CLASSES OF MATRICES OVER AN INTEGRAL DOMAIN

BY
Edward A. Bender ${ }^{1}$

1. Introduction

It is known [8], [10] that there is a one-to-one correspondence between (i) classes of matrices of rational integers with a given irreducible characteristic polynomial $p(x)$ and (ii) classes of ideals in $\mathrm{Z}[x] /(p(x))$. We will generalize this correspondence and some of its properties. The existence of symmetric matrices in a class has been studied [4], [12], but not the number. We shall take up this question. The application of our results to the rational integer case will be discussed. ${ }^{2}$

2. Basic concepts

Let Δ and D be integral domains with quotient fields G and F such that
(1) $\Delta \supset D$,
(2) G is a separable extension of F,
(3) $[G: F]=n<\infty$.

We may write $G=F(\theta)$ for some $\theta \epsilon \Delta$. This notation will be fixed throughout the paper.

Definition. A representation of Δ over D is a ring isomorphism Φ of Δ onto a subring of D_{n}, the $n \times n$ matrices over D, such that $\Phi(d)$ is the scalar matrix $d I_{n}$ whenever $d \epsilon D$. A symmetric representation of Δ over D is a representation of Δ over D such that $\Phi(\delta)$ is symmetric whenever $\delta \in \Delta$. (This differs from the usual definition of a representation.)

Whenever $p(x) \epsilon D[x]$ we have $\Phi(p(\delta))=p(\Phi(\delta))$ for all $\delta \epsilon \Delta$. Consequently, we may assume that Δ is integrally dependent on D. When $\Delta=D[\theta]$ the study of representations corresponds to the study of the matrices in D_{n} which have θ as a characteristic root [10]. A unique extension of Φ to a representation of G over F exists and is determined by $\Phi(\theta)$.

Definition. If Φ and Ψ are representations of Δ over D such that

$$
T \Phi(\delta) T^{-1}=\Psi(\delta) \quad \text { for all } \delta \in \Delta
$$

and some nonsingular $T \in D_{n}$ satisfying $T^{-1} \in D_{n}$, then Φ is equivalent to Ψ. The equivalence class of Φ is written $\mathfrak{C}(\Phi)$.

[^0]Since $\Phi(\theta)$ determines Φ, one may speak of a class of matrices $\mathcal{C}(\Phi(\theta))$ rather than a class of representations. Then (*) is equivalent to

$$
T \Phi(\theta) T^{-1}=\Psi(\theta)
$$

Note that $T, T^{-1} \epsilon D_{n}$ is equivalent to T being unimodular over D_{n}.
When $D=F$, there is exactly one equivalence class. This is a special case of Theorem 1 below.

3. Earlier results

We now give generalizations of some results which have been proved for the special case $D=\mathbf{Z}$.

Theorem 1. There is a one-to-one correspondence between classes of representations of Δ over D and classes of ideals in Δ having a free basis over D.

The proof is an easy generalization of that given by Taussky [10]. Let $\bar{\alpha}$ be a characteristic vector of $\Phi(\theta)$ with components in G. We have

$$
\mathfrak{C}(\Phi) \leftrightarrow \mathfrak{C}\left(D \alpha_{1}+\cdots+D \alpha_{n}=\mathfrak{a}\right)
$$

It is convenient to identify $\mathfrak{C}(\Phi)$ with $\mathfrak{C}(\mathfrak{a})$. When $D=\mathbf{Z}$ or $D=F$, every ideal has a free basis.

Let A^{\prime} be the transpose of $A \in D_{n}$ and define Φ^{\prime} by $\Phi^{\prime}(\delta)=\Phi(\delta)^{\prime}$. Let \mathfrak{a}^{\prime} be the complement [7, p. 41] of \mathfrak{a}. By the method of proof used by Taussky [13] we have

Theorem 2. If $\mathfrak{C}(\Phi) \leftrightarrow \mathfrak{C}(\mathfrak{a})$, then $\mathfrak{C}\left(\Phi^{\prime}\right) \leftrightarrow \mathfrak{C}\left(\mathfrak{a}^{\prime}\right)$.
It is known [11] that $\mathcal{C}(\Phi)=\mathfrak{C}\left(\Phi^{\prime}\right)$ is not enough to guarantee a symmetric $\Psi \in \mathbb{C}(\Phi)$. Various additional conditions are found in the literature. Some are given below.

Theorem 3. Let \mathfrak{a} be in $\mathfrak{C}(\Phi)$. The following are equivalent.
(1) $\mathfrak{C}(\Phi)$ contains a symmetric representation.
(2) For every (or some) $\Psi \in \mathbb{C}(\Phi)$, there is a matrix T unimodular over D_{n} such that

$$
T^{\prime} T \Psi(\theta)=\Psi^{\prime}(\theta) T^{\prime} T \quad[11, \text { Theorem } 2]
$$

(3) For some $\lambda \in G$ and some free basis $\bar{\alpha}$ for \mathfrak{a} over D

$$
\operatorname{tr}_{G / F} \lambda \alpha_{i} \alpha_{j}=\delta_{i j} \quad(\text { Kronecker } \delta)[4]
$$

The following are consequences of (1).
(a) If F is formally real, G is totally real [6, Theorem 3.3].
(b) For some totally positive $\lambda \in G$ we have $\mathfrak{a}^{\prime}=\lambda a$. ("Totally positive" is a vacuous condition if F is not formally real.) See [4].
(c) For λ as in (b) and some f ϵF

$$
N_{G / F} \lambda=(-1)^{n(n-1) / 2} f^{2} N_{G / F} p^{\prime}(\theta)
$$

where $p(x)$ is the irreducible monic polynomial for θ over F.
Proof. Where a reference is given, that proof is easily generalized to yield the desired result. Let $\bar{\beta}$ be the complementary basis to $\bar{\alpha}$. By (3) we have $\bar{\beta}=\lambda \bar{\alpha}$ (incidentally proving (b)). Thus

$$
\left(\left(\boldsymbol{\lambda}^{(i)} \delta_{i j}\right)\right)=\left(\left(\beta_{j}^{(i)}\right)\right)\left(\left(\beta_{i}^{(j)}\right)\right)
$$

where superscripts denote conjugacy. Taking determinants and noting that

$$
\bar{\beta}=T\left(1, \theta, \cdots, \theta^{n-1}\right)^{\prime}
$$

for some $T \epsilon F_{n}$, we obtain (c).
Parts (a)-(c) of the above theorem provide conditions of a more algebraic number theoretic nature than do (1)-(3). Unfortunately, it is not known when conditions (a)-(c) for an ideal with a free basis over D imply the existence of a symmetric representation in $\mathfrak{C}(\mathfrak{a})$. When n is odd and D is an algebraic number field, then (a) implies (1) [2]. When $n \leq 7$ and $D=\mathbf{Z}$, then (a) and (b) imply (1) ([4], or Section 5 below). If (a)-(c) are satisfied for an ideal \mathfrak{a} with a free basis $\bar{\alpha}$ over D, then define

$$
S=\left(\left(\operatorname{tr}_{G / F} \lambda \alpha_{i} \alpha_{j}\right)\right)
$$

It follows that S is symmetric and
(i) unimodular over D_{n} by (b),
(ii) positive definite if F is formally real by (a) and (b),
(iii) of square determinant by (c).

By Theorem 3(3), it follows that $\mathfrak{C}(\mathfrak{a})$ contains a symmetric representation if and only if $S=X^{\prime} X$ for some X unimodular over D_{n}.

Corollary. Every finite field of odd characteristic has a symmetric representation over each of its subfields.

Proof. Since the norm group of G over F is the multiplicative group of F, there is a $\lambda \in D$ satisfying Theorem 3(c).

A nonsingular quadratic form (S of the above discussion) has its dimension and its determinant as a complete set of invariants [9, 62:1a]. The corollary follows from the discussion preceding it.

4. Number of symmetric representations

In this section we discuss the number of symmetric representations in a class and, briefly, the number of classes containing symmetric representations. When limiting attention to one class the relevant domain is not Δ but one we now define.

Definition. $R(\Phi)=\left\{\alpha \mid \alpha \epsilon G\right.$ and $\left.\Phi(\alpha) \epsilon D_{n}\right\}$ where Φ has been extended to a representation of G over F.

Clearly $R(\Phi)$ is an integral domain between G and Δ. If $\Psi \in \mathfrak{C}(\Phi)$, then $R(\Psi)=R(\Phi)$; so $R(\Phi)$ is a class invariant. (In terms of the generalized ideal quotient we have $R(\Phi)=(\mathfrak{a}: \mathfrak{a})$.)

Theorem 4. Let Φ be a symmetric representation of Δ over D. The number of symmetric representations in $\mathfrak{C}(\Phi)$ is a multiple of k and is bounded above by

$$
k\left[U^{N}: U^{2}\right]
$$

where
(1) $\mathcal{O}\left(D_{n}\right)=\left\{X \in D_{n} \mid X^{\prime} X=I\right\}$,
(2) $k=\operatorname{card} \mathcal{O}\left(D_{n}\right)$ if F has characteristic 2
$=\frac{1}{2} \operatorname{card} \mathcal{O}\left(D_{n}\right)$ otherwise,
(3) U^{2} is the group of squares of units in $R(\Phi)$,
(4) U^{N} is the group of totally positive units in $R(\Phi)$ whose norms are squares in D.

Proof. We shall use the well known fact that if $A, B \in F_{n}$ and A has distinct roots and $A B=B A$, then $B=p(A)$ for some $p(x) \in F[x]$.

Let $A=\Phi(\theta)$. If $\Psi \in \mathbb{C}(\Phi)$, then $\Psi(\theta)=T A T^{-1}$ for some T unimodular over D_{n}. Since $A=A^{\prime}$, we have $\Psi=\Psi^{\prime}$ if and only if $T^{\prime} T=p(A)$ for some $p(x) \in F[x]$. For each $\eta \in G$ let $\varphi(\eta)$ be the set of T unimodular over D_{n} satisfying $T^{\prime} T=\Phi(\eta)$. Clearly $\varphi(\eta) \neq \emptyset$ implies $\eta \in U^{N}$. The converse is equivalent to achieving the bound given by the theorem. It will be discussed after the proof.

If $T \epsilon \varphi(\eta)$, then

$$
\varphi(\eta)=\left\{X T \mid X \in \mathcal{O}\left(D_{n}\right)\right\}
$$

Hence $\operatorname{card} \varphi(\eta)=\operatorname{card} \mathcal{O}\left(D_{n}\right)$ whenever $\varphi(\eta) \neq \emptyset$.
All that remains is to study the equation

$$
T A T^{-1}=S A S^{-1}, \quad S, T \text { unimodular over } D_{n}
$$

This is equivalent to $S^{-1} T=q(A)$ for some $q(x) \in F[x]$. Unimodularity of $S^{-1} T$ is equivalent to $q(\theta)=\varepsilon$ being a unit in $R(\Phi)$. We have

$$
T^{\prime} T=q(A) S^{\prime} S q(A)
$$

so $T \epsilon \varphi(\eta)$ if and only if $S \epsilon \varphi\left(\eta \varepsilon^{2}\right)$. If $\eta=\eta \varepsilon^{2}$, then $\varepsilon= \pm 1$ so every nonempty $\varphi(\eta)$ leads to k symmetric representations. Any two $\varphi(\eta)$ and $\varphi(\nu)$ lead either to the same (if $\eta / \nu \in U^{2}$) or to distinct (if $\eta / \nu \notin U^{2}$) representations. 【

The bound in the theorem will be achieved if $\eta \in U^{N}$ implies $\varphi(\eta) \neq \emptyset . \quad$ By
the definition of U^{N} we see that $\Phi(\eta)$ is symmetric and
(i) unimodular over D_{n},
(ii) positive definite if F is formally real,
(iii) of square determinant.

We have $\varphi(\eta) \neq \emptyset$ if and only if $T^{\prime} T=\Phi(\eta)$ for some T unimodular over D_{n}. This is precisely the same problem as in Section 3(i)-(iii).

We now consider the number of classes containing symmetric representations when all ideals are invertible. Suppose $\mathfrak{C}(\mathfrak{a})$ contains a symmetric representation. The map $\mathfrak{C}(\mathfrak{b}) \leftrightarrow \mathfrak{C}(\mathfrak{a b})$ is a correspondence between classes containing ideals whose squares are narrowly equivalent to Δ and classes containing ideals narrowly equivalent to their complements (since ($\mathfrak{a b})^{\prime}=$ $\mathfrak{a}^{\prime} \mathfrak{b}^{-1}$). Hence the number of classes containing symmetric representations is bounded by the order of the maximal subgroup of type ($2,2, \cdots$) in the ideal class group.

5. The rational integer case

For the remainder of the paper we will assume that $D=\mathbf{Z}$. This case has been studied by Faddeev [4] and Taussky [10]-[13]. In Theorem 4 we have $k=n!2^{n-1}$ since $\mathcal{O}\left(\mathbf{Z}_{n}\right)$ consists of those matrices having one ± 1 in each row and column and zeros elsewhere. By the Dirichlet unit theorem [$\left.U^{N}: U^{2}\right]$ divides 2^{n-1}. Since the class number of Δ is finite [3] we have

Theorem 5. The number of symmetric representations of Δ over \mathbf{Z} is finite.
Of particular interest are conditions (i)-(iii) of Sections 3 and 4. When $n \leq 7$ these conditions imply that the quadratic form is equivalent to a sum of squares $[9,106: 10]$. When $D=\mathbf{Z}$, (b) of Theorem 3 implies (c) because $T \bar{\beta}=\lambda \bar{\alpha}$ where $\operatorname{det} T=+1$. Hence

Theorem 6. Assume $n \leq 7$ and G is totally real. There exists a symmetric representation of Δ over \mathbf{Z} if and only if $\mathfrak{a}^{\prime}=\lambda \mathfrak{a}$ for some ideal \mathfrak{a} of G and some totally positive $\lambda \in G$. In this case $\mathcal{C}(\mathfrak{a})$ contains precisely $n!2^{n-1}\left[U^{N}: U^{2}\right]$ symmetric representation where U^{N} and U^{2} are as in Theorem 4.

If we further assume that Δ is integrally closed in G over Z, then the existence of a symmetric representation is equivalent to the different being narrowly equivalent to the square of an ideal. It is known [5, Theorem 176] that the class of the different has a square root; but it is not known when this is true in the narrow sense. Faddeev [4] has used this result to establish the existence of symmetric representations for special G 's. Other special cases can be dealt with.

Corollary. If G is a cyclic cubic extension of \mathbf{Q}, the integers of G have a symmetric representation over \mathbf{Z}.

Proof. Let p be a rational prime. It has at most one ramified divisor \mathfrak{p} over G, and this is pure ramified. Thus, if the discriminant is $\Pi p^{c(p)}$, then the different is $\Pi p^{c(p)}$. Since G is cyclic, every $c(p)$ is even.

References

1. E. Bender, Symmetric representations of an integral domain over a subdomain, doctoral thesis, California Institute of Technology, 1966.
2. -, Characteristic polynomials of symmetric matrices, to appear.
3. R. Dedekind, Gesammelte mathematische Werke I, Friedr. Vieweg u. Sohn, Braunschweig, 1930, pp. 105-157.
4. D. K. Faddeev, On the characteristic equations of rational symmetric matrices, (Russian)Dokl. Akad. Nauk SSSR, vol. 58 (1947), pp. 753-754.
5. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Akad. Verlagsgesellschaft, Leipzig, 1923.
6. F. Krakowski, Eigenwerte und Minimalpolynome symmetrischer Matrizen in kommutativen Körpern, Comm. Math. Helv., vol. 32 (1958), pp. 224-240.
7. S. Lang, Algebraic numbers, Addison-Wesley, Reading, Mass., 1964.
8. C. Latimer and C. MacDuffee, A correspondence between classes of ideals and classes of matrices, Ann. of Math., vol. 34 (1933), pp. 313-316.
9. O. T. O'Meara, Introduction to qudratic forms, Grund. Math. Wiss., vol. 117, Academic Press, New York, 1963.
10. O. Taussky, On a theorem of Latimer and MacDuffee, Canad. J. Math., vol. 1 (1949), pp. 300-302.
11. ——, Classes of matrices and quadratic fields, Pacific J. Math., vol. 1 (1951), pp. 127132.
12. -, Classes of matrices and quadratic fields II, J. Lond. Math. Soc., vol. 27 (1952), pp. 237-239.
13. -_, On matrix classes corresponding to an ideal and its inverse, Illinois J. Math., vol. 1 (1957), pp. 108-113.

Harvard University
Cambridge, Massachusetts

[^0]: Received December 19, 1966.
 ${ }^{1}$ I would like to thank my thesis advisor Dr. Taussky for her aid on my thesis [1] of which this is part. My thesis research was supported by a National Science Foundation Cooperative Graduate Fellowship.
 ${ }^{2}$ The case in which one also requires that $p(x)$ be quadratic has been discussed extensively [1], [11]-[13]. A revised presentation of the contents of [1] is planned.

