A COMPLEX JUMP FORMULA FOR A CLASS OF CONVOLUTION
TRANSFORMS

BY
ZeEvV DITZIAN

1. Introduction

This paper is concerned with a class of convolution transforms defined as
in [1, p. 210] by

(L1) 1) = [ 6l = Dott)
where . \

1 A S - 82 _ 1 i —1 st
(12) G(z) = 37 L [H <1 — a—i)] e ds = 55 Lo E(s) %" ds
and

(13) 0<ar < a@pgafork>1 and limpeak' =9 0<Q< o,

The Stieltjes transform
_ [ 20
is, after a change of variables, a transform of the above mentioned class [1,
p- 69]. A complex inversion formula for this class, which generalizes the
classical one for the Stieltjes transform, was treated by I. I. Hirschman and
D. V. Widder [1, Ch. IX]. In this paper the notation as well as many theo-
rems of [1, Ch. IX] are frequently used.

A jump formula gives ¢(z+) — ¢(x—) in terms of f(x) where f(z) and
¢(z) are related by (1.1). The jump formula of this paper is motivated by
the following new jump formula for the Stieltjes transform that can also be
proved independently.

dt

TaeoreM 1.1.  Suppose
(a) ®(2) € Ly(0, R) forall R < =,

_ [T ®()
(b) F(x) = fo pra dt converges,
(¢) there exist numbers ®(& = 0) satisfying

h
fo [8(; + y) — ®(¢ £ 0)] dy = o(h), k0.
Then
(L5) limysoq §in(F'(—¢ — in) — F'(—£ +in)) = &(¢ + 0) — &(¢ — 0).

We shall generalize (1.5) to a jump formula for the transforms defined by
(1.1), (1.2) and (1.3) and the related Convolution-Stieltjes transform.
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2. Main results

In order to state the results of this paper we need the following definition of
¢,(2) (asin [1, p. 226]).

DErintTION 2.1. ¢,(Q) is a closed rectifiable curve going around the seg-
ment [—i7Q, ¢rQ] in the positive direction and lying in the strip | Im 2z | <
T/ p.

For the convolution Stieltjes case we shall get:

TaeorEM 2.1. If
(1) G{(2) is defined by (1.2) and (1.3) for some Q,
(2) K(2) = D pmo E®(0)27" where E(s) is defined by (1.2),
(3) f(2) = [20 G(z — t)e’* da(t) converges,
(4) a(t) is of bounded variation in any finite interval,
then
(A) —a < ¢ < a; implies that

S p) [ —eu )
(2.1) 111-131Il T2 ‘[m e du /c,(sz)f (u + p2)K(2) dz

= a(X+) — a(2:—) — a(ts+) + alz—);
(B) ¢ > a1 implies

. (P - 1)"" ® —cu ’
(2.2) ,,1.1}11-1- 2 ,I; ¢ du j;,(m fu + p2)K(2) de
= a(z+) — a(z—);
(C) ¢ < —a, implies

0z Im ’ilé@:ii). f_ w e du f I K () de
" = a(e+) — alz—);
(D) for any finite c

(24) lm ’_’(Lm:tﬁ o f @+ K ds = a(a) = ale=).

For the convolution transform we get:

TueoREM 2.2. If
(1) assumptions (1) and (2) of Theorem 2.1 are satisfied,
(2) f(2) = [2oG(z — t)e(t) dt converges,
(8) |e(t) | £ Cosh pt for some finite p,
(4) o(zx) = limy,or o(x £ y) exist,
then
@5) tim LT[ oo+ )KE) de = olat) = pla-).

p>1l— 2974 cp
We can weaken assumptions (3) and (4) of the last theorem if we restrict



A COMPLEX JUMP FORMULA 377
the a)’s slightly more. Define g(z 4 0) as the numbers satisfying
h
(2.6) [ @ x9) = oo = 01 dy = oth), hL0

if such numbers exist.

TueoREM 2.3. Suppose

(1) assumption (1) and (2) of Theorem 2.2 are satisfied,

(2) ¢(t) e Li(—Ri1, R,) for every finite R; ,

(3) both o(x &= 0) exist,

(4) for each p > 1 there exists an n, such that ptn,ik4r < Gn,+i for any
kE>0andn, < K/(1 — p) where K vs a constant independent of p.

Then
w0 [ _
27  lim ——2 fi(x 4+ p2)K(2) dz = o(x + 0) — o(x — 0).
p1— 2M cp(Q)

Remark. The restriction n, < K/(1 — p) is essential in assumption (4)
of Theorem 2.3 since without this restriction it can be proved that an integer
n, exists for which p@s,4141 < @n,4x for any & > 0. Assumption (4) is satis-
fied in many special cases so that Theorem 2.3 is applicable for instance for
the Stieltjes, generalized Stieltjes and iterated Stieltjes transforms. (These
are all the known classical transforms which are special cases of our class.)
Assumption (4) is not always satisfied as the following example shows.

Let G(t) be defined by {a;} asin (1.2), (1.3) and let a;, = 2" for2" < k <
2" + [2""'/n] for all n > 3 and otherwise a; = k. This G(¢) satisfy (1.3)
with @ = 1 but as can be easily seen assumption (4) of Theorem 2.3 is not
satisfied.

3. Some lemmas on G(p, 0)
Let G(p, 0) be defined as in [1, p. 219] by

B 1 200 L _ p282> hd ( _ 82>:| 8t
(31) G(p,t)—gz-f_ml:kl_11<1 ) I {1 a)le*

I T
(32) -5 f_  Blps)-E(s)e" ds

where {a;} satisfies (1.3).

Lemma 3.1. If Gi(p, t) are defined by (3.1) with the appropriate sequences
{ar.;}, 7 = 1, 2, satisfying ara1 < a2 then

(3.3) 0 < Gi(p, 0) < Ga(p, 0).

Proof. By definition and the change of variable s = 7y we have

Gio,0) = o [ TTIL + o'a)-(L + ) dy,  G=1,2
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Since a1 < ax,2 we obtain

(1 4+ pYa) (1 + y'ad)” < (14 py'a) (1 + y'ars) ™
and therefore (Ei(zpy)/Ei(iy)) = (E2(ipy)/E2(dy)) which completes the
proof, Q. E. D.

Lemma 3.2.  Suppose Gi(p, t) and Ga(p, t) are defined by Ei(s) and Es(s)
respectively where

(34) Ei(s) = Ey(s)(1 — §'/d’).

Then for 0 < p < 1,

(35) Gap, 0) — Gi(p,0) = (1 — p)Galp, 0) = (1/6°)(1 — p")Gi(p, 0).
Proof. By definition and using (3.4) we get

_ 1 (™[ Bx(ps) _ Ex(ps)
G, 0) — Gi(p, 0) zm_m[m@“mw]“

_ 1 (™1 = p")sa Exlps)
2t J—iw 1 — s2a72 Ez(S)
_ 1=y f* v Ex(piy)
2r  Lwa? + y? Ei(ty)
< (1 = p)Galp, 0),

(since Ey(piy)/Ea(iy) > 0 and 0 < 4°/(y* + @’) < 1). From this result
we get also

Ga(p, 0) = (1/p")Gi(p, 0)
which concludes the proof of the lemma, Q.E.D.
Lemma 3.3. Let G(p, M, t) be defined by

/ sin 7rpsM o
Liw sin 1rsM

(36) G(p, M,t) = 5—

21 ds

where 0 < M 1is some real constant; then

1 1
(32) 6o, 1,0) = ot +o (1), w11

Proof. It is enough to prove our theorem for M/ = 1 since one can easily
show that

(3.8) Glp, M, t) = M'G(p, 1, t-M").
By definition of sin s and by setting s = 4y we get

. +1rw

6,1,0) = 5 [ dy

w €Y — e+1ru
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_ 17 a1 — ¢
T Y

1 - . - ~ _ 1— 6—211'11(1—0)
1 e gy _f TP, 2“”1—'6.—%7' dy.
T Jo T -
By Cauchy’s theorem
L e—2ﬂ/(1"P) _ —on(l — p)e—zwn(l—p) —(1- )ezwm)
1 — g2y —2me?m ’

for some 5, 0 < 7 < y and so we get

o 1 — —27y (1—p)
e 2Typ _i__._—g___e___é;v___ S 1 — p.
This implies
1 1 1
G(P; 1,0) = m"l‘ 0(1) = m + 0(“1—__7), PT 1,

Remark. The zeros of E(s) = (1/7sM) sin wsM are ax = k/M.
TueorEM 3.1. Suppose G(p, t) be defined by (3.1) and let

limise ar k™ = Q.
Then

_ Q 1
(39) G(p, 0) = o — + o0 <———1 — p>, pT L

Proof. Since limg., ax %" = Q we have ky = ko(e) such that for k > ko,
Q@ —¢e<ak<Q+ e Applying Lemma 3.2 to both G(p, ¢) and
G(p, M, t) ko times we get

(310) Gko(p’ 0) — G(p, 0) < (1 - Pz)kOGk‘o(p; 0),
(311) Gko(P7 M, 0) - G(P; M: 0) = (1 - Pz)kono(py M, 0)

where

700 e 2.2 hsd 2
e - )]
Gio(p, t) = 2 7 e [k=¥01+1 (1 a; ) /k=¥01+1 <1 a%):l ¢ s
and

w 2 272 o 2712
il - ps M / — ﬂ)] 3t
Guolo, M, 1) = 2t [—m |:k=¥01+1 (1 k2 ) k=£I4:-1 (1 k2 ¢ ds.

By Lemma 3.1 we get

1 1
Gko< ,m,()) S Gko(p;o) S Gko(”)m)())'

From (3.10) and (3.11) we get for p < 1 great enough
R S
1 — ko(1 — 0%
1
1 — k(1 — p?)

G(p7 0) < Gbo(p, 0) S G(py 0),

G(PM, 0) S Gko(f’; M’ 0) S G(P, M; O)'
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Therefore Lemma 3.3 implies

(2 —¢) 1
72(1 — p) + 0(1 - p) < G(p, 0)(1 + o(1))

(@ +e) ( 1 )
< .
——7,2(1_p)+01_p’pT1’
since e is arbitrary,

0.0 = g+ o). o1

4, Some preliminary results
The results of this section will be used in proving the theorems of §2.

TueoREM 4.1. Suppose G(t) s defined by (1.2) and (1.3) and

52 = [ @ = 06" dalt)

converges for any z = x + 1y in the strip (—0 <z < »; |y| < 7Q);
then

7@ = [ 6 - e dat)
converges uniformly in any compact subset of (—o0 < x < o; |y| < 7Q)
Proof. By Theorem 2.2a of [1, pp. 213-214] we get

Gz —1)/G@—t) =01), t— +w
and

‘%[Gwz — /G20 — 1)] = O(1/8), t— £
uniformly in |y | < 7 (2 — 7).

The rest of the proof is similar to that of Theorem 2.2b of [1, pp. 214-215],
Q. E.D.

TueorREM 4.2. Suppose G(z) is defined by (1.2) and (1.3), G(p, t) by
(3.1), C,(2) by Definition 2.1 and K(z) by

(4.1) K(z) = Do E®(0)7*

and let

(4.2) 1@ = [ 66— ¢ da(t)

converge for some real c; then

43) o[ put K@) d = [ @u— D¢ dalt).
T Y, () oo
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Proof. By (4.2) we have

1

oei ] oy KOt ) iz = 5 f%(mK(@dz / G2 — 1) dalt)

(by Theorem 4.1 we may interchange the order of the integrations)

= f_ :e”‘ da(t) -1 f o K@) ds 1 f S E(s)] e ds

21

(we may interchange the order of the integrations since |E(iy|™ =

O(e™ 2 4 5 + oo [1, p. 213] imply the uniform convergence of the inner
integral in | Imz | < #(Q — ¢))
g0 —s(u—t)
ct se 1 82p
= f ¢ da(t) 5 ot .[m E(s) ds 2 cp(2) K(2)e™ de
_ ot e E'(ps) e
f dax(t) - 2m Liw® B(s) ds
- f @ (o, u — t)¢" da(t), Q.E. D.

TureorREM 4.3. Under the assumption of Theorem 4.2

(A) —a < ¢ < @y 1mplies

L[ e duf f'(u + p2)K(z) dx
@

27|"i z1 (73

= [ @G, e ale — 1) di — [ 6o, 00 ata — 1) ds

(B) ¢ = a, —a; tmplies

1™ e du/ f'(u 4+ p2)K(z) de
¢, ()

2mi *1 o€ °
- f G (p, e alms — t) — alz — )] dt,
(C) ¢ > a1 tmplies that a(+ =) exists and
e duf f'(u+ p2)K(2) dz
¢, (Q)

o

1
2mi Ja
= f_w G (p, ) la(+ ) — alzs — 1)] dt,
(D) ¢ < —a implies that a(— = ) exists and
’ e du f f'(u 4+ p2)K(2) dz
© e, (Q)

= [ @06 atzm — ) — a(=o) dt

1
2w L
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Proof. Using the asymptotic estimations [1, p. 232]

44) 6™ 1) = L (p(p, £ £ o(e @) ¢ ©,

dt"

where p(p, t) 5 0 is a polynomial, we get for M(p, n) large enough that
G™ (p, t) does not change sign for ¢ > M(p, n) and¢t < —M(p, n). There-
fore G (p, ¢) is monotonic in (—w, —M(p, 1)) and in (M(p, 1), =).
Applying the above consideration for n = 2 the proof of the theorem follows
by arguments similar to those of the proof of Theorem 6.1b in [1, pp. 227-230],
Q. E. D.

5. The proof of the main results
We shall prove Theorem 2.2 first and use it in the proof of Theorem 2.1.

Proof of Theorem 2.2. TUsing Theorem 4.2 and some substitutions it is
obvious that we have only to prove

(5.1) lim I, = lim E—l—-%p—)i j_w G (p,)o(x — t) dt = p(z+) — o(z—).

p>1— p>1l—

We shall show first \
(5.2) lim I, = lim “_‘Qﬁ)l [ ) Gr(p, oz — t) dt

p>l— p>1—
where

o= [,/ (- 9]

and @, # Ony1 .
Let u be the multiplicity of a; as a zero of E(s). We write, as was done in
(1, p. 232],

(1 = o's"/a)"/ (1 = $/ad)" = 2lhmo wi(p) (1 — 8°/a})™

where lim,,i_ ux(p) = 0 for £ > 0 and lim ., ue(p) = 1. G(p, t) can be
written as

G(p, t) = Z’i=o ur(p)Gue(p, t)
where Gu(p, ) = Gu(p, 1), Gu(p, t) = Gu(p, t) * Hi(t) and
1 i _Si —k .8t
H, (1) = 211 Liw (1 - a%) ¢ ds.
Since G.(p, t) e C*(—oo, ) also GIL(P; t) e C*(—o, ), G'(p, t) =

2o we(p)Gre(p, 1), and Guilp, t) = Gulp, t) * Hi(t).
We can write I, in the following manner:

2

L=T3 we) (=) [ 6o Detu—0)

k=0
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since the integrals in the sum converge. Fork > 0

L= (1= o) [ Gulo, et — Dat= (1= o) [ 6o, 0B, a

B.(t) = f H(o(u — t) dt = o(e™"), t— +co,
[Tou ] < (1= 0)M [ [Gilp,0)| Coshaxtdt < 21 = p)Gulp, M+

+(1—p)2M f_w G.(p, t) Cosh as t dt < L.

Therefore (5.2) is valid for m = u. Iteration of the same process gives (5.2)
for any finite m. Choosing such m that a.41 > p we proceed by dividing
(5.2)

(5.4) (i'_?zf)i {f_: + f: + foa + f:} Golp, Doz — 1) dt

EII+12+13+I4.
For any & using | ¢(¢) | < M Cosh pt we obtain

1—p)n

TARS M [ Gilp, t) Cosh plz — 1) dt
Q s

S Ml (1 - p)Gm(P7 6) + M2 (1 - P) [w Gm(P, t) Cosh p(w d t) dt
=o(1), p T L
By the same method I; = o(1), p T 1. By Theorem 3.1 we have for all §
> 0,

. (1 =p) [° o (1 —p)r b _
lim ——‘—‘Sl——'[s Gm(p, t) dt = lim -———5—* _/0- Gm (p, t) dt = 1.

p>1— p>1—
Choosing § so that both | o(z + ¢) — ¢(z+) | < ¢ and
lo(x —t) —e(z—)| <e
for 0 < t < &, we obtain
(1—p)e® [ v
15— oet) | < B2 [ 16 G0 ole— 1) — plat) |
+o(1), pT1

< SM foG,,,,(p,t) dt+o(1) <e240(1), p T 1L
Q s

By the same method also |I; + o(z—)| < 2¢ + o(1), p T 1. Since
¢ is arbitrary this concludes the proof of Theorem 2.2, Q. E. D.
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Proof of Theorem 2.1. By Theorem 4.3, since a(t+) exists for every ¢
and using (5.1) with

e a(zs —t) —alm — )], € la(x) — a(z — )]
and
e la(@ —t) — a(—»)]

instead of ¢(¢) in cases (A), (B), and (C) respectively, we conclude the proof
of the first three cases. In case (D) using Theorem 6.1a of [1, pp. 226-227]

lim 7"(—1:.—5—) e_“f 9)f(az: + p2)K(2) dz

p->1— 291 p(
: 7"2(1 - P) ® —c(z—t)
= im TP [ 6o,z — 0 dalt)
2 ©
= tim = T2 =2 [ @0 — )6 () de
p-»],-—- 9 /— 00
2 ©
+ lim ﬂl—p) cf Glp,z — e “Pay(t) dt
p—)],—- Q — 0
= Il + Iz .

By Theorem 7.1b of [1, p. 231], I. = 0. ai(t) = a(t) for &, < ¢ < a2,
ai(t) = a(w) — a(t) for ¢ > o and ay(t) = a(t) — a(—w) for c < a1 .
I, can be estimated as cases (A), (B) and (C) of this theorem, Q. E. D.

Proof of Theorem 2.3. As in the proof of Theorem 2.2 it will be enough to
prove, for u the multiplicity of a; as a zero of E(s),

2 0
lim I, = lim a-pr f Gal(p, )z — t) dt

p->1— p>1— Q

o(z 4+ 0) — o(z — 0),

(5'5) (1 _ P)71'2I —0 0 B 0 ,
1= 2520, +[+] +[S}Gu<p,t>¢<x— {) dt.
=shL+L+1;+1,.
Evaluating I; we set ai(t) = —f;_" oz —y)dy = 0(e™"), t > o,
2 p—d
" 1) = | S22 [ o, ety it
5.6 2 b
<ud —Qm [ 1860 e (~a) at
Similarly
2 ©
(57) 15 < L2 (161G, ) | exp (aret) .
+3
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We shall bring now more estimations for G, (p, t) and G.(p, t). We define
E,(s) with the help of n, defined by assumption (4).

(5.8) E,(s) = Eu(s)-(1 — s/a3,)™,  Eu(s) = [Timn(l — §¥/ab).
_ 1 E,,,(PS) o

(5.9) Gy, (1) = 5wt Liw () ds.

Hence

(5.10) Gao(t) = (1 = an. D*)Gulp, 1).

Tanno proved [3] that G«(¢) defined by

(5.11) Gy(t) = é%r—l . <g (1 — 82/0’%)/;1 (1 — sz/af.)) ¢ ds

— 100

where 0 < ax < ¢, and limye ax k' = Q < limp.w ¢ & is a density function
satisfying

1Gx (t) =0 and Gx(t) < ltlsz (ai* — c&*

It is not hard to see that G« ,(t) satisfies the assumption on Gu«(¢t). There-
fore

(5.12) 6, () 20, [ : Go (D)t = 1
and ) .
(513)  Guo(t) < t|3{(1 —0") Zak - 2a,,a} < |1t—6|—3 (1 -0 éazz.
We define also
(5.14) G.,(t) = (1 F D/an,)Gulp, 1) = H,x(t)*C, ()
where H, _(—t) = H, ..(t) =0, t1<0

= 30, , t=0,

= a,, exp (—t "), t>0.
Since (5.14)

Geolu) = an, [ " Gen(t) exp (—an (u— 1)) dt

(5.15) | Gy p(u) | < an,

and foru >0, 0 < G ,(u) < maxsu Gu,,(8) = Gu,p(u).
Similarly

(5.16) |G-, (w)| < @, and foru <0, 0 < G_,(u) < G*,(u).
Using again (5.14) and since G ,(¢) and G« ,(t) e C°(— o, ) we obtain

G (u) = Qn, f Greo(1) exp (—an, (t — w)) dt
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by (4.12), G ,(u) < 0 for w > 0; similarly G~ ,(u) > 0 for u < 0.
In order to estimate I; and I, write by (5.14)

G (p, t) = an, Gu(p, 1) — @, G4 ,(t) = —ar, Gu(p, ) + @, G- (1)

| I | <—~——(1 -—p)fﬂ | G (o, 1) | exp (—ay t) di
< M (A = pay, {[: Gulp, )™ dt + f_ GL, (e dt}

—5
< Mz{o(l) + o Lo G- (e ™" dt + e"“‘aG—,p(-a)}

IA

—~3
MZ{O(I) + o f Gy ()™ dt + e‘“ﬂa*,,,(—a)}

+a16

< M2{0(1) + (—-—h-———> f Gy o(t) <smh a16) dt
- sinh =5

e 18 (l—p)Zak}
+a16

SM2{0(1)+(——}—1—:—)~[ G (1) (mnhalt) dt + o(1) }

¢ 1[ Eypa) Eu(—pa1) 1
< Mz{o(l) T inh 91_6)21[ E,(ar) -2 Ep(—all) :| + o(1) 5—3}
(s
=o0(1), pTL

By the same method but using G, ,(¢) instead of G_ ,(¢) we get I, = o(1),
p T 1foranys > 0.
We shall show now that choosing § so that

zth
[0 - oo =00 a

< eh forall <4

we get
| I, —o(x +0)| < eM and |I; + o(z — 0) | < eM,

| I, — o(z 4+ 0)|

_ (= o)
Q

[, Ghlo, Dlete = ) = o+ 01 dt| + o(1), 11

IA

St { [,16 G, 0118 d+ 6t —a)ea}

an,,(l - p)‘lr2 0 ’ 0 ’
S =t £{—[8 Gu(p, 1)t dt — f_ﬁ G-, ()t dt
T Gulo, — )5 + G-,,,<—-a>a}
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0 0
S M1£{L G,.(p, t) dt + [-6 G—,p(t) dt + 2G,,(p, —5)3 + 2G*.p(_6)3}

2 -2
§M18{2+43£1——:%Z—%—>33M-

The same method but taking G, ,(t) instead of G_ ,(¢) yields
| Is + o(x — 0) | < eM 4+ o(1), p T 1.
The fact that ¢ is arbitrary completes the proof of the theorem, Q. E. D.

6. Application to jump formula

Theorems 2.1-2.3 enable us to find a new jump formula for the Stieltjes
transform, its iterates and its generalization mentioned by Sumner [2].

The result for Stieltjes transform was already state in Theorem 1.1 which is
a particular case of Theorem 2.3.

Proof of Theorem 1.1. Using the transformation from (1.4) to (1.1) given
in [1, p. 69] namely

f(x) = F(&)e™"”?, o(z) = 7’d(e"), G(t) = (1/2x) Sech (/2)
and by [1, p. 225], K(2) = z/(x* + 2°), we get
o(x +0) — o(x — 0) = limyur- — 37°(1 — p)[f'(x — imp) + (& + imp)],
@5+ 0) — ®(¢ — 0) = lim,ur_ 3m(1 — p)[F' (e )ge """

+ F'(86™) "] — limr 3m(1 — p)[F(8™)e™™" + F (ke ™")e™"".

Since the second part is zero by the known complex inversion formula we get
for n = 7(1 — p)§,

6.1) ®(t 4+ 0) — 2(¢ — 0)
' = limyaoq 3mlF'(—§ — in) — F'(—¢ + in)], Q. E.D.

Remark. Under the assumptions of Theorem 1.1 one can prove directly
the more general formula

(¢ +0) — @t —0)

(6.2) . . . . : .
= limy,op inF'(—£ — in) = limy.op. B (—£ + @n).
Similarly we obtain, using Theorem 2.1.(D) with ¢ = —3% for F(z) de-
fined by
_ [T da(t)
(6.3) F(z) = A

the following result:

(64) a(t+) — a(t—) = limp.o4 + FM[F(—£ + in) — F(—¢ — in)].
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However one can prove directly that
a(f+) — a(t—) = limg,op tF(—£ + in)

(6.5) ) _ i
= limy,04 — F(—£ — 99).
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