RELATIVE CONVEXITY AND TOTAL CONCAVITY

BY
 Bruce Peterson
 I. Relative convexity

The purpose of this paper is to generalize the idea of convexity in Euclidean space and study the properties of those sets, which we call totally concave, which are in some sense as non-convex as possible.

If $p_{1}, p_{2}, \cdots, p_{s}$ are points of E^{n} (Euclidean n-space), $1 \leqq n$, we will denote the closed convex cell spanned by these points by $p_{1} p_{2} \cdots p_{s}$. The dimension of this cell may of course be less than $s-1$. The complement of a set T in E^{n} will be denoted by $c T$. If S and T are sets in $E^{n}, S \circ T=\bigcup_{p \epsilon S, q \epsilon T}(p q)$.

Definition I.1. If S and T are sets in E^{n}, S will be said to be convex with respect to T if and only if, given $p_{1}, p_{2}, \cdots, p_{s} ; s \leqq n+1 ; p_{i} \in S \cap T$, the convex cell $p_{1} p_{2} \cdots p_{s} \subset S u c T$.

This is a generalization of convexity in the sense that if p and q are points of $S \cap T$, those points of the line segment $p q$ which are in T are also in $S . \quad A$ set $S \subset E^{n}$ is convex if and only if it is convex with respect to E^{n}. Any set is convex with respect to itself. The empty set is convex with respect to any set. A convex set is convex with respect to any set. If T is convex, $\mathrm{Bd}(T)$ is convex with respect to $c \operatorname{Int}(T)$.

Proposition I.2. If T is convex and S is convex with respect to T, then $S \cap T$ is convex.

Proof. If $p_{1}, p_{2} \in S \cap T$, then $p_{1} p_{2} \subset S \cup c T$ and by convexity $p_{1} p_{2} \subset T$. Hence $p_{1} p_{2} \subset S \cap T$.

Example I.3. In Figure 1a, S is convex with respect to $T, R \subset S$, but R is not convex with respect to T. In Figure $1 b, S$ is convex with respect to T, T is convex with respect to R, but S is not convex with respect to R.

Proposition I.4. If Λ is an index set and S_{α} is convex with respect to T for all $\alpha \in \Lambda$, then $\bigcap_{\alpha \in \Lambda} S_{\alpha}$ is convex with respect to T.

Proof. If $p_{1}, p_{2}, \cdots, p_{s} \in\left(\bigcap_{\alpha \in \Lambda} S_{\alpha}\right) \cap T$ the cell

$$
p_{1} p_{2} \cdots p_{s} \subset \bigcap_{\alpha \in \Lambda}\left(S_{\alpha} \cup c T\right)=\left(\bigcap_{\alpha \in \Lambda} S_{\alpha}\right) \cup c T
$$

Proposition I.5. If S is convex with respect to $R, T \subset R$, then S is convex with respect to T.

Proof. Let $p_{1}, p_{2}, \cdots, p_{s} \in S \cap T \subset S \cap R$. Then

$$
p_{1} p_{2} \cdots p_{s} \subset S \cup c R \subset S \cup c T
$$

Received October 10, 1966.

Corollary I.6. If Λ is an index set and S is convex with respect to T_{α} for all $\alpha \in \Lambda$ then S is convex with respect to $\bigcap_{\alpha \in \Lambda} T$.

Corollary I.7. \bar{T} is convex with respect to T.
Example I.8. In Figure 2a, S is convex with respect to both T_{1} and T_{2} but not with respect to $T_{1} \cup T_{2}$. In Figure 2b, both S_{1} and S_{2} are convex with respect to T but $S_{1} \cup S_{2}$ is not.

Proposition I.9. S is convex with respect to T if and only if $S \cap T$ is convex with respect to T.

Proof. If $p_{1}, p_{2}, \cdots, p_{s} \in(S \cap T) \cap T=S \cap T$ then

$$
p_{1} p_{2} \cdots p_{s} \subset S \mathbf{v} c T=(S \cap T) \cup c T
$$

Proposition I.10. S is convex with respect to T if and only if

$$
S \cap T=H(S \cap T) \cap T
$$

($H(T)$ is the convex cover of T.)

A
Figure 1a

A
Figure 2a

Figure 1b

B
Figure 2b

Proof. $S \cap T \subset H(S \cap T) \cap T$. If $p \in[H(S \cap T) \cap T]-[S \cap T]$, by Caratheodory's theorem [2] there exist $p_{1}, p_{2}, \cdots, p_{s}, s \leqq n+1, p_{i} \in S \cap T$, and $p \in p_{1} p_{2} \cdots p_{s}$. If S is convex with respect to $T, p_{1} p_{2} \cdots p_{s} \subset S \mathbf{u} c T$. Hence

$$
\begin{aligned}
p \in & {[H(S \cap T) \cap T] \cap c[S \cap T] \cap[S \cup c T] } \\
& =[H(S \cap T) \cap T] \cap\{[c S \cup c T] \cap[S \cup c T]\} \\
& =H(S \cap T) \cap T \cap c T=\emptyset
\end{aligned}
$$

Since $H(S \cap T)$ is convex it is convex with respect to T. By Proposition I.9, $H(S \cap T) \cap T=S \cap T$ is convex with respect to T, and by the same proposition S is convex with respect to T.

Example I.11. If Figure 3a below S is open, T closed and S is convex with respect to T, but $S \cap T \neq H(S) \cap T$. This example also shows that neither \bar{S} nor $\bar{S} \cap T$ need be convex with respect to T. In Figure $3 \mathrm{~b}, S$ is open, $S \cap T$ is open, but the closed segment $p q \subset T . S$ is convex with respect to T, but none of $\bar{S}, \overline{S \cap T}, \overline{S \cap T} \cap T, \overline{S \cap T} \cap \bar{T}, N(S, \delta)$ (a δ-neighborhood of S) is convex with respect to T. Hence none is convex with respect to \bar{T}.

In fact, about all that can be said about closures is that if S is convex with respect to T, then so is $S \cap \bar{T}$.

Example I.12. S and T are open, S is convex with respect to T, but $S \cap \bar{T}$ is not convex with respect to \bar{T}. Also note that $\operatorname{Int}(\bar{S})$ is not convex with respect to \bar{T}.

Proposition I.13. If S is convex with respect to T, then $\operatorname{Int}(S)$ is convex with respect to $\operatorname{Int}(T)$.

Proof. Let $p_{1}, p_{2}, \cdots, p_{n+1} \in \operatorname{Int}(S) \cap \operatorname{Int}(T)$, and for each i, pick a neighborhood $N\left(p_{i}\right) \subset \operatorname{Int}(S) \cap \operatorname{Int}(T)$. Let $R=H\left(\bigcup_{i=1}^{n+1} N\left(P_{i}\right)\right)$. If $x \in R$, we can, by Caratheodory's theorem, pick $q_{i 0}, q_{i 1}, \cdots, q_{i s} ; q_{i j} \in N\left(p_{i j}\right)$,

A
Figure 3a

B
Figure 3b

Figure 4
where each $p_{i j}$ is some p_{k}, so that $q_{i 0} q_{i 1} \cdots q_{i s}$ is a convex cell containing x. Each $q_{i j} \in S \cap \operatorname{Int}(T)$, so that

$$
x \in q_{i 0} q_{1} \cdots q_{i s} \subset S \mathbf{u} c \operatorname{Int}(T)
$$

It follows that

$$
R \subset S \mathbf{u} c \operatorname{Int}(T) \quad \text { and } \quad p_{1} p_{2} \cdots p_{n+1} \subset R \subset S \mathbf{u} c \operatorname{Int}(T)
$$

Now let $p \in p_{1} p_{2} \cdots p_{n+1}$. We wish to show that

$$
p \in \operatorname{Int}(S) \cup c \operatorname{Int}(T)
$$

If $p \in \operatorname{Int}(T), p \in \operatorname{Int}(R) \cap \operatorname{Int}(T)$ and there is a neighborhood
$N(p) \subset \operatorname{Int}(R) \cap \operatorname{Int}(T) \subset(S \cup c \operatorname{Int}(T)) \cap \operatorname{Int}(T)=S \cap \operatorname{Int}(T) \subset S$.
Hence $p \epsilon \operatorname{Int}(S)$ and the theorem is proved.
Definition I.14. The relative convex cover of a set S with respect to another set T is denoted by $H_{T}(S)$, and defined to be $H(S \cap T) \cap T$. Note that Propositon I. 10 states that S is convex with respect to T if and only if $H_{T}(S)=S \cap T$.

Proposition I.15. If R is convex with respect to T and $S \subset R$, then

$$
H_{T}(S) \subset R \cap T=H_{T}(R)
$$

Proof. $S \cap T \subset R \cap T$ implies $H(S \cap T) \subset H(R \cap T)$. Hence

$$
H_{T}(S)=H(S \cap T) \cap T \subset H(R \cap T) \cap T=R \cap T=H_{T}(R)
$$

Proposition I.16. If $S \subset R$ then $H_{S}(T) \subset H_{R}(T)$.
Proposition I.17. If S is compact and T closed then $H_{T}(S)$ is compact.
Definition I.18. A point p of a convex set S is called an extreme point of S provided that p does not lie on the interior of any interval in S. The set of extreme points of S will be denoted by $E(S)$. If S is convex with respect to T and $p \epsilon S \cap T, p$ is extreme in S with respect to T provided $p \epsilon E(H(S \cap T))$. The set of extreme points of S with respect to T is denoted by $E_{T}(S)$. $E_{T}(S)=E(H(S \cap T)) \cap(S \cap T)$.

Lemma I.19. If S is compact, then

$$
H(S)=H(E(H(S)))=H(E(H(S)) \cap S)
$$

Proof. The first equality is well known and the inclusion

$$
H(E(H(S)) \cap S) \subset H(E(H(S)))
$$

is clear. If $p \in H(S)-S$, there exist points $q_{1}, q_{2}, \cdots, q_{s} ; q_{i} \in S ; s \leqq n+1$; with $p \in q_{1} q_{2} \cdots q_{\delta} \subset H(S)$. Since $p \neq q_{i}$ for any i, p is on the interior of some face of $q_{1} q_{2} \cdots q_{s}$ and cannot be an extreme point. Hence

$$
E(H(S)) \subset E(H(S)) \cap S
$$

and the lemma is established by taking convex covers.
Proposition I.20. If S is convex with respect to T, and $S \cap T$ is compact then $H_{T}(S)=H_{T}\left(E_{T}(S)\right)$.

Proof.

$$
\begin{aligned}
H_{T}(S) & =H(S \cap T) \cap T \\
& =H(E(H(S \cap T)) \cap(S \cap T)) \cap T \quad \text { by the previous lemma } \\
& =H\left(E_{T}(S)\right) \cap T=H\left(E_{T}(S) \cap T\right) \cap T=H_{T}\left(E_{T}(S)\right)
\end{aligned}
$$

Theorem I. 21 (Helly's theorem for relatively convex sets). If S_{1}, S_{2}, \cdots, S_{m} are sets, relatively convex with respect to $T \subset E^{n}$, and if every $n+1$ of them intersect in a point of T, and $S_{1} \cap T$ is convex, then $\bigcap_{i=1}^{m}\left(S_{i} \cap T\right)$ is not empty.

Proof. Let $S_{i 1}, S_{i 2}, \cdots, S_{i, n+1}$ be $n+1$ of the sets S_{i}. Since $S_{i j}$ is convex wih respect to $T, S_{i j} \cap T=H\left(S_{i j} \cap T\right) \cap T$. By hypothesis there is a point

$$
p \epsilon\left(\bigcap_{j=1}^{n+1} S_{i j}\right) \cap T=\bigcap_{j=1}^{n+1}\left(S_{i j} \cap T\right) \subset \bigcap_{j=1}^{n+1} H\left(S_{i j} \cap T\right) .
$$

By Helly's theorem, there is a point $x \epsilon \bigcap_{i=1}^{m} H\left(S_{i} \cap T\right)$. Since $S_{1} \cap T$ is convex, $x \in H\left(S_{1} \cap T\right)=S_{1} \cap T \subset T$. Hence

$$
x \in\left(\bigcap_{i=1}^{m} H\left(S_{i} \cap T\right)\right) \cap T=\bigcap_{i=1}^{m}\left(H\left(S_{i} \cap T\right) \cap T\right)=\bigcap_{i=1}^{m}\left(S_{i} \cap T\right)
$$

Corollary I.22. If $S_{1}, S_{2}, \cdots, S_{m}$ are subsets of $T \subset E^{n}$, which are convex with respect to T and if every $n+1$ of them have a non-empty intersection, and if S_{1} is convex, then $\bigcap_{i=1}^{m} S_{i}$ is not empty.

Example I.23. The condition that S_{1} be convex cannot be removed in the above theorem. In Figure $5, S_{1}, S_{2}, S_{3}$, and S_{4} are all convex with respect to the annulus T, and intersect in threes, but have an empty intersection.

It is easy to generalize Caratheodory's theorem to relative covers and relatively convex cells.

Proposition I.24. If $p \in H_{T}(S), S \cup T \subset E^{n}$, then there exist points $p_{1}, p_{2}, \cdots, p_{s} ; s \leqq n+1 ; \mathrm{p}_{i} \in S \cap T$ such that $p \in p_{1} p_{2} \cdots p_{s} \subset S \mathbf{u} c T$.

Figure 5

II. Totally concave sets

Definition II.1. A set T in E^{n} is said to be totally concave if and only if S is convex with respect to T for any subset S of T and T is not convex.

There are many examples of totally concave sets; the vertices of a simplex, the unit sphere, the rational points of a circle, and the vertices of a cube are a few.

Proposition II.2. A totally concave set has no non-degenerate convex subsets.
Proof. If S, convex, is contained in T, totally concave, and S contains more than one point, it contains a segment whose endpoints form a subset of T which is not convex with respect to T.

The converse of this proposition is clearly false. The unit sphere plus its center has no non-degenerate convex subsets and is not totally concave.

Proposition II.3. Any non-degenerate subset of a totally oncave set is totally concave.

Proof. If T is totally concave and $S \subset R \subset T$ and
then

$$
p_{1}, p_{2}, \cdots, p_{s} \in S \cap R \subset S \cap T
$$

$$
p_{1} p_{2} \cdots p_{s} \subset S \mathbf{u} c T \subset S \mathbf{u} c R
$$

and R is totally concave.
Proposition II.4. T is totally concave if and only if it is convex with respect to any set of k points, $k \leqq n+1$, contained in it.

Proof. Necessity is trivial. If T is not totally concave it has a subset S which is not convex with respect to T. Hence, in S, there are k points $p_{1}, p_{2}, \cdots, p_{k} ; k \leqq n+1$; such that $p_{1} p_{2} \cdots p_{k}$ is not contained in $S \mathbf{u} c T$. It now follows that the points $p_{1}, p_{2}, \cdots, p_{k}$ form a subset of T which is not convex with respect to T.

Proposition II.5. The only totally concave sets on the line are sets consisting of exactly two points.

Proof. If T is totally concave and contains three points, the two farthest apart form a subset of T which is not convex with respect to T.

Proposition II.6. The extreme points of a convex set form a totally concave set. (Provided, of course, there is more than one.)

Proof. If $E(T)$ is convex and p_{1} and $p_{2} \epsilon E(T)$, then the segment $p_{1} p_{2} \subset E(T)$, and is an interior point of the segment. Since $E(T) \subset T$, this cannot happen.

Let $S \subset E(T), S=\left\{p_{1}, p_{2}, \cdots, p_{k}\right\} ; k \leqq n+1$. We must show that

$$
p_{1} p_{2} \cdots p_{k} \subset S \mathbf{u} c E(T)
$$

$p_{1} p_{2} \cdots p_{k} \subset T$ by convexity. Hence if p is a point of $p_{1} p_{2} \cdots p_{k}$ which is not in S, it is sufficient to prove that p is not an extreme point of T. Since $p \notin S, p \neq p_{i}$ and hence is on the interior of some face of $p_{1} p_{2} \cdots p_{k}$. Thus p is on the interior of an interval in T and not extreme in T .

Proposition II.7. A totally concave set in the plane contains no triod.
Proof. It is sufficient to show that a triod cannot be totally concave in the plane. We may assume, without loss of generality, that the triod in question lies in a circular disk, has its center at the center of the disk, and has its three endpoints on the circumference of the disk. Let v be the center of the triod. Let R be the triangle formed by p_{1}, p_{2}, and p_{3}, the endpoints of the triod T. If $v \in R$, the set $S=\left\{p_{1}, p_{2}, p_{3}\right\}$ is not convex with respect to T. If $v \notin R$, p_{1}, p_{2}, and p_{3} lie on a semi-circle and may be numbered so that p_{2} lies between p_{1} and p_{3}. The arc $v p_{2}$ must intersect the segment $p_{1} p_{3}$ in a point of T. Thus the set $S=\left\{p_{1}, p_{3}\right\}$ is not convex with respect to T.

Note that in E^{3} we can find collections of arbitrarily many arcs having a common endpoint which lie on a sphere and hence form a totally concave set.

Since any compact convex set is the convex cover of its extreme points, it is of interest to ask whether there is any intrinsic property of the set of extremepoints which characterizes it. The following theorem, together with Proposition II.6, gives a complete answer to this question.

Theorem II.8. If T is totally concave, $T=E(H(T))$.
Proof. $E(H(T)) \subset T$ for any set T. If $T \subset E^{n}$ is totally concave and $p \epsilon T-E(H(T)), p$ is in the relative interior of some cell $H(S)$ where $S \subset T$
and S has at most $n+1$ points. This means that S is not convex with respect to T. This contradiction establishes the theorem.

Corollary II.9. Any totally concave set lies on the boundary of a convex set.
Corollary II.10. If T is totally concave in E^{n}, $\operatorname{dim} T \leqq n-1$.
Proof. The boundary of a convex set in E^{n} is topologically a k-sphere S^{k}, a k-hyperplane E^{k}, or a product $S^{r} \times E^{k-r}, 1 \leqq k \leqq n-1$.

Note that for each $k, 0 \leqq k \leqq n-1$, the unit k-sphere is a totally concave set of dimension k.

Corollary II.11. If T is totally concave, it is convex with respect to $H(T)$.
We can now generalize Proposition II.7.
Proposition II.12. If T is a totally concave set in E^{n} and if A is an $n-2$ disk on T, then A is on at most two $n-1$ disks in T.

Proof. There is nothing to prove if $\operatorname{dim} T<n-1$. If $\operatorname{dim} T=n-1$, we need only note that the desired property holds on the boundary of any convex set of dimension $n-1$ in E^{n}.

III. Totally convex sets

Definition III.1. A convex set S is called totally convex if and only if $\mathrm{Bd}(S)$ is totally concave.

Proposition III.2. A non-degenerate convex set S in E^{n} is totally convex if and only if $\mathrm{Bd}(S)=E(\bar{S})$.

Proof. If $\mathrm{Bd}(S)$ is totally concave, $\mathrm{Bd}(S)=E(H(\mathrm{Bd}(S)))=E(\bar{S})$. If $\mathrm{Bd}(S)=E(\bar{S}), \mathrm{Bd}(S)$ is totally concave by Proposition II.6.

It is not difficult to see that all sets of constant width are totally convex. Recall that a compact convex set has constant width if and only if the distance between parallel support planes is constant. Since $S=\bar{S}$ and $E(S) \subset \mathrm{Bd}(S)$, it is only necessary to see that $E(S) \supset \mathrm{Bd}(S)$. If $p \in \mathrm{Bd}(S)-E(S)$, there is a segment $p_{1} p_{2}$ in S with $p \in \operatorname{Int}\left(p_{1} p_{2}\right)$. Let π_{p} be a support plane at p. Since S lies on one side of $\pi_{p}, p_{1} p_{2} \subset \pi_{p} \cap S \subset \operatorname{Bd}(S)$. Parallel to π_{p} there is another support plane π_{q} with $\pi_{q} \cap \mathrm{Bd}(S)=q$ and $\rho\left(\pi_{p}, \pi_{q}\right)=\alpha$ (the width of the set S). Hence $\rho(p, q) \geqq \alpha$. If $\rho(p, q)>\alpha$, the diameter of S, $\delta(S)>\alpha$, which is impossible. If $\rho(p, q)=\alpha$, either $\rho\left(p_{1}, q\right)>\alpha$ or $\rho\left(p_{2}, q\right)>\alpha$ and again $\delta(S)>\alpha$.

Proposition III.3. If T_{1} and T_{2} are totally convex and $T_{1} \cap T_{2}$ is nondegenerate, then $T_{1} \cap T_{2}$ is totally convex.

Proof. Let $p \in \mathrm{Bd}\left(T_{1} \cap T_{2}\right) \subset \mathrm{Bd}\left(T_{1}\right)$ u $\mathrm{Bd}\left(T_{2}\right)$. If $p \in \mathrm{Bd}\left(T_{1}\right), p$ is an extreme point of \bar{T}_{1}. Since $p \in \overline{T_{1} \cap T_{2}}, p \in E\left(\overline{T_{1} \cap T_{2}}\right)$.

If we let T_{1} be a circle and inscribe in it an equilateral triangle, we may con-
struct a new totally convex set T_{2} by replacing each arc of the circle, cut off by two vertices of the triangle, by a new arc, with the same end points, but closer to the side of the triangle in question. We will in particular pick T_{2} so that the perpendicular distance from a point of the triangle to T_{2} is exactly half the distance from the point to T_{1}. It is now easy to see how to construct a sequence of totally convex sets whose intersection is not totally convex.

Definition III.4. If S is convex and $p \in \operatorname{Bd}(S)$, there is an $n-1$ support plane to S at p. If there is only one such plane, p is called a regular point of S, and $\mathrm{Bd}(S)$ is said to be differentiable at p. Otherwise, p is called a corner of S. The set of corners of S is denoted by $C(S)$.

Before considering the relation of the set $C(S)$ to the set S itself in the case where S is totally convex, it is worthwhile to note a few things about corners in general. An interior point of a 1 -face of a 3 -simplex is a corner but not an extreme point; any point on the boundary of a circular disk in E^{2} is an extreme point but not a corner. If $S \subset E^{2}, C(S) \subset E(S)$.

If S is a convex set in $E^{n}, C(S)$ is the set of points where $\mathrm{Bd}(S)$ is not differentiable. It is known that the measure of such a set is always zero [1]. Since $C(S)$ is contained in $\mathrm{Bd}(S)$, which is an $n-1$ sphere or a cylinder, $\operatorname{dim} C(S) \leqq n-1$. If $\operatorname{dim} C(S)=n-1, C(S)$ contains an open set in $\operatorname{Bd}(S)$, [3], and $C(S)$ has positive measure. Hence $\operatorname{dim} C(S) \leqq n-2$.

If S is a compact convex set in E^{2}, we may construct two horizontal and two vertical support lines to S. These lines intersect $\operatorname{Bd}(S)$ in single points or intervals; we will suppose the intersections are points for simplicity, although this is not necessary. The four points so defined divide $\mathrm{Bd}(S)$ into four arcs. Suppose one of these arcs, $p_{1} p_{2}$, has uncountably many corners on it; and suppose p_{1} lies on the lower support line and p_{2} on the right hand support line. Let the intersection of these lines be q. If x is a corner of S lying on $p_{1} p_{2}$, the two limiting support lines to S at x form a positive angle which intersects the segment $p_{2} q$ in an interval of positive length. Moreover, for different corners x_{1} and x_{2}, these intervals are disjoint. This is impossible, and the set of corners of S is therefore at most countable.

Example III.5. Let S be the unit disk in E^{2} and consider the sequence of points $\left\{x_{n}\right\}$, where x_{n} has polar coordinates $\left(1, \pi / 2^{n}\right) . \quad x_{n} \rightarrow(1,0)$. For each n, we replace the arc $x_{n} x_{n+1}$ by a straight line interval. The resulting set T has a corner at each point x_{n}, but no corner at $(1,0)$. If we do the same thing on a semi-circle we get a corner at $(1,0)$. It is not hard to see that by replacing the arcs by other arcs, we can get the same sort of examples with the sets involved being totally convex. Hence $C(T)$ may be infinite, and it may or may not be closed.

Theorem III.6. If S is a compact totally convex set in E^{n}, there is a convex set $K(S) \subset S$ with $C(S)=E(K(S))$.

Proof. Since S is closed $C(S) \subset S$. We define $K(S)=H(C(S))$. That $K(S) \subset S$ is clear. If $p \in K(S)-E(K(S))$ then $p \notin E(S)$ and $E(S) \cap K(S) \subset E(K(S))$.

If $p \in K(S)-E(S)$ there are, in $C(S)$, points $p_{1}, p_{2}, \cdots, p_{k} ; k \leqq n+1$; with $p \in p_{1} p_{2} \cdots p_{k}$. By the total convexity $C(S) \subset E(S)$ and $p \neq p_{i}$ for any i. Hence p is on the interior of a face of $p_{1} p_{2} \cdots p_{k} \subset K(S)$ and $p \notin E(K(S))$. Hence $E(K(S)) \subset E(S) \cap K(S)$ and

$$
\begin{equation*}
E(K(S))=E(S) \cap K(S) \tag{1}
\end{equation*}
$$

Now $C(S) \subset K(S) \cap E(S)$, and if $p \in[K(S) \cap E(S)]-C(S)$, there are, in $C(S)$, points $p_{1}, p_{2}, \cdots, p_{k} ; k \leqq n+1$; with $p \in p_{1} p_{2} \cdots p_{k}$. As before $p \neq p_{i}$ and p is not extreme in $K(S)$ and therefore not extreme in S. Hence $K(S) \cap E(S) \subset C(S)$ and

$$
\begin{equation*}
E(S) \cap K(S)=C(S) \tag{2}
\end{equation*}
$$

Equations (1) and (2) give the desired result.
We now concern ourselves with the converse problem. If T is a given closed convex set, can we find a totally convex set S, containing T, with $C(S)=E(T)$. If T is compact, we will have

$$
K(S)=H(C(S))=H(E(T))=T
$$

Example III.7. Let T be the set in the plane consisting of a square with semicircular disks on two opposite sides. In this case it is not possible to find a set S as described above. T has no corners but a corner p of the rectangle is an extreme point of T. Hence, the desired set S must have p as a corner. However, each support plane to S at p must contain the unique support line to T at p. This support line contains an interval on $\mathrm{Bd}(T)$, which must then be an interval on $\mathrm{Bd}(S)$, contradicting the total convexity of S.

Theorem III.8. If T is a compact convex set in E^{2} with $\mathrm{Bd}(E(T)) \subset C(T)$, then there is a totally convex set S in $E^{2}, S \supset T$, with

$$
C(S)=C(T) \quad \text { and } \quad \mathrm{Bd}(S) \cap \mathrm{Bd}(T)=E(T)
$$

Proof. If T consists of a single point a teardrop shape with the point as vertex will suffice. Now assume T is non-degenerate and let $p \epsilon \mathrm{Bd}(T)-E(T)$ so that p is on the interior of an interval $x_{1} x_{2}$ on $\mathrm{Bd}(T)$, with x_{1} and $x_{2} \in \operatorname{Bd}(E(T)) \subset C(T) ; x_{1} x_{2}$ is on a support line to T.

Since x_{1} and x_{2} are corners we may construct a circle C_{1} through x_{1} and x_{2} and containing T. We let T_{1} be the circular segment bounded by the interval $x_{1} x_{2}$ and that are of C_{1} which is on the opposite side of $x_{1} x_{2}$ from T. Let $S_{1}=T$ u $T_{1} . \quad S_{1}$ is convex and since x_{1} and x_{2} are corners the construction may be carried out in such a way as to leave x_{1} and x_{2} corners of S_{1}. The interior of $x_{1} x_{2}$, which consisted entirely of non-extreme points, has been replaced by an arc consisting of extreme points which are not corners.

We now let p^{\prime} be a point of $\mathrm{Bd}\left(S_{1}\right)-E\left(S_{1}\right)$. Since no intervals have been added in the construction of S_{1}, p^{\prime} is on the interior of an interval which must be on $\mathrm{Bd}(T)$. The endpoints of this interval are corners of T and therefore corners of S_{1}. We repeat the above construction, defining T_{2} as a segment of a circle and $S_{2}=S_{1} \cup T_{2}$. In this manner we get a sequence $\left\{S_{i}\right\}$, (possibly infinite), of sets with $C\left(S_{i}\right)=C(T) ; S_{i}=S_{i-1} \cup T_{i} . \quad S=U_{i} S_{i}$.

If p_{1} and $p_{2} \in S$, let k be the first integer for which p_{1} and p_{2} are both in S_{k}; $p_{1} p_{2} \subset S_{k} \subset S$. It is now easy to see that S is totally convex. Each corner of T is the endpoint of at most two intervals of non-extreme points. The support lines, after adjustments corresponding to these intervals, remain support lines at each succeeding stage and are support lines to S. Hence, $C(T) \subset C(S)$. Since $S \supset T$, each support line to S, which intersects T, is a support line to T. No corners are added in constructing T, each corner of S is in T, so that $C(S) \subset C(T)$. Hence $C(S)=C(T)$. That $\mathrm{Bd}(S) \cap \mathrm{Bd}(T)$ $=E(T)$ is clear from the construction.

If we insist only that T be bounded, we can perform the same construction on \bar{T}, replacing intervals by open pieces T_{i}. We will not, of course, get the last condition in this case.

Corollary III.9. If T is compact and convex in E^{2}, and $E(T) \subset C(T)$, there is a totally convex set S in $E^{2}, S \supset T$, with $C(S)=E(T)$. (In fact, $\operatorname{Bd}(S) \cap \operatorname{Bd}(T)=E(T)=C(S)=C(T)$.

Proof. Since $E(T)$ is closed in E^{2}, we can pick S by the theorem with $C(S)=C(T) . \quad$ Since $C(T) \subset \mathrm{E}(T)$ in $E^{2}, C(S)=C(T)=E(T)$.

It is clear that the set S in Theorem III. 8 can be chosen so that $\rho(\operatorname{Bd}(S), T)$ is arbitrarily small simply by taking the circles C_{i} large enough.

Theorem III.10. If T is compact and convex in E^{2}, in order that there shall exist a totally convex set $S \supset T, S \subset E^{2}$, and $K(S)=T$, it is necessary and sufficient that $E(T)=C(T)$.

Proof. Corollary III. 9 proves sufficiency. If the set S exists, $E(T)=C(S)$. If $p \in C(S) \subset T$, there are distinct support lines to S at p and, since $S \supset T$ these are support lines to T as well. Hence, $p \in C(T)$ and $C(S) \subset C(T)$. However, in $E^{2}, C(T) \subset E(T)$. Hence $C(T) \subset E(T)=C(S) \subset C(T)$ and $E(T)=C(T)$.

It may be possible, given the set T in E^{2}, to find the set S in some higher dimensional Euclidean space, without the condition of the above theorem. If T is a circular disk, we can take a lozenge shaped set in E^{3} to be the set S; $K(S)=T$ although T has no corners at all.

One is tempted to parallel Theorem III. 10 with a necessary and sufficient condition for the existence of a set $S \subset E^{2}$, with $C(S)=C(T)$. If this can be done the condition is not that of Theorem III.8. In Example III. 5 the point $(1,0) \in \mathrm{Bd}(E(T))-C(T)$. It is clear, however, that the construction of Theorem III. 8 works in this case also.

We have used the facts that $C(S) \subset E(S)$ and that $E(S)$ is closed in $\operatorname{Bd}(S)$ in an essential way in these theorems. Being peculiar to E^{2}, these properties make generalizations to higher dimensions appear quite difficult at this time.

References

1. Herbert Busemann, Convex surfaces, Interscience, New York, 1958.
2. Harold G. Eggleston, Convexity, Cambridge University Press, Cambridge, 1958.
3. Witold Hurewicz and Henry Wallman, Dimension theory, Princeton University Press, Princeton, 1941.
4. I. M. Yaglom and V. G. Boltyanskit, Convex figures, Holt, Rinehart and Winston, New York, 1961.

Middlebury College
Middlebury, Vermont

