],
p. 1276, is applicable here.

Proof of Theorem 1.2. Let 6 be the full subcategory of consisting of all
objects X such that for every morphism f’A -- X there is a morphism
g B -- X with ge f. Note that g is uniquely determined since e e E.

It is easily verified that 6t is closed under the formation of products and (in
view of Proposition 2.1) of M-subobjects. Since is co-well-powered, is
epi-reflective.

3. The span of a set of objects
DEFINITION. Let S be a set of objects of . Let ( be the full subcategory

consisting of all M-subobjects of products of indexed families of objects of S.
Then 6t is the span of S in the category .
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In the rest of this section, 63 shall be assumed to be the span of a set S, of
objects.

PROPOSITION 3.1. 63 is closed under the formation of products and M-sub
objects and is co-well-powered relative to 63. Thus 63 is epi-refiective in .

Proof. 63 is obviously closed under the formation of products of M-sub
objects in view of the corollary to Theorem 2.2 and the fact that M is com-
position closed.
LetXbeagivenobjectof . Let Ubethe set [J{Hom (X, Y)[ YS}

and let Q be the family of quotient objects of X which lie in 63. To prove Q
is a set we shall show that the following function 2 -- Q is onto’ if

lf" X Y} 2,
let f" X - II Y be determined by pf f, and define ({f}) f0, the
epimorphism part of the factorization f fl f0 for which fl e M.

Let g X -- Z represent an element of Q. Since Z 63 there is an extremal
monomorphism h Z -- P IX Yil i I} where Yi S for all i I. Write
f hg and f pf where p is the i-th projection. Define an equivalence
relation on the set I by i j iff f f. and let I a A} be the set of equiva-
lence classes. Let r" I - A be the natural projection for which ri a

iff i I and let s A -- I be any choice function, i.e. a function such that
os= identity onA. DefineY= Ys,T= II{YlaeA},p" T--Y
the proiections andf fs. Then z, s determine maps d T - P, r P --. T
by p d p, p.r p. Since o s is the identity, rd 1T. Thus
de M. Let ]" Z -- T be defined byp ] f, and let ] / be a factoriza-
tion with 7 E and/ M. Then p d] p,,] f,i f pf for all i I
so that d] f. Substituting, we have f (d/)7, 7 E, d/ M (as M is
composition closed), hence there is an equivalence e such that eg . Thus
represents the same element of Q as g. Furthermore {f} 2 v, by definition

of , and ({f}) 7.

Proof of Theorem 1.1. We shall let S be the set {B} and let 63 be the span
of S in . Then 63 is epi-reflective. In view of Lemma 3.3 of [7], it is easily
seen that 63 is well-powered and satisfies all of the other assumptions that we
have made for . Thus Theorem 2.2 is applicable and there exists a bicate-
gory structure (M, E(R)) on the category 63.
We shall let ( be the span of S in the category 63. Thus an object of a is

an M-subobiect of a product of members of S. Since ( is epi-reflective in 63,
by Proposition 3.1, it easily follows that a is a reflective subcategory of .

It remains to show that each e A --* B is a reflection map for a. Let
ebefixed. For simplicity lete e,A AandB Bi. Letg’A--.Z
be given where Z a. We must show that there is a unique morphism
s" B -- Z for which se g.
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We shall prove uniqueness first. Assume that re se where r, s B -- Z.
Since Z e a there is a monomorphism m:Z P II/Y } such that
m Mg and Y, e S for all t. Let pt P "--> Yt denote the projection morphism
for each t. Then pt rare pt rose for all t. This implies that pt mr pt ms,
for all t, in view of the hypothesis about unique factorizations (note that
Yt B for some j since Yt e S). This last equation implies that mr ms
and so r s as m is a monomorphism.

Before proving the existence of s, we shall make two observations. Let
m Z -- P be as above. We factor e e e0 so that e0 A -- C is in Ee and
e C -, B is in Mg. Note that C . The above uniqueness argument can
easily be modified so as to prove that e e E(R).
We also claim that m e Me as well as Mg. We factor m m m0 so that
m e Me and m0 e Ee. Since m0 is obviously a morphism of 5 it follows that
m0 e E(R). This implies that m0 is an equivalence as m m m0 M. Hence
m0 e M and so m e M asM is composition closed.

Finally we shall prove the existence of s. Let g A - Z and m Z --, P
be as above. In view of the factorization hypothesis there is morphism
h B -- Y such thath e p mg for each t. Let h B -- P be the morphism
for which p h h for all t. Clearly, (he)eo mg. In view of Proposition
2.1, there is a morphism r C - Z such that reo g and mr he. Apply-
ing Proposition 2.1 to the diagram formed by m, r, h and e in the category 6t,
we see that there is a morphism s B -, Z such that se r and ms h
(since e E and m M). Obviously s is the desired morphism. |

4. Examples
4.1. In [6], the question is raised as to whether every full reflective sub-

category is epi-reflective in the category of Hausdorff spaces and maps. We
shall resolve this question by exhibiting a reflection map which is not an
epimorphism. (Note that f: X Y is an epimorphism in this category iff

f(X) is dense in Y.)
Our construction depends upon the existence (proven in [1])of two infinite

Hausdorff spaces, X1 and X which admit no non-trivial continuous functions

f" X -- X. where i and j are 1 or 2. (The trivial functions are the constants
and the identity functions, in case i j.)

Using these spaces, we first choose xl X1 and x e X.. We let B X1 X X
and let A be the subset X X {x} u {x} X X. We give A the relative
topology. Let e" A -- B be the obvious injection. Then e is not an epi.
morphism but is a reflection map in view of Theorem 1.1.

4.2. It is well known (e.g. see [3]) that every Hausdorff space that is
well-connected (i.e. connected, locally arcwise connected and semi-locally
simply connected) admits a universal covering space. In the category of
well-connected Hausdorff spaces with base points, the universal covering
maps are coreflection maps (or the duals of reflection maps) which show that
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the subcategory of simply connected spaces is coreflective. It would be
interesting to know whether this coreflection can be extended to the category
of all Hausdorff spaces with base points. In other words, is the class of all
universal covering maps a subclass of the class of coreflection maps for some
coreflective subcategory?
The dual of Theorem 1.1 only shows that any set of universal covering maps

is such a subclass. The dual of Theorem 1.2 is not immediately applicable
since the universal covering maps are not always monomorphisms. To
remedy this flaw we pass to the category, a, of arcwise connected Hausdorff
spaces with base points. This category has products and coproducts and is
well-powered. (For if f (A, a) --* (B, b) is a monomorphism then for each
x A we can choose gx [0, 1] -o A such that gx (0) a and g (1) x. Since
f is left-cancellable, g, and hence x, is determined by fg [0, 1] -o B. Hence
the cardinal of A is bounded by the cardinal of B I’11.)

It follows that Theorem 1.2 is applicable to since the universal covering
maps are monomorphisms in . Thus there is at least one full coreflective
subcategory 6t of such that the coreflection maps for 6t include all of the
universal covering maps. Thus every object X has a coreflection, which
can be regarded as a pseudo-universal covering space. (Incidentally we note
that the restriction to arc-wise connected spaces is somewhat artificial since
one can always work with the arc-component of the base point of a given
Hausdorfi space.)
The following questions remain: Is uniquely determined? Is every

member of’qt simply connected? We plan to discuss this example further in
another paper.

REFERENCES

1. J. DEGROOT, Groups represented by hoheomorphism groups, I, Math. Ann., vol. 138
(1959), pp. 80-102.

2. P. :FREYD, Abelian categories, New York, Harper and Row, 1964.
3. S. T. Hu, Homotopy theory, New York, Academic Press, 1959.
4. J. R. ISBELL, Natural sums and abelianizing, Pacific J. Math, vol. 14 (1964), pp. 1265-

1281.
5. , Subobjects, adequacy, completeness and categories of algebras, Rozprawy Mat.,

vol. 38 (1963), pp. 1-32.
6. J. F. KENNSON, Reflective functors in general topology and elsewhere, Trans. Amer.

Math. Soc., vol. 118 (1965), pp. 303-315.
7. , Regular and proper injective structures, Trans. Amer. Math. Soc., to appear.
8. S. MACLANE, Categorical algebra, Bull. Amer. Math. Soc., vol. 71 (1965), pp. 40-106.

CLARK UNIVERSITY
WORCESTER, MASSACHUSETTS


