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1. Introduction

In [8] the author and R. W. Richardson show that for an algebra, (associ-
ative or Lie), all deformations are essentially deformations of the Jacobson
radical. Since the Hochschild groups play a central role in deformation theory,
one would expect a somewhat similar situation to prevail in regard to exten-
sions of an algebra by a square zero ideal. Obviously, if the ideal is square
zero and the extension is finite-dimensional, then the ideal must be contained
in the radical of the extension. One can then view the Hochschild extensions
as enlargements of the radical. This is, in a sense, just the opposite of what
happens with deformations, i.e., in deformations the radical gets smaller, if
anything.
The object of this paper is to show iust which parts of the radical can be en-

larged. The theorem, and its corollaries, of Section 2 along with a theorem of
J. P. Jans [6] give a complete description of the situation for extensions by a
simple module.

In what follows, A will denote a finite-dimension algebra over a field K with
subalgebra S and Jacobson radical N such that A S + N, K-direct, and S
is K-separable. In view of the Wedderburn-Malcev theorem this is the case
for a wide variety of algebras. By an A-module we will mean a two-sided
A-module satisfying

a(mb) (am)b for all a, beA; m eM.

Following Hochschild [2], C(A, M) will denote

Homk(A1 (R)k A2 (R)k (R)k An, M)
where each A1 A. i will denote the usual Hochschild coboundary operator
and Hn(A, M) the corresponding Hochschild groups.

2. Characterization theorem

DEFINITION. Let f e C(A, M) and if 0. Form the K-vector space
A M. We define the algebra Bs to have underlying vector space A M
and multiplication given by

(a + m)(b + m) ab + am. + mb + f(a, b).

That Bs is an associative algebra is insured by f 0. Notice, also, that M
appears as an ideal in Bs and M 0; hence M is contained in the radical of
Bs It is also well known that any extension of A with square zero kernel is
of the above type [2].
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DEFINITION. An algebra A is segregated if for every algebra B and homo-
)morphism z of B onto A with (ker z 0 there exists an algebra homo-

morphism 7" A -- B such that zo 1.

Hochschild [2] showed A is segregated if and only if H2(A, M) 0 for all
two-sided A-modules M. We will use both descriptions freely throughout
this paper.

THEOREM 1 (characterization). Let A S N. Then there exists a
simple two-sided module M and f C2( A, M) with 5f 0 such that M c N
where Nf is the radical of Bf if and only if A is not segregated.

Proof. Suppose such M and f exist. Then we claim f represents a non-
trivial element of H(A, M). Suppose not. Then f ig 0 for some
g e CI(A, M), and B] ----- B0. But in B0, M = No which leads to a contra-
diction.

We now prove the converse by proving a more general result.

THEOREM. If A S N and H(A, M) O, then M [ NY 0 iff is not
equivalent to zero in H(A, M).

Proof. Let 0 F e H(A, M). By Lemma 10.1 of [4] we can pick a repre-
sentative f of F such that f(s (R) a) F(a (R) s) 0 for all a e A, s e S. Let
W be the S-complement of N in A. Now if M n N 0, for any al, bl e N,
i 1 2, k such that Z----1 ab 0, we have -"", _lf(a (R) b) O.
Thus for a, bi N, i 1, 2, k setting

g(= ab) Z=lf(a (R) b)

defines a function on N. Note that in fact g is both a left and a right S-homo-
morphism. Now, sinceW is an S-module, g can be extended to a function, still
denoted by g, on A which is still both a left and right S-homomorphism by de-
fining g(y) 0 for y e W. Now formf -+- ig h0. Notice that h0(s (R) a)
h0(a (R) s) 0, and that M n No 0. Moreover, one easily verifies that the
image of h0 is contained in NM MN. One now repeats the argument to
h0 and finds h equivalent to h0 where h(s (R) a) h(a (R) s) 0 and
M N 0 and the image of hi is contained in NM NMN MN.
Continuing in this way and using the fact that N is nilpotent it follows that f
is equivalent to zero, a contradiction. Hence M N 0.

As an immediate corollary we have,

COROLLARY. If F e H(A, M) and F O, then there exists a representative
f of F such that for some ai, beN, i 1, 2,..., k, Z,k’=l aibi 0; but
=lf(a (R) b) 0 and this f can be picked so that f( s (R) a) f( a (R) s) 0
for a A and s e S.

COROLR. If M is a simple A-module, then for F e H2(A, M) and any
representative f of F, M N if and only if F O.
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Proof. If f and g are representatives of F e H(A, M) then f g -t- ih for
h C(A, M). B] --. B, the isomorphism being a - m -- a - m - h(a)
where a e A and m e M. The result follows easily.

COnOLLAY. If M is a simple A-module and A is generalized uniserial and f
is a representative of F, 0 F H(A, M), then B] is generalized uniserial.

Proof. This follows from a lemma by Nakayama [7] which states that A is
generalized uniserial if and only if A/N is generalized uniserial.

3. An application
We begin this section with a definition of the associated free ring, see [6].

DEFINITION. Let A S -t- N, as above. Since S is K-separable N has
an S-complement P in N. Let P(’) denote P tensored over S with itself n
times. Form the weak direct sum

E(S, P) S -I- P -t- P() - P() -t- + P(’) -t- "".

Give F(S, P) multiplication defined on the generators by

s(p (R) p... (R) p) sp (R) p (R) (R) p
and

(p (R) p (R) (R) p)s p (R) p (R) (R) p s
and

(p, (R) (R) (R) p )(pi (R) (R) (R) (R) (R) (R) (R)

It is easily verified using the associativity of tensor that this is a ring.
Now there is a canonical homomorphism of F(S, P) onto A. This homo-

morphism is induced by the identity on S and P and sends p (R) p (R) p
topp.pa.., p.
We now have

COROLLRr. Let M be a simple A-module and f e C(A, M), 8f O, and f
not equivalent to zero in H(A, M). Then B/ and A have the same associated

free ring.

NProof. Clearly P--N/N-- Nf/ the isomorphisms being S-isomor-
phisms.

This leads to an alternative proof of a theorem of J. P. Jans [6] which is free
of all topological considerations.

THEOREM (Jans). A is a segregated algebra if and only if A -- F( S, P) as
rings.

Proof. Consider the homomorphisms

:F(S,P)--,A and 0:F(S,P)--*B
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given by the corollary. Then clearly Ker 9 Ker O, hence A F(S, P) im-
plies H(A, M) 0 for all simple M. Therefore H(A, M) 0 for all M by a
standard induction on the composition length of M. So we have isomorphic
implies segregated.

Now suppose 9 is not an isomorphism. Pick the smallest r such that
:-r_lp(m) C ker0. Such an r exists since N is nilpotent. Let
Q ,--rP(m), and form F(S, P)/Q B. Since Q c ker0, 0 factors
through B. Let :B --. A be the induced map. Now with the obvious
identifications we can write B S -t- P W V1 -t- V where V ker and V1
is an S-complement of V in the radical squared of B. Let W be a maximal
B-submodule of V.. Let C be an S-complement of W in V. It follows that
C is simple as an S-module, and hence can be viewed as a simple A-module. If
we now consider the extension B/W -- A where is the ring homo-
morphism induced by , we see that C is contained in the square of the radical
of B/W and so by the second corollary to the theorem of Section 2 we have that
this extension yields a non-trivial element of H(A, C).

4. H(A, M) as a module
DEFINITION. For a two-sided A-module M denote by E(M) the ring of all

two-sided A-homomorphisms of M into itself. If M is simple of course E(M)
is then a division ring. It is easy to see that if 0 e E(M), then Bf --_ Boor for
any f C(A, M) with f 0. Moreover we can show the following:

THEOREM. Let M be simple as a 2-sided A-module. Then

H {FeH(A,/)] M : N71}
is an E(M)-submodule of H(A, M) and we have

0 H H ... HTM H2(A, M)
where

N-1 0 but H- O.

Proof. Let F H and G e H and f a representative of F and g a representa-
tive of G where

f(s (R) a) g(s (R) a) f(a (R) s) g(a (R) s) 0
for all s e S and a e A.

Suppose F G Hr. Then M n H-o 0 where p > r. Then there exists
n,...,nvsuchthatnln’"nv 0but

f(nl (R) nn3 nv) g(n (R) n nv) O.

Thenf(nx (R) n...nv) 0 org(n (R) n...n,) 0 so eitherFeHv or

G e H, a contradiction. That .F e H follows by the fact that B B.v, the
isomorphism being a q- m -- a q- (m). That HTM H(A, M) is clear.
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One might hope that the Hr/Hr-1 are simple as E(M)-modules; however,
this in general is not true for consider the polynomial ring in two indetermi-
nares x and y over the field K, factored by the ideal generated by x2, y2 and
xy, and the simple module M which is one copy of the field Kin.

DEFINITION.
/(z(R)w) klkM if z kx, w kw,

0 otherwise.

g(z (R) s) hlhM, if z /lx, w k.y,

0 otherwise.

It is readily checked that Of Og 0 but that neither f nor g are co-
boundaries. Here f, and g e H but clearly B/ Bg.

Remark. This paper resulted from the study of deformations of algebras
while a graduate student at the University of Washington under the advisor-
ship of Professor J. P. Jans. I would like to take this opportunity to express
my thanks for his guidance.
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