TENSOR PRODUCTS AND COMPACT GROUPS

BY

LARRY C. GROVE

1. Introduction

In [3], there was defined a tensor product of H^* -algebras A and B that are modules over another H^* -algebra C. In this paper the tensor product is redefined in a slightly different fashion, its structure is discussed, and the special case in which the algebras are group algebras of compact groups is investigated in detail.

2. Tensor products

Proposition 1 and Theorem 1 of this section have analogues in §2 of [3]. The proofs are in each case similar to and, in fact, somewhat simpler than those in [3], and so they are omitted. Throughout the section A, B, and C denote H^* -algebras, A is a right C-module and B is a left C-module.

DEFINITION. F(A, B) is the free algebra over **C** generated by $A \times B$, i.e. F(A, B) is the collection of all (finite) formal sums of the form $\sum_{i=1}^{n} \lambda_i(a_i, b_i), \lambda_i \in \mathbf{C}, a_i \in A$, and $b_i \in B$, with the usual operations. F(A, B)is also a pseudo-inner product space if we define

$$((a_1, b_1), (a_2, b_2)) = (a_1, a_2) (b_1, b_2)$$

and extend by linearity.

Denote by I'_1 the ideal in F(A, B) spanned by the set of all elements of the following forms:

- $(1) (a_1 + a_2, b) (a_1, b) (a_2, b),$
- $(2) (a, b_1 + b_2) (a, b_1) (a, b_2),$
- (3) $\lambda(a, b) (\lambda a, b)$, and
- (4) $\lambda(a, b) (a, \lambda b)$.

Denote by I'_2 the ideal in F(A, B) spanned by the set of all elements of the form

(5) $(ac, b) - (a, cb), c \in C.$

Then set $I' = I'_1 + I'_2$, the ideal spanned by all elements of the forms (1) through (5).

Proposition 1. $I'_1 = \{X \in F(A, B) : (X, X) = 0\}.$

F(A, B) is a pseudo-normed space, with $||X||^2 = (X, X)$. Denote by $\mathfrak{F}(A, B)$ its pseudo-normed completion, i.e. all Cauchy sequences from

Received October 17, 1966.

F(A, B). All the operations on F(A, B) extend to $\mathfrak{F}(A, B)$ and $\mathfrak{F}(A, B)$ is a complete pseudo-normed algebra over C. Let I_1 , I_2 , and I denote the closures in $\mathfrak{F}(A, B)$ of I'_1 , I'_2 , and I', respectively. By Proposition 1, I_1 is the closure of (0), and so $I = I_2$ is the closed ideal of $\mathfrak{F}(A, B)$ spanned by all elements of the form (5).

DEFINITION. A $\otimes_{c} B$, the tensor product of A and B over C, is the quotient algebra $\mathfrak{F}(A, B)/I$. We denote the element (a, b) + I by $a \otimes b$.

THEOREM 1. A $\otimes_{c} B$ is isometric and isomorphic with a closed ideal E in $A \otimes B$; E is the orthogonal complement of the ideal D spanned by all elements of the form $ac \otimes b - a \otimes cb$, $a \in A$, $b \in B$, $c \in C$.

COROLLARY 1. $A \otimes_c B$ is an H^* -algebra, its minimal closed ideals can be identified with those minimal closed ideals of $A \otimes B$ that are orthogonal to D.

COROLLARY 2. If A and B are strongly semi-simple, then $A \otimes_{c} B$ is strongly semi-simple.

It should be pointed out that $A \otimes_{C} B$, as defined here, is not necessarily isomorphic with the algebra defined in [3]. Suppose, for example, that A, B, and C are closed ideals in an H^* -algebra α . If M denotes the direct sum of all the one-dimensional minimal ideals in $A \cap B \cap C$, then computations similar to those following Proposition 3 of [3] show that $A \otimes_{c} B$ is isomorphic with

 $M \oplus ((A \cap C^{\perp}) \otimes (B \cap C^{\perp})).$

In particular, if M is the direct sum of all the one-dimensional ideals in A, then $A \otimes_A A \cong M$.

We show next that $A \otimes_{C} B$ can be characterized in terms of certain universal mapping properties (the development here parallels that in §12 of [1]).

DEFINITION. If H is an H^{*}-algebra, a mapping $\varphi : A \times B \to H$ is called balanced if and only if it satisfies

- (1) φ is bilinear,
- (2) $\varphi(\lambda_1 a_1, b_1) = \varphi(a_1, \lambda_1 b_1) = \lambda_1 \varphi(a_1, b_1),$
- $\varphi(a_1 a_2, b_1 b_2) = \varphi(a_1, b_1)\varphi(a_2, b_2),$ (3)
- (4)
- $\varphi(a_1 c, b_1) = \varphi(a_1, cb_1), \text{ and} \\ \left\| \sum_{i=1}^n \lambda_i \varphi(a_i, b_i) \right\|^2 \le \sum_{i,j} \lambda_i \bar{\lambda}_j(a_i, a_j)(b_i, b_j)$ (5)

for all λ_i , a_i , b_i , and c.

PROPOSITION 2. The map $t : A \times B \to A \otimes_{c} B$, defined by $t(a, b) = a \otimes b$, is a balanced map, and linear combinations of elements in the range of t are dense in $A \otimes_c B$.

Proof. Conditions (1)-(4) for balanced maps obviously hold for t. As for (5), we have

$$\begin{split} \|\sum \lambda_i t(a_i, b_i) \|^2 &= \|\sum \lambda_i (a_i \otimes b_i) \|^2 \\ &= \inf \{\|\sum \lambda_i (a_i, b_i) + X \|^2 : X \epsilon I \} \\ &\leq \|\sum \lambda_i (a_i, b_i) \|^2 \\ &= \sum \lambda_i \overline{\lambda}_j (a_i, a_j) (b_i, b_j). \end{split}$$

The second statement is obvious since the elements $\sum \lambda_i t(a_i, b_i)$ comprise the image of F(A, B) under the quotient map.

THEOREM 2. If $\varphi : A \times B \to H$ is a balanced map, and t is the map defined in Proposition 2, then there is a unique continuous homomorphism

$$\varphi^*:A \otimes_c B \to H$$

such that $\varphi = \varphi^* t$. Conversely, if T is an H^* -algebra and $t_1 : A \times B \to T$ is a balanced map with the properties that every balanced map $\varphi : A \times B \to H$ "factors through" T via t_1 (as above), and that linear combinations of range elements of t_1 are dense in T, then T is isomorphic and isometric with $A \otimes_C B$.

Proof. Extend φ to a mapping φ' on all of F(A, B) by defining

$$arphi'(\sum \lambda_i(a_i, b_i)) = \sum \lambda_i \varphi(a_i, b_i).$$

Since φ is balanced, φ' is easily seen to be an algebra homomorphism on F(A, B). By the definition of the pseudonorm on F(A, B), condition (5) for balanced maps simply says that φ' is bounded, with bound at most one. Conditions (1) through (4) insure that $\varphi' | I' = 0$. Since φ' is continuous it extends uniquely to a homomorphism on $\mathfrak{F}(A, B)$ to H that vanishes on I and has the same bound. As a result, φ' gives rise to a continuous homomorphism

$$\varphi^*: \mathfrak{F}(A, B)/I = A \otimes_c B \to H,$$

defined by $\varphi^*(X + I) = \varphi'(X)$, again with the same bound (see [5, p. 16]). Observe that

$$\varphi^*t(a,b) = \varphi^*((a,b) + I) = \varphi'(a,b) = \varphi(a,b),$$

and also that the uniqueness of φ^* follows from the fact that linear combinations of the elements in the range of t are dense in $A \otimes_c B$.

As for the converse, we have homomorphisms

$$t^*: T \to A \otimes_c B \text{ and } t_1^*: A \otimes_c B \to T,$$

each with bound at most one, such that $t = t^*t_1$ and $t_1 = t_1^*t$. Thus $t_1 = t_1^*t^*t_1$ and $t = t^*t_1^*t$, and so $t_1^*t^*$ and $t^*t_1^*$ are both identity maps when restricted to the linear spans of the ranges of t_1 and t, respectively. Since these are dense, t^* is an isometric isomorphism on T onto $A \otimes_C B$ (isometry is immediate since $||t^*X|| \leq ||X|| = ||t_1^*t^*X|| \leq ||t^*X||$, all $X \in T$).

3. Group algebras of compact groups

Suppose G, H, and K are compact groups. Let us denote elements of the roup algebra $L^2(G)$ by g, g_1, g_2, \cdots , elements of $L^2(H)$ by h, h_1, \cdots , and elements of $L^2(K)$ by k, k_1, \cdots . Denote by gh that function on $G \times H$ whose value at (x, y) is g(x)h(y).

Suppose $\theta: K \to G$ and $\varphi: K \to H$ are continuous homomorphisms. For example, G and H might be subgroups of some common group, K a closed subgroup of $G \cap H$, and θ and φ inclusion maps. As another example, K might be a closed subgroup of $G \times H$ and θ and φ the restrictions to K of projection maps into G and H. Module actions of $L^2(K)$ on $L^2(G)$ and $L^2(H)$ can be defined as follows:

$$(g*k)(x) = \int_{K} g(x\theta z^{-1})k(z) dz,$$

and

$$(k*h)(y) = \int_{\mathbf{x}} k(z)h((\varphi z^{-1})y) dz$$

for all $x \in G$, $y \in H$.

As was observed in [3], the map $gh \to g \otimes h$ extends to an isometric isomorphism on $L^2(G \times H)$ onto $L^2(G) \otimes L^2(H)$. Thus if we set $A = L^2(G)$, $B = L^2(H)$, and $C = L^2(K)$ we have, by Theorem 1, that $A \otimes_C B$ is isomorphic and isometric with the ideal J of $L^2(G \times H)$ that is the orthogonal complement of the ideal generated by all functions of the form (g*k)h - g(k*h). If $F \in J$, then

$$((g*k)h - g(k*h), F) = 0$$

for all g, h, and k. In other words

$$\int k(z) \iint (g(x\theta z^{-1})h(y) - g(x)h((\varphi z^{-1})y))\overline{F(x,y)} \, dy \, dx \, dz = 0$$

for all k, and so

Changing variables, we have

$$\iint g(x)h(y)\overline{F(x\theta z, y)}\,dydx = \iint g(x)h(y)\overline{F(x, (\varphi z)y)}\,dy\,dx,$$

or $(gh, F^{(\theta z, e)}) = (gh, F_{(e,\varphi z)})$, where, in general, $f^{u}(v) = f(vu)$ and $f_{u}(v) = f(uv)$. Each equality holds for all g and h, and almost every $z \in K$. Since linear combinations of the functions gh are dense in $L^{2}(G \times H)$, it follows that $F^{(\theta z, e)} = F_{(e,\varphi z)}$, i.e. that $F(x\theta z, y) = F(x, (\varphi z)y)$ for almost every pair $(x, y) \in G \times H$ and almost all $z \in K$. The next theorem asserts that this property characterizes J when θ and φ are central. **THEOREM 3.** If θK and φK are subgroups of the centers of G and H, respectively, then $A \otimes_{C} B$ is isometric and isomorphic with the ideal in $L^{2}(G \times H)$ consisting of all functions F such that $F^{(\theta z, e)} = F_{(e, \varphi z)}$ for almost all $z \in K$.

Proof. Since θ and φ are central, it is easily seen that $(g*k)_x = g_x*k$ and $(g*k)^x = g^x*k$. Thus

$$((g*k)h - g(k*h))_{(x,y)} = (g_x*k)h_y - g_x(k*h_y),$$

$$((g*k)h - g(k*h))^{(x,y)} = (g^x*k)h^y - g^x(k*h^y),$$

and the closed linear subspace L of $L^2(G \times H)$ spanned by all

(g*k)h - g(k*h)

is translation invariant. It follows that L is an ideal (see [5, p. 125]), and hence that $L = J^{\perp}$. Thus in order to show that $F \in J$ it suffices to show that (F, (g*k)h) = (F, g(k*h)) for all g, h, and k.

Suppose then that $F \in L^2(G \times H)$ and that $F^{(\theta z, e)} = F_{(e, \varphi z)}$ for almost all $z \in K$. Then

$$((g*k)h, F) = \iiint g(x\theta z^{-1})k(z)h(y)\overline{F(x, y)} \, dz \, dx \, dy$$
$$= \iiint g(x)k(z)h(y)\overline{F(x\theta z, y)} \, dx \, dy \, dz$$
$$= \iiint g(x)k(z)h(y)\overline{F(x, y(\varphi z)y)} \, dy \, dx \, dz$$
$$= \iiint g(x)k(z)h((\varphi z^{-1})y)\overline{F(x, y)} \, dy \, dx \, dz$$
$$= (g(k*h), F) \qquad \text{for all } g, h, \text{ and } k$$

Thus $F \in J$ and the theorem is proved.

For G and H compact, the next theorem is a generalization of Theorem 4.1 in [2].

THEOREM 4. If θ and φ are central, then $A \otimes_{c} B$ is isomorphic and isometric with $L^{2}((G \times H)/Q)$, where Q is a closed normal subgroup of $G \times H$.

Proof. Define Q to be the set of all pairs $(\theta z, \varphi z^{-1}), z \in K$. Since θ and φ are continuous and central, it is immediate that Q is a closed normal subgroup of $G \times H$. If $F \in J$ then F is (essentially) constant on the cosets of Q, for if

$$(x, y) = (u\theta z, v\varphi z^{-1}) = (x\theta z, (\varphi z^{-1})y),$$

then

$$F(x, y) = F(u\theta z, (\varphi z^{-1})v) = F(u, \varphi z(\varphi z^{-1})v) = F(u, v)$$

Suppose, conversely, that $F \in L^2(G \times H)$ is constant on the cosets of Q. Then $F(x\theta z, y) = F(x\theta z\theta^{-1}z, (\varphi z)y) = F(x, (\varphi z)y)$, and $F \in J$.

Let us denote by m_1 and m_2 the normalized Haar measures on $G \times H$ and $(G \times H)/Q$, respectively. The discussion of "quotient measures" in §33 of [5] shows that the map $F \to F^{\sharp}$, where $F^{\sharp}((x, y)Q) = F(x, y)$, is a 1-1 linear map from the collection of continuous functions in J onto the set of all continuous functions on $(G \times H)/Q$. Furthermore,

$$\int F(x, y) \, dm_1(x, y) = \int F^{\#}((x, y)Q) \, dm_2((x, y)Q)$$

for all continuous $F \,\epsilon J$ (that the measures are correctly normalized becomes apparent upon integration of a constant function). It follows immediately, since the norms and algebra products are defined in terms of integrals, that the map $F \to F^{\text{\#}}$ extends to an isometric algebra isomorphism on J onto $L^2((G \times H)/Q)$. Since J and $A \otimes_c B$ were identified in Theorem 3, the proof is completed.

As an example of the sort of situation to which Theorem 4 might apply, suppose that G is a finite-dimensional compact connected group. It is shown in [6, p. 479] that we may assume $G = (G \times H)/K$, where G is a simply connected, compact, semi-simple Lie group, H is a finite-dimensional, compact, connected Abelian group, and K is a finite normal subgroup of $G \times H$. By the Pontrjagin Duality Theorem, H can be described algebraically as follows: it is the dual of a (discrete) torsion-free Abelian group of finite rank (see [4, pp. 385–386]). For $(x, y) \in K$ define $\theta(x, y) = x$ and $\varphi(x, y) = y^{-1}$. Since K is finite and $G \times H$ is connected, K is in the center of $G \times H$, and so θ and φ are central homomorphisms. By Theorem 4, $L^2((G \times H)/Q)$). is

isometric and isomorphic with $A \otimes_{C} B$, with $A = L^{2}(G)$, $B = L^{2}(H)$, and

$$C = L^{2}(K). \text{ But}$$
$$Q = \{(\theta(x, y), \varphi(x, y)^{-1}) : (x, y) \in K\} = \{(x, (y^{-1})^{-1}) : (x, y) \in K\} = K$$

in this case, and so we have $L^2(\mathcal{G})$ isomorphic and isometric with $A \otimes_{\mathcal{C}} B$. As a result, all irreducible representations S of \mathcal{G} over \mathbb{C} may be obtained (to within equivalence) in the following manner. Choose an irreducible representation T of G and a character α of H with the property that $T(x) = \overline{\alpha(y)I}$ for each of the finitely many pairs $(x, y) \in K$. Then set $S((x, y)K) = \alpha(y)T(x)$ for each $(x, y)K \in \mathcal{G}$.

It is not known whether the requirement that θ and φ be central is essential in Theorem 4. If the requirement were to be dropped then Q would have to be redefined, probably as the closed normal subgroup generated by the set of all pairs $(\theta z, \varphi z^{-1}), z \in K$. With that definition of Q the conclusion of theorem 4 can be shown to hold in one special case where θ and φ may be highly noncentral. Suppose, in fact, that G = H = K, and $\theta = \varphi$ is the identity map. As observed in §2 above, $A \otimes_{c} B$ is then isometric and isomorphic with the direct sum M of all one-dimensional minimal ideals in $L^{2}(G)$. This in turn can be identified with $L^2(G/G')$, where G' is the closure of the commutator subgroup of G. Finally, $(G \times G)/Q$ is topologically isomorphic with G/G', and so $A \otimes_c B \cong L^2((G \times G)/Q)$.

References

- 1. C. CURTIS AND I. REINER, Representation theory of finite groups and associative algebras, New York, Interscience, 1962.
- 2. B. GELBAUM, Tensor products over Banach algebras, Trans. Amer. Math. Soc., vol. 118 (1965), pp. 131-149.
- 3. L. GROVE, Tensor products over H* algebras, Pacific J. Math., vol. 15 (1965), pp. 857-863.
- 4. E. HEWITT AND K. Ross, Abstract harmonic analysis I, New York, Academic Press, 1963.
- 5. L. LOOMIS, Abstract harmonic analysis, New York, Van Nostrand, 1953.
- 6. L. PONTRJAGIN, Continuous groups, second edition, Moscow, Gostehizdat, 1954 (in Russian).

THE UNIVERSITY OF OREGON EUGENE, OREGON