EQUIOPEN TRANSFORMATION GROUPS

BY

LEONARD BIDWELL

1.01. Introduction. In this paper, the property of "equiopeness" of a transformation group is defined and its relationship with equicontinuity and certain recursion properties is discussed. It is then shown that in the particular case in which the transformation group is a continuous flow defined by the solutions of an autonomous system of differential equations, the results yield an alternate proof and a weakening of the hypotheses of a theorem proved by Hartman and Wintner [5] concerning the equivalence of Minding-Dirichlet stability and Bohr almost periodicity for a solution of the system.

The author is indebted to Professor W. H. Gottschalk for his indispensable direction and encouragement.

1.02. STANDING HYPOTHESIS. Throughout this paper, (X, T) will denote a transformation group where X is a separated uniform space and T is abelian.

1.03. DEFINITION. The transformation group (X, T) is said to be "equicontinuous" at a point $x \in X$ if for each index α of X, there exists an index β of X such that $x\beta t \subset xt\alpha$ for each $t \in T$.

The transformation group (X, T) is said to be "equippen" at x if for each index α of X, there exists an index β of X such that $x\alpha t \supset xt\beta$ for each $t \in T$.

The transformation group (X, T) is said to be "uniformly equicontinuous" (on X) if for each index α of X, there exists an index β of X such that for each $x \in X$, $x\beta t \subset xt\alpha$ for each $t \in T$.

The transformation group (X, T) is said to be "uniformly equippen" (on X) if for each index α of X, there exists an index β of X such that for each $x \in X$, $x\alpha t \supset xt\beta$ for each $t \in T$.

1.04. Remark. The transformation group (X, T) is uniformly equicontinuous if and only if it is uniformly equippen.

1.05. DEFINITION. Let \mathfrak{D} be any class of subsets of T. The transformation group (X, T) is said to be "D-equicontinuous" at a point $x \in X$ if for each index α of X, there exist an index β of X and a member D of \mathfrak{D} such that $x\beta d \subset xd\alpha$ for each $d \in D$.

The transformation group (X, T) is said to be "D-equippen" at x if for each index α of X, there exist an index β of X and a member D of D such that $x\alpha d \supset xd\beta$ for each $d \in D$.

The transformation group (X, T) is said to be "uniformly D-equicon-Received November 17, 1966. tinuous" (on X) if for each index α of X, there exist an index β of X and a member D of D such that for each $x \in X$, $x\beta d \subset xd\alpha$ for each $d \in D$.

The transformation group (X, T) is said to be "uniformly D-equippen" (on X) if for each index α of X, there exist an index β of X and a member D of D such that for each $x \in X$, $x\alpha d \supset xd\beta$ for each $d \in D$.

1.06. Remark. Let \mathfrak{D} be a class of subsets of T. The transformation group (X, T) is uniformly \mathfrak{D} -equicontinuous if and only if it is uniformly \mathfrak{D} -equiopen, provided that \mathfrak{D} is "closed under inversion", that is for every $\mathbf{D} \in \mathfrak{D}$, the inverse set $D^{-1} = \{d^{-1} / d \in D\}$ is also in \mathfrak{D} .

1.07. Remark. Let $x \in X$ and let \mathfrak{D} be a class of subsets of T. If (X, T) is equicontinuous at x, then (X, T) is \mathfrak{D} -equicontinuous at x.

If (X, T) is equippen at x, then (X, T) is D-equippen at x.

If (X, T) is uniformly equicontinuous (or, equivalently, uniformly equiopen), then (X, T) is uniformly D-equicontinuous and uniformly D-equiopen.

1.08. DEFINITION. The transformation group (X, T) is said to be "distal" at a point $x \in X$ if for each $y \neq x$, there exists an index β of X such that for each $t \in T$, $(yt, xt) \notin \beta$. This property is discussed in [4, Chapter 10] under the name "separated".

1.09. Remark. If (X, T) is equippen at x, then (X, T) is distal at x.

1.10. DEFINITION. Let α be an index of X. A subset C of X is said to be " α -large" if for some $x \in C$, $x\alpha \subset C$ (i.e. if C contains an α -neighborhood).

1.11. DEFINITION. Let α be an index of X. A subset B of X is said to be " α -dense in X" if B interesects each α -large subset of X.

1.12. Examples. A subset B of X is dense in X if and only if B is α -dense in X for each index α of X.

If X is the set of real numbers with the usual (metric) uniformity, then a subset B of X is relatively dense in X if and only if B is α -dense in X for some index α of X.

1.13. LEMMA. The following statements are equivalent:

(A) X is totally bounded (i.e. for each index α of X, there is a finite subset F of X such that $X \subset F\alpha = \bigcup_{f \in F} f\alpha$).

(B) For each index α of X, there is a finite subset F of X such that F is α -dense in X.

(C) For each index α of X, there is a positive integer k such that no disjoint class of α -large sets in X has more than k members.

(D) For each index α of X, each disjoint class of α -large sets in X is finite.

Proof. It will be shown that $(A) \Rightarrow (B) \Rightarrow (C) \Rightarrow (D) \Rightarrow (A)$. Note that in each of the conditions, (A), (B), (C), (D), it may be assumed without loss of generality that α is symmetric.

(1) To show $(A) \Rightarrow (B)$. Suppose X is totally bounded. Let α be a symmetric index of X and let F be a finite subset of X such that $X \subset F\alpha$. It is enough to show that F is α -dense in X. Let C be any α -large subset of X and let $x \in C$ be such that $x\alpha \subset C$. For some $d \in F$, $x \in d\alpha$ and therefore $d \in x\alpha \subset C$, since α is symmetric. Hence F intersects each α -large subset C of X which was to be shown.

(2) To show (B) \Rightarrow (C). Assume (B). Let α be an index of X, let F be a finite subset of X such that F is α -dense in X, and let k be the cardinal number of F. Then for any disjoint class \mathfrak{B} of α -large subsets of X, each $B \in \mathfrak{B}$ contains at least one member of F and no two members of \mathfrak{B} can contain the same member of F. Therefore \mathfrak{B} has at most k members which establishes (C).

(3) It is clear that $(C) \Rightarrow (D)$.

(4) To show (D) \Rightarrow (A). We will show the contrapositive. Suppose X is not totally bounded. Then there exists an index β of X, such that for each finite subset F of X, X $\Leftrightarrow F\beta$. It is therefore possible to form a sequence, x_1, x_2, x_3, \cdots in X such that for each $n > m, x_n \notin x_m \beta$. Let α be a symmetric index of X for which $\alpha^2 \subset \beta$. Then for each pair $n \neq m, x_n \alpha \cap x_m \alpha = \emptyset$ (since otherwise $x_n \notin x_m \alpha^2 \subset x_m \beta$). Hence $\{x_n \alpha / n = 1, 2, 3, \cdots\}$ is an infinite, disjoint class of α -large sets and (D) is therefore false. The proof is completed.

1.14. *Remark.* The implication $(A) \Rightarrow (B)$ of the preceding lemma can be used to show that every totally bounded metric space is separable.

1.15. DEFINITION. A subset D of T is said to be "replete" if for each compact subset K of T, there exists a $t \in T$ for which $tK \subset D$. In particular, D is "discretely replete" if it is discrete with respect to the discrete topology of T (that is, if D contains some translate of each finite subset F of T).

1.16. Examples. If T is euclidean n-space E^n with the usual (coordinatewise) addition as group operation and the usual (metric) uniformity, then a subset D of T is replete if and only if D is α -large for each index α of T.

In the special case in which T is the additive group of real numbers with the usual topology, a subset D of T is replete if and only if D "contains arbitrarily long intervals" (that is, for each positive number k, D contains an interval of length k).

1.17. DEFINITION. A subset A of T is said to be "syndetic" if A intersects each replete subset D of T (or, equivalently, if there exists a compact subset K of T such that $T = AK = \{ak \mid a \in A \& k \in K\}$). In particular, A is "discretely syndetic" if it is syndetic with respect to the discrete topology of T (that is, if there exist a finite number of translates of A which cover T).

1.18. Examples. If T is the additive group E^n with the usual uniformity, then a subset A of T is syndetic if and only if A is α -dense for some index α of T.

In the special case in which T is the additive group of real numbers with the usual uniformity, a subset A of T is syndetic if and only if A is relatively dense.

1.19. DEFINITION. Let $x \in X$. Then (X, T) is said to be "regionally almost periodic at x" if for each neighborhood U of x, there exists a syndetic subset A of T such that $Ua \cap U \neq \emptyset$ for each $a \in A$.

The transformation group (X, T) is said to be "almost periodic" (on X) if for each index α of X, there exists a syndetic subset A of T such that for each $x \in X$, $xa \in x\alpha$ for each $a \in A$.

The terms "discretely regionally almost periodic" and "discretely almost periodic" then refer to these recursion properties when T is provided with its discrete topology (that is, when A, in each case, can be chosen to be a discretely syndetic subset of T). Thus these discrete recursion properties are the strongest almost periodicity properties for any topology on T.

1.20. THEOREM. Let X be totally bounded, let D be the class of all replete subsets of T, and suppose that (X, T) is D-equippen at a point $x \in X$. Then (X, T) is discretely regionally almost periodic at x.

Proof. Let α be an index of X and let $A = \{t \in T \mid x\alpha t \cap x\alpha \neq \emptyset\}$. It is enough to show that the assumption that A is not discretely syndetic leads to a contradiction. Assume that A is not discretely syndetic and hence that $A' = T \dashv A$ is discretely replete. Then a sequence t_1, t_2, t_3, \cdots can be defined inductively in T such that for each n > 1,

$$t_n \cdot \{t_i^{-1} / i = 1, 2, \cdots, n-1\} \subset A'.$$

It follows that for i > j, $t_i t_j^{-1} \epsilon A'$ and hence $x \alpha t_i t_j^{-1} \cap x \alpha = \emptyset$ and consequently $x \alpha t_i \cap x \alpha t_j = \emptyset$. Also, by assumption, there exist a symmetric index β of X and a replete subset D of T such that $x \alpha d \supset x d\beta$ (and therefore $x \alpha d$ is β -large) for each $d \epsilon D$. Now let m be any positive integer. There exists an $s \epsilon T$ such that $\{t_i / i = 1, \cdots, m \cdot s \subset D$. Therefore, for each $i = 1, 2, \cdots, m$, $t_i s \epsilon D$ and hence $x \alpha t_i s$ is a β -large set and for $i \neq j$,

$$x \alpha t_i s \cap x \alpha t_j s = (x \alpha t_i \cap x \alpha t_j) s = \emptyset.$$

This means that the collection $\{x \alpha t_i \ s \ i = 1, \dots, m\}$ is a disjoint class of $m \beta$ -large sets. But since m was arbitrary, this contradicts the assumption that X is totally bounded by statement (C) of Lemma 1.13, and the theorem is proved.

1.21. Remark. The strongest form of the preceding theorem is achieved when T is assumed to have its discrete topology and when X is taken to be the orbit xT, since this is the case in which the assumption that (X, T) is \mathfrak{D} -equiopen at x and that X is totally bounded are weakest and the conclusion that (X, T) is discretely regionally almost periodic at x is strongest. Note that, in general, the equicontinuity and equippeness properties are weakest for the discrete topology on T and for the space xT, whereas the recursion properties, regionally almost periodic and almost periodic, are strongest for the discrete topology on T and for the space xT.

1.22. DEFINITION. Let Y be an invariant subset of X. Then (X, T) is said to be "equicontinuous on Y", "equippen on Y", "D-equicontinuous on Y", "D-equicontinuous on Y", "D-equippen on Y", or "regionally almost periodic on Y" according as the transformation group (Y, T) is equicontinuous, equippen, D-equicontinuous, D-equicontinuous, periodic at each $y \in Y$.

Likewise, (X, T) is said to be "uniformly equicontinuous on Y", "uniformly equippen on Y", "uniformly D-equicontinuous on Y", "uniformly D-equippen on Y", or "almost periodic on Y" according as the transformation group (Y, T) is uniformly equicontinuous, uniformly equippen, uniformly D-equippen, or almost periodic.

1.23. Remark. Let $x \in X$. Then the transformation group (xT, T) is uniformly equicontinuous if and only if (xT, T) is both equicontinuous at x and equippen at x. Hence, if the original transformation group (X, T) is both equicontinuous at x and equippen at x, then (X, T) is uniformly equicontinuous on xT.

1.24. *Remark*. The following three statements are valid. The second and third are proved in [2], and the first follows from theorems 4.34 and 4.61 of [4].

(1) If (X, T) is almost periodic on an orbit xT, then (X, T) is discretely almost periodic on \overline{xT} .

(2) If (X, T) is regionally almost periodic at x and equicontinuous at x, then (X, T) is almost periodic on \overline{xT} .

(3) If (X, T) is regionally almost periodic at each point of X and D-equicontinuous at x (where D is the class of all replete subsets of T), then (X, T) is equicontinuous at x.

The following theorem is a consequence of these results and Theorem 1.20.

1.25. THEOREM. Let $x \in X$ and consider the transformation group (\overline{xT}, T) . Let \mathfrak{D} be the class of all replete subsets of T and suppose that (\overline{xT}, T) is both \mathfrak{D} -equicontinuous at x and \mathfrak{D} -equippen at x. Then the following statements are equivalent.

(A) \overline{xT} is totally bounded.

(B) (\overline{xT}, T) is discretely regionally almost periodic at x.

(C) (\overline{xT}, T) is regionally almost periodic at x.

- (D) (\overline{xT}, T) is discretely almost periodic.
- (E) (\overline{xT}, T) is almost periodic.

Proof. It will be shown that $(A) \Rightarrow (B) \Rightarrow (C) \Rightarrow (D) \Rightarrow (A)$.

(1) $(A) \Rightarrow (B)$ by Theorem 1.20.

(2) It is clear that $(B) \Rightarrow (C)$.

(3) To show (C) \Rightarrow (E). Assume (C). By [4, Theorem 3.27], (\overline{xT}, T) is regionally almost periodic at each point of \overline{xT} . Statement (E) then follows from the results (3) and (2) mentioned in the preceding remark.

(4) $(E) \Rightarrow (D)$ by statement (1) of the preceding remark.

(5) To show (D) \Rightarrow (A). Assume (D). Let α be any index of \overline{xT} . By statement (3) of the preceding remark, (\overline{xT}, T) is equicontinuous at x and hence there exists an index β of \overline{xT} , such that $x\beta t \subset xt\alpha$ for each $t \in T$. Since (\overline{xT}, T) is discretely almost periodic, there exists a discretely syndetic subset A of T such that $xA \subset x\beta$. Let F be a finite subset of T for which T = AF. Then $xT = xAF \subset x\beta F \subset xF\alpha$. Since xF is a finite subset of xT, this proves that xT is totally bounded. It follows that \overline{xT} is totally bounded and the implication (D) \Rightarrow (A) is established. This completes the proof.

1.26. COROLLARY. If, in the preceding theorem, it is also assumed that x has a compact neighborhood (relative to X or relative to \overline{xT}), then the following can be added to the list of equivalent statements in the conclusion.

(F) \overline{xT} is compact (and hence (\overline{xT}, T) is uniformly equicontinuous).

Proof. It will be shown that $(F) \Rightarrow (A)$ and $(D) \Rightarrow (F)$.

(1) It is clear that $(F) \Rightarrow (A)$.

(2) To show (D) \Rightarrow (F). Assume (D). Let U be a (closed) compact neighborhood of x. There exists a discretely syndetic subset A of T such that $xA \subset U$. Let F be a finite subset of T for which T = AF. Then $xT = xAF \subset UF$. But UF is a finite union of translates of U, each of which is closed and compact. Hence UF is closed and compact and $\overline{xT} \subset UF$. Therefore \overline{xT} is compact as was to be shown.

1.27. THEOREM. Let X be totally bounded and suppose that (X, T) is both D-equicontinuous and D-equippen at each point of X where D is the class of all replete subsets of T. Then (X, T) is equicontinuous at each point of X.

Proof. It follows from Theorem 1.20 that (X, T) is discretely regionally almost periodic at each $x \in X$ and hence from Remark 1.24(3) that (X, T) is equicontinuous at each $x \in X$.

1.28. THEOREM. Let X be totally bounded and suppose that (X, T) is uniformly D-equicontinuous (or, equivalently, uniformly D-equippen) where D is the class of all replete subsets of T. Then (X, T) is uniformly equicontinuous.

Proof. It follows from Theorem 1.20 that (X, T) is discretely regionally almost periodic at each $x \in X$. From this point on, the proof parallels that of Theorem 2 in [2]. Let α be an index of X. Choose a symmetric index β of X such that $\beta^8 \subset \alpha$. Choose an index γ of X and a replete subset D of T such that $x\gamma^2 d \subset xd\beta$ for each $d \in D$ and each $x \in X$. Let $x \in X$, let $y \in x\gamma$, and let $t \in T$. It is enough to show that $yt \in xt\alpha$. Choose an index δ of X such that $\delta \subset \gamma$ and such that $x\delta t \subset xt\beta$ and $y\delta t \subset yt\beta$. Since (X, T) is discretely regionally almost periodic at each point of X, discretely syndetic sets A_1 and A_2 can be found such that $x\delta a_1 \cap x\delta \neq \emptyset$ for each $a_1 \in A_1$ and $y\delta a_2 \cap y\delta \neq \emptyset$ for each $a_2 \in A_2$. It is easy to see that the set Dt^{-1} is discretely replete and hence that there exists an element s of T such that $s \in Dt^{-1} \cap A_1$. By similar reasoning, the set $Dt^{-1} \cap D(st)^{-1} \cap A_2$. It follows that $s \in A_1$, $r \in A_2$, $st \in D$, $rt \in D$, and $srt = rst \in D$. By the choice of A_1 and A_2 , $x\delta s \cap x\delta \neq \emptyset$ and $y\delta r \cap y\delta \neq \emptyset$ and it is therefore possible to find points w and z in X such that w, $ws \in x\delta \subset x\gamma^2$ and $z, zr \in y\delta \subset x\gamma^2$. Therefore

wsrt
$$\epsilon x\gamma^2 srt \subset xsrt\beta$$
, wsrt $\epsilon x\gamma^2 rt \subset xrt\beta$,
wst $\epsilon x\gamma^2 st \subset xst\beta$, zrst $\epsilon x\gamma^2 rst \subset xrst\beta$,
zrst $\epsilon x\gamma^2 st \subset xst\beta$ and zrt $\epsilon x\gamma^2 rt \subset xrt\beta$.

Also wst $\epsilon x \delta t \subset xt\beta$ and $zrt \epsilon y \delta t \subset yt\beta$, and it follows from the symmetry of β that

$$xt \ \epsilon \ wst\beta \ \subseteq \ xst\beta^2 \ \subseteq \ zrst\beta^3 \ \subseteq \ xrst\beta^4,$$
$$yt \ \epsilon \ zrt\beta \ \subseteq \ xrt\beta^2 \ \subseteq \ wsrt\beta^3 \ \subseteq \ xsrt\beta^4,$$

and hence $yt \in xt\beta^8 \subset xt\alpha$ which proves the theorem.

1.29. Remark. In [1], J. D. Baum proves that a transformation group (X, T) with compact phase space X and abelian phase group T is uniformly equicontinuous if and only if it is uniformly D-equicontinuous where D is the class of all replete semigroups of T. It was later shown by Jesse Clay [3] that it is enough to take D to be the class of replete subsets of T. The preceding result shows further that the assumption of compactness for X can be weakened to total boundedness, or if X is assumed compact, it is enough that (X, T) be D-equicontinuous and D-equippen at each $x \in X$.

It should also be noted that since the topology of T is not specified, it can be assumed here and in Theorems 1.25 through 1.28 that T is discrete so that \mathfrak{D} is the class of all discretely replete subsets of T. As remarked previously, this provides the weakest form of the hypotheses of \mathfrak{D} -equicontinuity and \mathfrak{D} -equiopeness.

2.01. DEFINITION. A "continuous flow" is by definition a transformation group (X, R) where R is the additive group of real numbers with the usual topology.

2.02. Remark. Let (*) (dx/dt) = f(x) be a vector system of autonomous differential equations where $x = (x_1, \dots, x_n)$ and $f(x) = (f_1(x), \dots, f_n(x))$ are vectors in euclidean *n*-space E^n . Suppose that *f* satisfies conditions (e.g. Lipschitz conditions) sufficient to insure the existence of a non-vacuous open

subset X of E^n with the property that for each $x \in X$, there is a unique solution π_x of the system (*), defined for all real t and with values in X, such that $\pi_x(0) = x$. Then the solutions of the system (*) define a continuous flow (X, R) on X where, for each $x \in X$, the solution π_x is the x-motion of the flow (i.e. $\pi_x(t) = xt$ for each $x \in X$ and each $t \in R$).

2.03. STANDING HYPOTHESIS. For the remainder of this section, let (*) (dx/dt) = f(x) be a vector system of autonomous differential equations such as described in the preceding remark and let (X, R) denote the continuous flow defined by the solutions of (*).

2.04. DEFINITION. Let $x \in X$ and let π_x be the corresponding solution of the system (*). Then π_x is said to be "Minding-Dirichlet stable" (or simply "M-D stable") with respect to X provided that for each positive real number ε , there exists a positive real number δ , such that if π_y is any solution of (*) with $\pi_y(0) = y \in X$, then $\rho(\pi_x(t_0), \pi_y(t_0)) < \delta$ for some $t_0 \in R$ implies that $\rho(\pi_x(t), \pi_y(t)) < \varepsilon$ for all $t \in R$.

2.05. Remark. The above definition coincides with the definition of a stable map on a general group T as given by Gottschalk and Hedlund in [4, Definition 4.68] when X is taken to be the orbit $xR = \pi_x(R)$.

2.06. Remark. A solution π_x of the system (*) is M-D stable with respect to X in the sense of Definition 2.04 if and only if the continuous flow (X, R) is both equicontinuous at x and equippen at x. By remark 1.23, the solution π_x is M-D stable with respect to xR if and only if (X, R) is uniformly equicontinuous on xR.

2.07. DEFINITION. A function ϕ on R to a uniform space Y is said to be "Bohr almost periodic" provided that for each index α of Y, there exists a syndetic subset A of R such that $\phi(t + \alpha) \epsilon \phi(t) \alpha$ for each $t \epsilon R$ and each $\alpha \epsilon A$.

2.08. Remark. It can be shown (see [4, Theorem 4.61]) that in the above definition, the set A can always be chosen to be a discretely syndetic subset of T.

2.09. Remark. Let π_x be a solution of the system (*). Then the following statements are equivalent.

- (A) π_x is Bohr almost periodic.
- (B) (X, R) is almost periodic on xR.
- (C) (X, R) is discretely almost periodic on xR.

2.10. Remark. It is proved by Hartman and Wintner in [5] (and also by Gottschalk and Hedlund in [4, Theorem 4.73] in a more general setting) that if X is totally bounded, then every solution π_x of (*) which is M-D stable with respect to X is Bohr almost periodic. Theorem 1.25 makes it possible to replace the assumption of M-D stability for π_x in this theorem by the weaker

condition that the transformation group (xR, R) is both D-equicontinuous at x and D-equippen at x where D is the class of all discretely replete subsets of R. To see this, it is enough to apply Theorem 1.25 to the transformation group (xR, R), in which case $\overline{xR} = xR$.

BIBLIOGRAPHY

- 1. J. D. BAUM, An equicontinuity condition in topological dynamics, Proc. Amer. Math. Soc., vol. 12 (1961), pp. 30-32.
- 2. L. BIDWELL, Regionally almost periodic transformation groups, Mathematical Systems Theory, vol. 1 (1967), to appear.
- 3. J. P. CLAY, Proximity relations in transformation groups, Trans. Amer. Math. Soc., vol. 108 (1963), pp. 88–96.
- 4. W. H. GOTTSCHALK AND G. A. HEDLUND, Topological dynamics, Amer. Math. Soc. Colloquium Publications, vol. 36, 1955.
- 5. P. HARTMAN AND A. WINTNER, Integrability in the large and dynamical stability, Amer. J. Math., vol. 65 (1943), pp. 273-278.

RUTGERS, THE STATE UNIVERSITY CAMDEN, NEW JERSEY