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1. Introduction

This paper is concerned with a class of convolution transforms defined as
[1, p. 210] by

G(x t)(t) dt(1.1)

where

(.2)

and

E(s)-t ds

k-1(1.3) 0 < ak_< ak+lfork >_ 1 and lima.

The Stieltjes transform

(1.4) F(x)- fo (t)
dt

x+t

is, after a change of variables, a transform of the above mentioned class [1,
p. 69]. A complex inversion formula for this class, which generalizes the
classical one for the Stielties transform, was treated by I. I. Hirschman and
D. V. Widder [1, Ch. IX]. In this paper the notation as well as many theo-
rems of [1, Ch. IX] are frequently used.
A iump formula gives (x+) (x.-) in terms of f(x) where f(x) and

q(x) are related by (1.1). The jump formula of this paper is motivated by
the following new jump formula for the Stieltjes transform that can also be
proved independently.

THEOREM 1.1.
(a)

(b)

(c)

Then

Suppose
(t) eLl(O,R) forallR < ,

F(x) -j(R) (t) dt converges,
x -k

there exist numbers q -- O) satisfying
h

fo [(i q--y)- ( 0)] dy o(h), h$0.

(1.5) lim,0+1/2iv(F’(- iv) F’(- + iv)) ( + O) ( 0).

We shall generalize (1.5) to a jump formula for the transforms defined by
(1.1), (1.2) and (1.3) and the related Convolution-Stieltjes transform.
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(1)

(4)

2. Main results
I ode oefle eu] obppe we need be olowi definition o

merit [--i2, i2] in the positive direction and lying in the strip Im z _<
/p.

For the convolution Stieltjes case we shall get"

THEOREM 2.1. /f
G(z) is defined by (1.2) and (1.3) for some ,
K(z) k.. E(k)(O)z--1 where E(s) is defined by (1.2),
f(z) f- G(z t)ec da(t) converges,
a(t) is of bounded variation in any finite interval,

-a, < c < a, implies that

lim
(1 P) fx e du f’(u W pz)K(z) dz

i- 2i (

(x+) (x.-) (zl+) + (x-);

(B) c > a implies

lim
(o 1)

e du f’(u + pz)K(z) dz- 2i
.(+)- .(-);

C) c < a implies

lim
(1 o)

e d f’( + o)K(), d

.(x+)- .(x-);
(D) for any finite c

lim
(1 p) e- f(x + pz)K(z) dz a(x+) a(x-).

For the convolution transform we get"

Ton 2.2. If
assumptis (1) and (2) g Theorem 2.1 are satisfied,
f(z) f G(z t)(t) dt cverges,
[(t) Cosh pt for some finite p,
(x) lim0+ (x y) exist,

(2.1)

(2.2)

(2.3)

(2)
()
(4)

then

(2.5) lim
(1 p)r f f’(x + pz)K(z) dz q(x+) (x--).

We can weaken assumptions (3) and (4) of the last theorem if we restrict
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the ak’s slightly more. Define g(x -- 0) as the numbers satisfying
h

(2.6) Jo [g(x +/- y) g(x O)] dy o(h), h $ O

if such numbers exist.

THEOREM 2.3. Suppose
(1) assumption (1) and (2) of Theorem 2.2 are satisfied,
(2) 9(t) LI(-R1, R) for every finite R
(3) both x 4- O) exist,
(4) for each p > 1 there exists an np such that pa,p+ < a,+ for any

k 0 and n K(1 p) where K is a constant independent of p.
Then

(2.7) lim
(1 p) j: f’(x + pz)K(z) dz (x + O) (x 0).- 2i ()

Remark. The restriction n K/(1 p) is essential ia assumption (4)
of Theorem 2.3 since without this restriction it can be proved that an integer
n exists for which pa++ a+ for any k > 0. Assumption (4) is satis-
fied in many speciul cases so that Theorem 2.3 is applicable for instance for
the Stieltjes, generalized Stieltjes and iterated Stieltjes transforms. (These
are all the known classical transforms which are special cases of our class.)
Assumption (4) is not always satisfied as the following example shows.

Let G(t) be defined by {a} as in (1.2) (1.3) and let a
2 + [2n+/n] for all n 3 and otheise a k. This G(t) satisfy (1.3)
with 1 but as can be easily seen assumption (4) of Theorem 2.3 is not
satisfied.

3. Some lemmas on G(p, O)
Let G(p, 0) be defined as in [1, p. 219] by

(3.1) G(p, t) - = ] = a
1 s)-d= (0) "(

where// sagisfies (1.a).

L .1. If Gi(o, ) are defieed b (.1) wih he

(a.a) 0 < G(o, o) (o, o).

Proof. By definition and the change of variable s iy we have

G(, 0)
_
H [(1 + y a,). (1 + y a,)-] dy, 1, 2.
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Since akl

_
ak.. we obtain

--2 --2 --1 --2 --2 --1(1 -pyal)(1 +yaa)

_
(1-t-pya,.)(1 -t-ya,2)

and therefore (E(ipy)/E(iy))<= (E2(ipy)/E2(iy)) which completes the
proof, Q. E. D.

LEMMA 3.2. Suppose G1 (p, t) and G(p, t) are defined by E s) and E2 s)
respectively where

(3.4) El(s) E2(s)(1 s2/a).
Then for O < p < 1,

(3.5) G2(p, O) G(p, 0) -< (1 p2)G2(p, O) - (1/p2)(1 p2)G(p, 0).

Proof. By definition and using (3.4) we get

1 f_iE2(ps) EI(PS) 1G(p, 0) G(p, O)
k --) E(s)

ds

___1 f (1 p)s2a-2 E2(ps)
ds

2i J-- 1- sa- E.(s)

1 p f y2 E(piy)
2r J-co a - y E.(iy)

dy

<_ (1 p2)e2(p, 0),

(since E(piy)/E(iy) > 0 and 0 < y/(y2 -[- a:) < 1).
we get also

G(, 0) -< (1/)G(, 0)

which concludes the proof of the lemma, Q.E.D.

LEMMA 3.3. Let G(p, M, t) be defined by

(3.6)
1 I sin -psM e,t dsG(p, M, t)

sinrsM

where 0 M is some real constant; then

(1_)(3.7) G(o, M, O)
r2(1 p)i + o

1 p p " 1.

show that
It is enough to prove our theorem for M 1 since one can,easily

From this result

(3.8) G(p, M, t) M-G(p, 1, t.M-).

By definition of sin rs and by setting s iy we get

1 ; e-u e+uG(p, 1, O) - J_ e- e+ dy
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--Ifo(R)r
By Cauchy’s theorem

1 e-(1-)

1 e-
e-(1-p)y 1 e

-y

1 e-’
dy

e-(x-p)u dy -rl fo e-(1-p)y, e-2ryo 1 e-2ry(1-)

1 e-2u

(1 o)d’

for some v, 0 < < y and so we get

e-.o 1 e
1 e-This implies

1G(p, 1, O) -t- 0(1) 1 ( L )d(1--p) =(1- p) + i: P
Remark. The zeros of E(s) (1/rsM) sin rsM are ak k/M.

THEOREM 3.1. Suppose G(p, t) be defined by (3.1) and let

lim ak.
Then

(3.9)

a-- e_< a./-t_< a+e. Applying Lemma 3.2 to both G(p, t) and
G(o, M, t) ko times we get

(3.10) Go(O, O) G(o, 0) < (1 o)koao (o, 0),

(3.11) Go(p, M, O) G(p, M, 0) _-< (1 o)koGo(p, M, O)

G(p, O)
r(l p) -t- o i- p T I"

Since lim ak. f we have/co /Co(e) such that for k _> ko,

where

G(P’t) -I fI1- 1- e"
and

Go(o,M,t) I fi l fi 1-- e"

By Lemma 3.1 we get

( 1G 12 ,0)--< Go(p,O)-< Go(P,
From. (3.10) and (3.11) we get for p < 1 great enough

G(p, 0),a(o, 0) < Go(O, o) _<
1 ko(1 p)

G(p, M, 0).G(pM, O) <_ Go(p, M, O) <_
1 /Co(1 p)

Us.
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Therefore Lemma 3.3 implies

since e is arbitrary,

G(, 0)

p, 0)(1 -t- o(1))

(aWe) ( 1 )-<v(1-- o) -1- i o
051;

(1)r.(1 p) -t-o ..._
P

p]’l.

4. Some preliminary results
The results of this section will be used in proving the theorems of 2.
THEOREM 4.1. Suppose G(t) is defined by (1.2) and (1.3) and

f(z) f_ G(z t)ect da(t)

converges for any z x -iy in the strip (-
then

f’(z) G’(z t)ect da(t)

converges uniformly in any compact subset of (- < x < ; Y[ < r)

Proof. By Theorem 2.2a of [1, pp. 213-214] we get

and
G’(z t)/G(zo- t) 0(1), t---)

d [G’(z- t)/G(zo- t)] O(1/t)
dt

--o -4-

uniformly in Yl < (a n).
The rest of the proof is similar to that of Theorem 2.2b of [1, pp. 214-215],

Q.E.D.

TEOEM 4.2. Suppose G(z) is defined by (1.2) and (1.3), G(p, t) by
(3.1), C(f) by Definition 2.1 and K(z) by

(4.1) K(z) _o E() (o)z--and let

(4.2) f(z) G(z t)e da(t)

converge for some real c; then

1 f’(u(4.3)
2’i

G’(p, u t)e da(t).
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Proof. By (4.2) we have

1 K()f’(u + ) d
1 K(z) d ’( t)e da(t)

2ri () vi ()

(by Theorem 4.1 we may interchange the order of the integrutions)

f 1 K(z) dz. If s[E(s)]-e(+"- dse() -’
(we may interchange the order of the integrations since E(iy -=0((a-)ii y [I, p. 213] imply the uniform convergence of the inner
integral in Imz (a ))

I 1 fse-’("-) 1 K(z)e,,dzeda(t) - E(s) ds

G’(p, u t)e da(t), Q.E.D.

THEOREM 4.3. Under the assumption of Theorem 4.2

(A) -al < c < alimplies

e du f’(u - pz)K(z) dx

a’(o, )e-%( ) d G’(p, t)e-’a(x t) dt;

(B)

2ri

c al, --al implies

f’(u - pz)K(z) dz

’(o, )e-[(- ) (- )l a,

(c)

(D)

2ri

c > al implies that a(-- exists and

e du f f’(u - pz)K(z) dz
()

G’(o, t)e-t[a(-- a(xl t)] dt,

c -a implies that a(- exists and

f f’(u - pz)K(z)e-CU du dz
()

G’(p, t)e-C’[a(x t) a(- )] dt.
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(52)

where

Proof. Using the asymptotic estimations [1, p. 232]

d(4.4) G(n)(p,-+- t) (p(p, --t)e-altl) + o(e-(a+e)ltl), --+ ,
where p(p, t) 0 is a polynomial, we get for M(p, n) large enough that
G() (p, t) does not change sign for > M(p, n) and < -M(p, n). There-
fore G(-)(p, t) is monotonic in (-,-M(p, v)) and in (M(p, v), ).
Applying the above consideration for n 2 the proof of the theorem follows
by arguments similar to those of the proof of Theorem 6.1b in [1, pp. 227-230],
Q.E.D.

5. The proof of the main results

We shall prove Theorem 2.2 first and use it in the proof of Theorem 2.1.

Proof of Theorem 2.2. Using Theorem 4.2 and some substitutions it is
obvious that we have only to prove

(5.1) lim Ip-" lim
(1 p)r G’(p, t)(x t)dt (x+) -(x-)

pl p--*l--

We shall show first
1 p) fp---lim Ip p-,-lim J-oo

G(p, t)(x t) dt

f [" .. [ p2S 82

and a a+.
Let # be the multiplicity of a as a zero of E(s). We write, as was done in

[1, p. 232],

282/a2 # -k

where lim,_ u(p) 0 for > 0 and lim,._ Uo(p) 1. G(p, t) can be
written as

t) t)

where Go(p, t) G,(p, t), G(p, t) G,(p, t) H(t) and

H (t) 1
1-a) e ds.

2i

Since G,(p, t) eC(-,, ) also G(p, t) eC(-, ),G’(p,t)
E=o u(p)G(p, t), andG(p, t) G:(p, t) H(t).
We can write I in the following manner"

Ip u (p) p)
k-O

(p, t)(u t) dt
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since the integrals in the sum converge. For/ > 0

I,. =-- (1 p) I G(p, t),p(u t) dt (1 p) G’,(p, t)B(t) dt

where

B(t) H(t)q(u t) dt o(ealtl), g’--> -I-,

Io. -< (1 p)M G:(p, t) Cosh al dt g 2(1 p)G,(p, O)M-+-

+ (1 o) a.(o, )(Joshd < .
Therefore (5.2) is valid for m t. Iteration of the same process gives (5.2)
for any finite m. Choosing such m that a+l > p we proceed by dividing
(5.2)

(5.4) U + + + G(p,t)(x- t) dt

Since

For any ti using [(t) _< M Cosh pt we obtain

M G:(p, t) Cosh p(x t) dt

<_ M 1 p)G,(p, ) -+- M. 1 p) G,(p, t) Cosh p(x t) dt

o(1), p " 1.

By the same method I1 o(1), p " 1. By Theorem 3.1 we have for all ti

> 0,

lim
(1-P) f_ j0’a’( 1 p)r

p, dt lim G p dt 1.

Choosing t so that both I(x -t- t) (x-t-) "< e and

I(x t) (x-) <
for 0 < < ti, we obtain

(1- p)r f0(x-t-) <
gt - [G (p, t) ll q(x t) (x+)[ dt

+ o(1), p T 1

< e
(1-- p)r f_G,(p,t) dtA_o(1) < e.2-4-o(1), p " 1.

By the same method also ]I3-t-o(x-) < 2e + o(1), p " 1.
e is arbitrary this concludes the proof of Theorem 2.2, Q. E. D.
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Proof of Theorem 2.1. By Theorem 4.3, since a(t-+-) exists for every
and using (5.1) with

e-[(x ) (x- )], e-[( (R) ( t)l
and

e [(x ) (-)]

instead of (t) in cases (A), (B), and (C) respectively, we conclude the proof
of the first three cases. In case (D) using Theorem 6.1a of [1, pp. 226-227]

lim
(1 p) e- f(x + pz)K(z) dz

(1 )
lim L G(p, x t)e-(-t) da(t)

lim --(1- o) a’(o, - )e-(-

+ lim
( 1 o)

c (o, )--(-() d
o1-

By Theorem 7.1b of [1, p. 231], I O. a(t) a(t) for a < c < a,
al(t) a() a(t) for c al and ai(t) a(t) a(-) for c al.

I1 can be estimated as cases (A), (B) and (C) of this theorem, Q. E. D.

Proof of Theorem 2.3. As in the proof of Theorem 2.2 it ll be enough to
prove, for the multiplicity of al as a zero of E(s),

lim I lim
1 o)’ (o, )e( ) d

(z + O) (x- 0),
(5.5)

a + + + ; (o, ) ( ) .
Evaluating

(5.6)

Similarly

(5.7) G’(p, t) exp (a,. t) dt.
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We shall bring now more estimations for G’ (p, t) and G’(p, t).
Ep(s) with the help of np defined by assumption (4).

(5.8)

(5.9)

Hence

(5.10) G.,p(t) (1 a D2)G(p, t).

Tanno proved [3] that G.(t) defined by

(5.11) G.(t) i (1 s/ck) II (1 s/a,)

We define

where 0 < a < ck and lim_. a 12 < lim_. c is a density function
satisfying

--2 --216 E(ak c ).tG’. (t) >_0 and G.(t) _< __1
It is not hard to see that G.,(t) satisfies the assumption on G.(t). There-
fore

(5.12)

and
16 { p

_
:} 16 _.

(5.13) G.,p(t) _< -[ (1-)k=a 2a _< (1- p)k__.a.
We define also

(5.14) G+/-,(t) (1 D/a.)G.(p, t) H,+(t)*G.,p(t)
where H,_(- t) H,+(t) O, < 0

1/2an O,

a. exp (--tn), > 0.
Since (5.14)

tG’,,o t) >_ O, G,,o( t)dt 1

G+,(u) a. f G.,o(t) exp (-a.,(u- t)) dt

G+,.(u) <_
and for u > 0, 0 < G+,p(u) < maxt>. G.,o(t) G.,o(u).

Similarly

(5.16) [G_,o(u)

_
a., and for u < 0, 0 < G_,o(u) < G.,o(u).

CUsing again (5.14) and since G+,o(t) and G., (t) e (- we obtain

o(u) a G.,,(t) exp ( -a (t u) dt
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by (4.12), G’+,p(u) < 0 for u > 0; similarly G’,p(u) > 0 for u < 0.
In order to estimate I1 and I4 write by (5.14)

G (p, t) a,. G(p, t) a,. G+,o(t) -a. G’(p, t) -t" a.. ,o(t)

]I1 < Mr(1 P) f- G(p, t) exp (-a t) dt

e_al_< M1 (1 o)a,. G.(p, t) dt + G-,o (t)e-a d

{ }_< M2 o(1) + al G-,.(t)e-at dt +

{ }< M o() + a,,o()e- +

G.,(t) sinh
sinh

dt

By the same method but using G+,(t) instead of G_,o(t) we get 14 o(1),
o T lforany > O.
We shall show now that ehoosing ti so that

4- t) ,,(x 4-O)] dt <_ eh for all h_<

we get
]I--(x +0) < eM and [I+o(x--O) < eM,

(1 p)r f0 G’(p, t)[,(x t) ,(x + 0)] dt + o(1), p’l

< (1

< a,(1- o)r

f I’.’(p, t) ll tl dt + Gj(p, -6)e

{ 1o f_oo,_e G(p, t)t dt ,o(t)t dt

+ a.(o,-) + a-,.(-)}
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<_ M1 G(p, t) dt + G-.p(t) dt + 2G(p, -) - 2G..p(-i)

< M12 43 (1- p)a < M.

The same method but taking G+.(t) instead of G_.(t) yields

The fact that is arbitrary completes the proof of the theorem, Q. E. D.

6. Application to jump formula
Theorems 2.1-2.3 enable us to find a new jump formul for the Stieltjes

transform, its iterates and its generalization mentioned by Sumner [2].
The result for Stieltjes transform was already state in Theorem 1.1 which is

u prticular case of Theorem 2.3.

Proof of Theorem 1.1. Using the transformation from (1.4) to (1.1) given
in [1, p. 69] namely

f(x) F(e)e, (x) e(e), G(t) (1/2)Sech (t/2)

and by [1, p. 225], K(z) z/(v + z), we get

(x + 0) (x 0) lim_ :(1 )U"(x i) + f’(x + i)],

( + 0) ( 0) lim_ v(1 p)[F’(e-)e-’

+ F’(e’)e’] lim_ (1 p)[F(e-)e- + F()e.
Since the second part is zero by the known complex inversion formula we get
forv (1 p),

( + 0) -(f 0)
(6.1)

]im,0+ vi[E’(- iv) F’(- + i)], Q.E.D.

Remark. Under the assumptions of Theorem 1.1 one can prove directly
the more general formula

( + o) ( o)
(6.2)

lim,0+ ivF’ iv) lim,0+ ivF’ + i).

Similarly we obtain, using Theorem 2.1.(D) with c - for F(x) de-
fined by

(6.3) F x -J da( t)
xWt’

the following result"

(6.4) a(+) a(-) lim,0+ + vi[F(- + iv) F(- iv)].
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However one can prove directly that

a(-4-) a(-- lim,_,o+ inF( - A- in)
(6.5)

lim,0+ iF( i).
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