CLASSES OF MATRICES OVER AN INTEGRAL DOMAIN

BY

EDWARD A. BENDER¹

1. Introduction

It is known [8], [10] that there is a one-to-one correspondence between (i) classes of matrices of rational integers with a given irreducible characteristic polynomial p(x) and (ii) classes of ideals in $\mathbb{Z}[x]/(p(x))$. We will generalize this correspondence and some of its properties. The existence of symmetric matrices in a class has been studied [4], [12], but not the number. We shall take up this question. The application of our results to the rational integer case will be discussed.²

2. Basic concepts

Let Δ and D be integral domains with quotient fields G and F such that

- (1) $\Delta \supset D$,
- (2) G is a separable extension of F,
- (3) $[G:F] = n < \infty$.

We may write $G = F(\theta)$ for some $\theta \in \Delta$. This notation will be fixed throughout the paper.

DEFINITION. A representation of Δ over D is a ring isomorphism Φ of Δ onto a subring of D_n , the $n \times n$ matrices over D, such that $\Phi(d)$ is the scalar matrix dI_n whenever $d \in D$. A symmetric representation of Δ over D is a representation of Δ over D such that $\Phi(\delta)$ is symmetric whenever $\delta \in \Delta$. (This differs from the usual definition of a representation.)

Whenever $p(x) \epsilon D[x]$ we have $\Phi(p(\delta)) = p(\Phi(\delta))$ for all $\delta \epsilon \Delta$. Consequently, we may assume that Δ is integrally dependent on D. When $\Delta = D[\theta]$ the study of representations corresponds to the study of the matrices in D_n which have θ as a characteristic root [10]. A unique extension of Φ to a representation of G over F exists and is determined by $\Phi(\theta)$.

DEFINITION. If Φ and Ψ are representations of Δ over D such that

(*)
$$T\Phi(\delta)T^{-1} = \Psi(\delta)$$
 for all $\delta \epsilon \Delta$

and some nonsingular $T \epsilon D_n$ satisfying $T^{-1} \epsilon D_n$, then Φ is equivalent to Ψ . The equivalence class of Φ is written $\mathcal{C}(\Phi)$.

Received December 19, 1966.

¹ I would like to thank my thesis advisor Dr. Taussky for her aid on my thesis [1] of which this is part. My thesis research was supported by a National Science Foundation Cooperative Graduate Fellowship.

² The case in which one also requires that p(x) be quadratic has been discussed extensively [1], [11]-[13]. A revised presentation of the contents of [1] is planned.

Since $\Phi(\theta)$ determines Φ , one may speak of a class of matrices $\mathbb{C}(\Phi(\theta))$ rather than a class of representations. Then (*) is equivalent to

$$T\Phi(\theta)T^{-1}=\Psi(\theta).$$

Note that $T, T^{-1} \epsilon D_n$ is equivalent to T being unimodular over D_n .

When D = F, there is exactly one equivalence class. This is a special case of Theorem 1 below.

3. Earlier results

We now give generalizations of some results which have been proved for the special case $D = \mathbf{Z}$.

THEOREM 1. There is a one-to-one correspondence between classes of representations of Δ over D and classes of ideals in Δ having a free basis over D.

The proof is an easy generalization of that given by Taussky [10]. Let $\bar{\alpha}$ be a characteristic vector of $\Phi(\theta)$ with components in G. We have

 $\mathfrak{C}(\Phi) \leftrightarrow \mathfrak{C}(D\alpha_1 + \cdots + D\alpha_n = \mathfrak{a}).$

It is convenient to *identify* $\mathbb{C}(\Phi)$ with $\mathbb{C}(\mathfrak{a})$. When $D = \mathbb{Z}$ or D = F, every ideal has a free basis.

Let A' be the transpose of $A \in D_n$ and define Φ' by $\Phi'(\delta) = \Phi(\delta)'$. Let a' be the complement [7, p. 41] of a. By the method of proof used by Taussky [13] we have

THEOREM 2. If $\mathfrak{C}(\Phi) \leftrightarrow \mathfrak{C}(\mathfrak{a})$, then $\mathfrak{C}(\Phi') \leftrightarrow \mathfrak{C}(\mathfrak{a}')$.

It is known [11] that $\mathfrak{C}(\Phi) = \mathfrak{C}(\Phi')$ is not enough to guarantee a symmetric $\Psi \epsilon \mathfrak{C}(\Phi)$. Various additional conditions are found in the literature. Some are given below.

THEOREM 3. Let \mathfrak{a} be in $\mathfrak{C}(\Phi)$. The following are equivalent.

(1) $\mathfrak{C}(\Phi)$ contains a symmetric representation.

(2) For every (or some) $\Psi \in \mathbb{C}(\Phi)$, there is a matrix T unimodular over D_n such that

$$T'T\Psi(\theta) = \Psi'(\theta)T'T$$
 [11, Theorem 2].

(3) For some $\lambda \in G$ and some free basis $\bar{\alpha}$ for α over D

$$\operatorname{tr}_{G/F} \lambda \alpha_i \, \alpha_j = \, \delta_{ij} \qquad (\text{Kronecker } \delta) \, [4].$$

The following are consequences of (1).

(a) If F is formally real, G is totally real [6, Theorem 3.3].

(b) For some totally positive $\lambda \epsilon G$ we have $\alpha' = \lambda \alpha$. ("Totally positive" is a vacuous condition if F is not formally real.) See [4].

698

(c) For λ as in (b) and some $f \in F$

$$N_{G/F} \lambda = (-1)^{n(n-1)/2} f^2 N_{G/F} p'(\theta)$$

where p(x) is the irreducible monic polynomial for θ over F.

Proof. Where a reference is given, that proof is easily generalized to yield the desired result. Let $\bar{\beta}$ be the complementary basis to $\bar{\alpha}$. By (3) we have $\bar{\beta} = \lambda \bar{\alpha}$ (incidentally proving (b)). Thus

$$((\boldsymbol{\lambda}^{(i)}\boldsymbol{\delta}_{ij})) = ((\boldsymbol{\beta}_j^{(i)}))((\boldsymbol{\beta}_i^{(j)}))$$

where superscripts denote conjugacy. Taking determinants and noting that

$$\bar{\beta} = T(1, \theta, \cdots, \theta^{n-1})'$$

for some $T \epsilon F_n$, we obtain (c).

Parts (a)-(c) of the above theorem provide conditions of a more algebraic number theoretic nature than do (1)-(3). Unfortunately, it is not known when conditions (a)-(c) for an ideal with a free basis over D imply the existence of a symmetric representation in C(a). When n is odd and D is an algebraic number field, then (a) implies (1) [2]. When $n \leq 7$ and D = Z, then (a) and (b) imply (1) ([4], or Section 5 below). If (a)-(c) are satisfied for an ideal a with a free basis \bar{a} over D, then define

$$S = ((\operatorname{tr}_{G/F} \lambda \alpha_i \alpha_j)).$$

It follows that S is symmetric and

- (i) unimodular over D_n by (b),
- (ii) positive definite if F is formally real by (a) and (b),
- (iii) of square determinant by (c).

By Theorem 3(3), it follows that $\mathfrak{C}(\mathfrak{a})$ contains a symmetric representation if and only if S = X'X for some X unimodular over D_n .

COROLLARY. Every finite field of odd characteristic has a symmetric representation over each of its subfields.

Proof. Since the norm group of G over F is the multiplicative group of F, there is a $\lambda \in D$ satisfying Theorem 3(c).

A nonsingular quadratic form (S of the above discussion) has its dimension and its determinant as a complete set of invariants [9, 62:1a]. The corollary follows from the discussion preceding it.

4. Number of symmetric representations

In this section we discuss the number of symmetric representations in a class and, briefly, the number of classes containing symmetric representations. When limiting attention to one class the relevant domain is not Δ but one we now define.

DEFINITION. $R(\Phi) = \{ \alpha \mid \alpha \in G \text{ and } \Phi(\alpha) \in D_n \}$ where Φ has been extended to a representation of G over F.

Clearly $R(\Phi)$ is an integral domain between G and Δ . If $\Psi \in \mathcal{C}(\Phi)$, then $R(\Psi) = R(\Phi)$; so $R(\Phi)$ is a class invariant. (In terms of the generalized ideal quotient we have $R(\Phi) = (\mathfrak{a}:\mathfrak{a})$.)

THEOREM 4. Let Φ be a symmetric representation of Δ over D. The number of symmetric representations in $\mathbb{C}(\Phi)$ is a multiple of k and is bounded above by

 $k[U^N:U^2]$

where

(1) $\mathcal{O}(D_n) = \{X \in D_n \mid X'X = I\},\$

(2) $k = \operatorname{card} \mathcal{O}(D_n)$ if F has characteristic 2 = $\frac{1}{2} \operatorname{card} \mathcal{O}(D_n)$ otherwise,

(3) U^2 is the group of squares of units in $R(\Phi)$,

(4) U^N is the group of totally positive units in $R(\Phi)$ whose norms are squares in D.

Proof. We shall use the well known fact that if $A, B \in F_n$ and A has distinct roots and AB = BA, then B = p(A) for some $p(x) \in F[x]$.

Let $A = \Phi(\theta)$. If $\Psi \in \mathbb{C}(\Phi)$, then $\Psi(\theta) = TAT^{-1}$ for some T unimodular over D_n . Since A = A', we have $\Psi = \Psi'$ if and only if T'T = p(A) for some $p(x) \in F[x]$. For each $\eta \in G$ let $\varphi(\eta)$ be the set of T unimodular over D_n satisfying $T'T = \Phi(\eta)$. Clearly $\varphi(\eta) \neq \emptyset$ implies $\eta \in U^N$. The converse is equivalent to achieving the bound given by the theorem. It will be discussed after the proof.

If $T \epsilon \varphi(\eta)$, then

$$\varphi(\eta) = \{XT \mid X \in \mathcal{O}(D_n)\}.$$

Hence card $\varphi(\eta) = \text{card } \mathcal{O}(D_n)$ whenever $\varphi(\eta) \neq \emptyset$.

All that remains is to study the equation

 $TAT^{-1} = SAS^{-1}$, S, T unimodular over D_n .

This is equivalent to $S^{-1}T = q(A)$ for some $q(x) \in F[x]$. Unimodularity of $S^{-1}T$ is equivalent to $q(\theta) = \varepsilon$ being a unit in $R(\Phi)$. We have

$$T'T = q(A)S'Sq(A)$$

so $T \epsilon \varphi(\eta)$ if and only if $S \epsilon \varphi(\eta \varepsilon^2)$. If $\eta = \eta \varepsilon^2$, then $\varepsilon = \pm 1$ so every nonempty $\varphi(\eta)$ leads to k symmetric representations. Any two $\varphi(\eta)$ and $\varphi(\nu)$ lead either to the same (if $\eta/\nu \epsilon U^2$) or to distinct (if $\eta/\nu \epsilon U^2$) representations.

The bound in the theorem will be achieved if $\eta \in U^N$ implies $\varphi(\eta) \neq \emptyset$. By

the definition of U^N we see that $\Phi(\eta)$ is symmetric and

- (i) unimodular over D_n ,
- (ii) positive definite if F is formally real,
- (iii) of square determinant.

We have $\varphi(\eta) \neq \emptyset$ if and only if $T'T = \Phi(\eta)$ for some T unimodular over D_n . This is precisely the same problem as in Section 3(i)-(iii).

We now consider the number of classes containing symmetric representations when all ideals are invertible. Suppose $C(\mathfrak{a})$ contains a symmetric representation. The map $C(\mathfrak{b}) \leftrightarrow C(\mathfrak{a}\mathfrak{b})$ is a correspondence between classes containing ideals whose squares are narrowly equivalent to Δ and classes containing ideals narrowly equivalent to their complements (since $(\mathfrak{a}\mathfrak{b})' = \mathfrak{a}'\mathfrak{b}^{-1}$). Hence the number of classes containing symmetric representations is bounded by the order of the maximal subgroup of type $(2, 2, \cdots)$ in the ideal class group.

5. The rational integer case

For the remainder of the paper we will assume that $D = \mathbb{Z}$. This case has been studied by Faddeev [4] and Taussky [10]–[13]. In Theorem 4 we have $k = n! 2^{n-1}$ since $\mathfrak{O}(\mathbb{Z}_n)$ consists of those matrices having one ± 1 in each row and column and zeros elsewhere. By the Dirichlet unit theorem $[U^N: U^2]$ divides 2^{n-1} . Since the class number of Δ is finite [3] we have

THEOREM 5. The number of symmetric representations of Δ over **Z** is finite.

Of particular interest are conditions (i)-(iii) of Sections 3 and 4. When $n \leq 7$ these conditions imply that the quadratic form is equivalent to a sum of squares [9, 106:10]. When $D = \mathbf{Z}$, (b) of Theorem 3 implies (c) because $T\bar{\beta} = \lambda \bar{\alpha}$ where det T = +1. Hence

THEOREM 6. Assume $n \leq 7$ and G is totally real. There exists a symmetric representation of Δ over Z if and only if $\mathfrak{a}' = \lambda \mathfrak{a}$ for some ideal \mathfrak{a} of G and some totally positive $\lambda \in G$. In this case $\mathfrak{C}(\mathfrak{a})$ contains precisely $n! 2^{n-1}[U^N:U^2]$ symmetric representation where U^N and U^2 are as in Theorem 4.

If we further assume that Δ is integrally closed in G over \mathbb{Z} , then the existence of a symmetric representation is equivalent to the different being narrowly equivalent to the square of an ideal. It is known [5, Theorem 176] that the class of the different has a square root; but it is not known when this is true in the narrow sense. Faddeev [4] has used this result to establish the existence of symmetric representations for special G's. Other special cases can be dealt with.

COROLLARY. If G is a cyclic cubic extension of \mathbf{Q} , the integers of G have a symmetric representation over \mathbf{Z} .

701

Proof. Let p be a rational prime. It has at most one ramified divisor \mathfrak{p} over G, and this is pure ramified. Thus, if the discriminant is $\Pi p^{c(p)}$, then the different is $\Pi \mathfrak{p}^{c(p)}$. Since G is cyclic, every c(p) is even.

References

- 1. E. BENDER, Symmetric representations of an integral domain over a subdomain, doctoral thesis, California Institute of Technology, 1966.
- 2. ——, Characteristic polynomials of symmetric matrices, to appear.
- 3. R. DEDEKIND, Gesammelte mathematische Werke I, Friedr. Vieweg u. Sohn, Braunschweig, 1930, pp. 105–157.
- D. K. FADDEEV, On the characteristic equations of rational symmetric matrices, (Russian)Dokl. Akad. Nauk SSSR, vol. 58 (1947), pp. 753-754.
- 5. E. HECKE, Vorlesungen über die Theorie der algebraischen Zahlen, Akad. Verlagsgesellschaft, Leipzig, 1923.
- F. KRAKOWSKI, Eigenwerte und Minimalpolynome symmetrischer Matrizen in kommutativen Körpern, Comm. Math. Helv., vol. 32 (1958), pp. 224-240.
- 7. S. LANG, Algebraic numbers, Addison-Wesley, Reading, Mass., 1964.
- 8. C. LATIMER AND C. MACDUFFEE, A correspondence between classes of ideals and classes of matrices, Ann. of Math., vol. 34 (1933), pp. 313-316.
- 9. O. T. O'MEARA, Introduction to quartic forms, Grund. Math. Wiss., vol. 117, Academic Press, New York, 1963.
- O. TAUSSKY, On a theorem of Latimer and MacDuffee, Canad. J. Math., vol. 1 (1949), pp. 300-302.
- Classes of matrices and quadratic fields, Pacific J. Math., vol. 1 (1951), pp. 127– 132.
- 12. ——, Classes of matrices and quadratic fields II, J. Lond. Math. Soc., vol. 27 (1952), pp. 237-239.
- -----, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math., vol. 1 (1957), pp. 108-113.

HARVARD UNIVERSITY

CAMBRIDGE, MASSACHUSETTS