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Introduction

The eigenfunction expansion theorem for singular self-dioint elliptic
operators is well known. In this pper we present proof which is more
elementary in some respects thn those given previously, and which hs the
dvntge of pplying to operators with merely mesurble (and locally
bounded) coefficients.
A general eigenfunction expansion theorem for operators in Lebesgue spces

ws proved by Mutner [10] nd extended by Bde nd Schwartz. [1]; some-
wht different result is due to Gelfnd nd Kostyucenko [9]. Grding [8] nd
Browder [4], [5], obtained the expansion theorem for elliptic operators under
vrious assumptions; see lso Nelson [11]. In ech cse the technical problem
is to show that some function h(A) of the given operator A hs kernel. In
the ppers cited this problem is solved by using some wrint of the Dunford-
Pettis theorem or nother Bnch spce differentiation theorem, together with
the fct, or ssumption, that the rnge of h(A) consists of locally bounded
functions. When A is n elliptic operator, h(A) is tken to be (A ,)- for
k in the resolvent of A nd q sufficiently lrge. Then the regularity theory
for elliptic operators nd the Sobolev imbedding theorem give the desired
conclusion. When q has to be tken greter thn 1, the regularity theory
needed requires certain mount of differentibility of the coefficients of A.
The point of the present proof is that for A elliptic nd q lrge enough,

(A ))- is "locally" n operator of Hilbert-Schmidt type. The existence
of (squre-integrble) kernel for operators of this type is well-known nd
more elementary thn the Dunford-Pettis theorem nd the Sobolev im-
bedding theorem.
The proof of the ssertion bout (A k)- depends on some of the simple

observations bout compact operators nd Sobolev spces which were pplied
in much more delicate wy in [2], [3] to obtain the symptotic distribution of
eigenwlues for elliptic operators without smooth coefficients.

1. Some compact operators

If H nd K re Hilbert spces nd S H K linear operator, we denote
the domain nd rnge of S by D(S) nd R(S) respectively. For bounded S,
the characteristic numbers #s(S), j 1, 2, re defined by

(1) us(S) infodim(H,)<" sup,. I,.. =* Su II.
#s(S)} is the sequence of eigenwlues of S*S [7, TheoremIf S is compact,
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We need the properties [7, Corollary X.9.3 and Lemma X.9.6]"

,;(S*) #;(S),

(3) ST)

_
T +(S),

(4) t’+k-l(S + T)

_
t(S) + tk(T),

(5) ST) <_ (S)( T).

It follows readily from (3) that if S is a bounded operator in H and W a
partial isometry, then ti(SW) j(S), all j.

LEMMA 1.1. Let H, H1, H2 be separable Hilbert spaces and let

S" HI --+ H and T" H -+ H

be bounded operators. If S is compact and R(T)

_
R( S) then there is a constant

c such that i(T) <_ c(S), all j.

Proof. We consider explicitly only the case when H, H1, H and R(S) are
infinite-dimensional. Let H0 be the orthogonal complement of the null space
of S, and W a partial isometry of H1 onto H0. Replacing S by SW and H1 by
H0, we may assume that S is 1-1. Similarly, by using isometries to transfer
the operators, we may assume that H1 H2 H. Replacing S by (SS*)1/2,
which has the same range [3, Lemma 1.1], we may assume S is positive. Then
there is a complete orthonormal sequence {u}

_
H with Sui iui, where

ti ti(S). With respect to the inner product (u, v} (S-lu, S-Iv), R(S) is
a Hilbert space K .with norm ul (u, u}/. Then T JT1, where
TI" H -.K is closed, hence continuous and J K -.H is the injection mapping.
Let Hi be the closed subspace of H generated by {ul]c >_ j}. Then
T* * *T1J and

Us(T) ti(V*) <_ sup,. II--1 T*u

Now {v k ul is a complete orthonormM sequence in K. It follows easily
that *J u tv, and hence that for u H, J*ul

_
u II. Therefore

the desired inequality holds with c T T II.
We shall say that S is of class a >_ 0 if there is a constant c such that

j(S) <_ cj-", all j. In particular any bounded operator is of class 0. An
easy consequence of (4) and (5) is

LEMMA 1.2. If S and T are operators in H of classes a and b respectively, then
S - T is of class rain (a, b) and ST is of class a - b.

Since, as noted above, {t(S)} is the sequence of eigenvalues of S*S for S
compact; since ti(S) -+ 0 implies S compact, we have

LEMMA 1.3. If S is of class a > 1/2, then it is of Hilbert-Schmidt type.
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2. Sobolev spaces and elliptic operators
Let 2 be n open subset of E. Denote by (2) the spce of infinitely

differentiable complex-vlued functions on 2 with compact support, nd by
LS(2) the usual LS-spce with inner product (u, v). For m non-negative
integer, H() is the spce of functions u whose distribution derivatives Du
of order m re ll in L(). This is Hilbert spce with inner product
(u, v) (Du, D%), 1 m. If K is compact subset of , we denote
byH the subspce ofH () consisting of those u with support supp (u) K.

LEMMA 2.1. Suppose S is a bounded operator in H() wi$h R(S) H
where K is a compact subset of and p m. Then S is of class (p m /n.

Proof. Cover neighborhood of K by finite number of closed cubes
Ks , nd tke functions s e() with supp (s) Ks, Cs(.x) 1,
x e K. Then S Ss where Ss u Su. By Lemm 1.2 we cn therefore
reduce to the case K a cube. LetH(K) be the spce of periodic distributions
on K with deriwtives of order in LS(K). ThenR(S) H(K). For an
n-tuple a (, n) of integers, let . x a x, W W a, x,, x e

If d is the length of side of K, the functions u(x) exp 2ia. x) re a com-
plete orthogonl system for H(K), ll 1. Let {v} nd w} be the correspond-
ing normalized sequences for H(K) nd H(K) respectively. Then the
unitary map W of H:(K) onto H(K) tking v onto w is esily seen to be of
class (p m)/n as n operator in H:(K). The desired conclusion follows
from Le 1.1.

Let A aD, al m, be prtil differential operator with coeffi-
cients a mesurble nd bounded on ech compact subset of . Let A be
the restriction of A to subspce D(A,) with

(e) D(A) H(e),

where Ho() u u e H(), ll e () }. Assume that A is closed nd
that the resolvent set r(A) is not empty. Tke k er(A) nd set
S= (A-X)-.
Given operators B, C let [B, C] BC CB. Given e (), let lso

denote the operation of multiplication of function by .
LEMMA 2.2. For e (), S is of class m/n and [A ]S is of class 1In as

operaors in L

Proof. R(S) H%() H, where K supp (). Therefore by
Lemm 2.1, S is of class m/n.

Since A is closed nd of order m, it is clear that D(A) H. Thus
’D(A) D(A). Tkee() such(x) 1 forxeK supp().
Then

[A, ]Z [,, ]Z.
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Let K* supp (k). Then kS is continuous to H.. By Lemmas 1.1 and
2.1 the injection mapping of H:. to H is of class 1In in the latter space.
But [A1, ] is of order _< m 1, hence continuous from H: to L(2). It
follows that [A, ]S is of class 0 -t- 1/n 0 1In.
LEMMA 2.3. For q )( and q a positive integer, qS is of class mq/n as an

operator in L

Proof. We shall show by induction that [A,]S is of class
[m(q 1) 1J/n, and S is of class mq/n. The case q 1 is Lemma 2.2.
Suppose this has been proved for q, and suppose that [A, ]S+ has been
shown to be of class j/n for some j < mq -[- 1. Take k e (2) with (x) 1,
x e supp (). Note that [, S] S[A, ]S. Then

[A, ]S+1 [A, ,]S

[A, q,][, S]S - [A, ,]SS

([A, ,]S)([A, ]]Sq+l) -[- ([A, ]S)(Sq).

By the induction assumptions the first term on the right is of class 1In + j/n
and the second is of class 1In nu mq/n >_ (j + 1)In. So the sum is of class
(j - 1)In. Thus [A, ]Sq+l is of class (mq - 1) In. As for Sq+,

@Sq-hi /oSq’t’l [.o, SISq .9[_ SoSq

(S) [A, ]Sq+l -- (S) (oSq ).

By what was just proved, the first term on the right is of class
m/n nt- mq -4- 1)/n > m( q + 1) In. By the induction assumption the second
term is of class m/n + mq/n m(q - 1)/n. This completes the proof.

As an immediate consequence of Lemmas 1.1, 1.3, and 2.3 we have the key
result.

COROLLARY 2.4. Let S be as above, q > n/2m and e )(). If H is a
Hilbert space and T H ---> L() is bounded and has R(T) R(Sq), then
is of Hilbert-Schmidt type.

Remarks. At least when the coefficients aa for a m are continuous, the
assumptions that A has a non-empty resolvent set while D(A) Hoc()
imply that A is elliptic. Conversely if aa is continuous for a m and A is
elliptic and formally self-adjoint, then under fairly general conditions A has
self-adjoint realization corresponding to the Dirichlet problem [6].

3. The eigenfunction expansion theorem

As in the previous section, f is an open subset of E and A aD is an
operator of order m with measurable, locally bounded coefficients. We assume
that for some choice of D(A1) with

)(a)

_
D(A)

_
H,oc(a),
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the restriction A1 of A to D(AI) is self-adjoint in L2(t). Denote the complex
conjugate of a by a*.
THEOREM. There are a vector-valued measure , on the real line R and a

unitary mapping V of L2() onto L(R1, &,) such that for u eD(A),
a) VAI u(k) kVu(k) for ,-almost all k e R1.

Moreover there is a function O(x, k) which is dx X d-square integrable on each
compact subset of f X R and such that

(b) Vu(k) f O(x,k)*u(x)dxforueL() anda.a.k,
(c) V*g(x) f O(x, k)g(k) d,()) forg eL(R, &,) and a.a. x,
(d) AS kS for a.a. k, where 8x(x) 8(x, k).

(The integrals in (b) and (c) are taken in the mean square sense, while (d).is
taken in the sense of distributions.)

Proof. The first part of the statement is just the standard spectral repre-
sentation for a self-adjoint operator: there is a finite or countable set
of finite measures on R and a unitary mapping V of L(gt) onto L(R, d)

@ L2(R,&,,) diagonalizing A in the sense of (a) [7, Theorem XII.3.5].
Let S (A -i)-1. Then VSqu()) () -i)-qVu()). Therefore V*g R
(Sq) if and only if ( -t- i)qg()) L(R, d). In particular, if g has compact
support then V*g e R(Sq), all q.
Now let Ij

_
R be the interval (-j,j) and let t/be an increasing sequence

of relatively compact open subsets of 2 with union gt. Take functions
e (t) with q(x) 1, all x e gt5. Let W5 be the restriction to L(I, d)

of . V*. Then R(W)

_
R(q5 sq), all q. It follows from Corollary 2.4 that

W. is an operator of Hilbert-Schmidt type. Therefore there is a kernel
85(x, k) L( X I dx d) such that for g L(I5, d),

V (z) 05(x, X)g(X) &,(X), a.e. in

Clearly for ]c >_ j, 8k 85 a.e. on t5 X I5. Therefore there is a function 8,
measurable and dx X &, square integrable on each compact subset of 2 X R,

Lsuch that for g e (R, d),

V*g(x) lin. 8(x, ))g(h) d(), a.e. in 2.

This proves (c) (b) and (d) follow by standard arguments.
g e L(R1, d) with compact support,

For u e L(),

fe(X)Vu(X)* d(x) (, Vu) (V*e, u)

ff e(x)O(x, )u()* dx d,().

Then (b) follows from Fubini’s theorem. Finally, for ue()

_
D(A),
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letting ( denote the distribution pairing we have

(AOx u) (Ox Au} VAu(h) XVu(k)

(tx, u}, ..
Since (t) is separable, this implies that as a distribution Atx ktx for almost
all .
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