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1. Introduction
It is known [8], [10] that there is a one-to-one correspondence between (i)

classes of matrices of rational integers with a given irreducible characteristic
polynomial p(x) and (iN) classes of ideals in Z[x]/(p(x) ). We will generalize
this correspondence and some of its properties. The existence of symmetric
matrices in a class has been studied [4], [12], but not the number. We shall
take up this question. The application of our results to the rational integer
case will be discussed.

2. Basic concepts
Let A and D be integral domains with quotient fields G and F such that

(1) Az) D,
(2) G is a separable extension of F,
(3) [G:F] n < .

We may write G F(0) for some 0 e A. This notation will be fixed through-
out the paper.

DEFINITION. A representation of A over D is a ring isomorphism of A

onto a subring of Dn, the n X n matrices over D, such that (d) is the scalar
matrix dI, whenever d e D. A symmetric representation of A over D is a
representation of A over D such that (t) is symmetric whenever e 4. (This
differs from the usual definition of a representation.)

Whenever p(x)eD[x] we have (p(t)) p(()) for all teA. Con-
sequently, we may assume that A is integrally dependent on D. When A
the study of representations corresponds to the study of the matrices in Dn
which have 0 as a characteristic root [10]. A unique extension of to a
representation of G over F exists and is determined by (O).

DEFINITION. If and I, are representations of A over D such that

(,) T()T-1 () for all e A

and some nonsingular T e Dn satisfying T-le D, then is equivalent to
The equivalence class of is written ().
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Since (0) determines , one may speak of a class of matrices 6((0))
rather than a class of representations. Then (,) is equivalent to

T(O)T- g(O).

Note that T, T- e D is equivalent to T being unimodular over D..
When D F, there is exactly one equivalence class. This is a special

case of Theorem 1 below.

3. Earlier results
We now give generalizations of some results which have been proved for the

special case D Z.

THEOREM 1. There is a one-to-one correspondence between classes of represen-
tations of A over D and classes of ideals in A having a free basis over D.

The proof is an easy generalization of that given by Taussky [10]. Let a be
a characteristic vector of (0) with components in G. We have

e(q e(Da + + Da, a

It is convenient to identify e(q) with e(a). When D Z or D F, every
ideal has a free basis.

Let A’ be the transpose of A D and define ’ by ’() ()’. Let
a’ be the complement [7, p. 41] of a. By the method of proof used by Taussky
[13] we have

THEOREM 2. If e(q) e( a), then e(q’) e(a’).

It is known [11] that e(q)) e(q)p) is not enough to guarantee a symmetric
e e(q)). Various additional conditions are found in the literature. Some

are given below.

THEOREM 3. Let a be in e(q). The following are equivalent.
(1) e() contains a symmetric representation.
(2) For every (or some) gg e e( q), there is a matrix T unimodular over

such that
T’Tq(O) qg(O)T’T [11, Theorem 2].

(3) For some X e G and some free basis for a over D

tro/ Xai a i Kronecker it) [4].

The following are consequences of (1).

(a) If F is formally real, G is totally real [6, Theorem 3.3].
(b) For some totally positive X e G we have a’ Xa. ("Totally positive"

is a vacuous condition if F is not formally real.) See [4].
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(c) For ) as in b and some f e F
n(n--1)/24,2T ppNo/vX (-1 ,, o/v (0)

where p(x) is the irreducible monic polynomial for 0 over F.

Proof. Where a reference is given, that proof is easily generalized to yield
the desired result. Let t be the complementary basis to 6. By (3) we have
t ) (incidentally proving (b)). Thus

((x())) ((.)))(()))
where superscripts denote conjugacy. Taking determinants and noting that

T(1,0, ...,On-I)
for some T eFn, we obtain (c). |

Parts (a)-(c) of the above theorem provide conditions of a more algebraic
number theoretic nature than do (1)-(3). Unfortunately, it is not known
when conditions (a)-(c) for an ideal with free basis over D imply the
existence of a symmetric representation in (a). When n is odd and D is n
algebraic number field, then (a) implies (1) [2]. When n

_
7 and D Z,

then (a) and (b) imply (1) ([4], or Section 5 below). If (a)-(c) are satisfied
for an ideal a with a free basis a over D, then define

S (tr/F },ai at) ).
It follows that S is symmetric and

(i) unimodular over D by (b),
(ii) positive definite if F is formally real by (a) and (b),
(iii) of square determinant by (c).

By Theorem 3(3), it follows that ((a) contains a symmetric representation
if and only if S X’X for some X unimodular over D,.

COROLLARY. Everyfinitefield of odd characteristic has a symmetric representa-
tion over each of its subfields.

Proof. Since the norm group of G over F is the multiplicative group of
F, there is a N e D satisfying Theorem 3(c).
A nonsingular quadratic form (S of the above discussion) has its dimension

and its determinant as a complete set of invariants [9, 62 :la]. The corollary
follows from the discussion preceding it. |

4. Number of symmetric representations
In this section we discuss the number of symmetric representations in a

class and, briefly, the number of classes containing symmetric representations.
When limiting attention to one class the relevant domain is not A but one we
now define.
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DEFINITION. R((I)) {a a e G and (a) e D,} where has been extended
to a representation of G over F.

Clearly R() is an integral domain between G and X. If I, e e()), then
R(I,) R()); so R() is a class invariant. (In terms of the generalized
ideal quotient we have R() (a a).)

THEOREM 4. Let be a symmetric representation of A over D. The number
of symmetric representations in e() is a multiple of tc and is bounded above by

where
(1)
(2)

(3)
(4)

inD.

/[U:

o(D) {X eD X’X I},
k card O(D,) if F has characteris tic 2

1/2 card O(D,,) otherwise,
U is the group of squares of units in R(),
Uv is the group of to tally positive units in R() whose norms are squares

Proof. We shall use the well known fact that if A, B e F and A has distinct
roots and AB BA, then B p(A) for some p(x) eF[x].

Let A (0). If I, e e(), then 9(0) TAT-1 for some T unimodular
over. D. Since A A’, we have 9’ if and only if T’T p(A) for some
p(x) F[x]. For each 7 e G let (7) be the set of T unimodular overD satis-
fying T’T (7). Clearly (7) 0 implies 7 e UN. The converse is equiva-
lent to achieving the bound given by the theorem. It will be discussed after
the proof.

If T e (7), then

o(7) {XT X e (9(D)}.

Hence card o(7) card (9(D) whenever o(7) .
All that remains is to study the equation

TAT- SAS-, S, T unimodular over D.

This is equivalent to S-T q(A) for some q(x)e F[x]. Unimodularity of
S-T is equivalent to q(O) e being a unit in R(). We have

T’T q(A )S’Sq(A

so T e (7) if and only if S e (7e=). If 7 7e=, then e 4-1 so every non-
empty (7) leads to k symmetric representations. Any two (7) and o(v)
lead either to the same (if 7Iv e U) or to distinct (if 7Iv U) representa-
tions. |
The bound in the theorem will be achieved if 7 e UN implies o(7) # 0. By
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the definition of UN we see that (7) is symmetric and

(i) unimodular over D,
(ii) positive definite if F is formally real,
(iii) of square determinant.

We have () 0 if and only if T’T () for some T unimodular over D.
This is. precisely the same problem as in Section 3(i)-(iii).
We now consider the number of classes containing symmetric representa-

tions when all ideals are invertible. Suppose (a) contains a symmetric
representation. The map () *- (ab) is a correspondence between classes
containing ideals whose squares are narrowly equivalent to A and classes
containing ideals narrowly equivalent to their complements (since (ab)’
a’b-1). Hence the number of classes containing symmetric representations is
bounded by the order of the maximal subgroup of type (2, 2, in the ideal
class group.

5. The rational integer case

For the remainder of the paper we will assume that D Z. This case has
been studied by Faddeev [4] and Taussky [10]-[13]. In Theorem 4 we have
/ n!2n-1 since (Z) consists of those matrices having one +/-1 in each
row and column and zeros elsewhere. By the Dirichlet unit theorem [U" U]
divides 2n-. Since the class number of A is finite [3] we have

THEOREM 5. The number of symmetric representations of over Z is finite.
Of particular interest are conditions (i)-(iii) of Sections 3 and 4. When

n _< 7 these conditions imply that the quadratic form is equivalent to a sum of
squares [9, 106" 10]. When D Z, (b) of Theorem 3 implies (c) because
T/ ) where det T W1. Hence

THEOREM 6. Assume n <_ 7 and G is totally real. There exists a symmetric
representation of over Z if and only if a’ ka for some ideal a of G and some
totally positive e G. In this case (a) contains precisely n! 2-[UN" U] sym-
metric representation where Uv and U are as in Theorem 4.

If we further assume that A is integrally closed in G over Z, then the exist-
ence of a symmetric representation is equivalent to the different being nar-
rowly equivalent to the square of an ideal. It is known [5, Theorem 176] that
the class of the different has a square root; but it is not known when this is
true in the narrow sense. Faddeev [4] has used this result to establish the
existence of symmetric representations for special G’s. Other special cases
can be dealt with.

COROLInY. If G is a cyclic cubic extension of Q, the integers of G have a
symmetric representation over Z.
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Proof. Let p be a rational prime. It has at most one ramified divisor
over G, and this is pure ramified. Thus, if the discriminant is IIpc(p), then the
different is IIOc(p). Since G is cyclic, every c(p) is even.
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