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1. Introduction

Let T be a topological space, S closed subset of T, and C(S) and C(T)
the Banach spaces of bounded, continuous complex (or real) functions on S
and T, respectively. Let E C(S) and H C(T) be closed subspaces.
A continuous linear mp u E-- H is called a linear extension if u(f) is an
extension of f for every f E. The purpose of this paper is to study the exist-
ence of linear extensions of norm one.

IfH C(T), our problem was completely settled by Borsuk [3] for separable
metric T, and subsequently by Dugundji [6, Theorem 5] for all metric T.

THEOREM 1.1 (Borsuk-Dugundji). If T is metrizable, there exists a linear
extension u C( S) C(T) of norm one.

If H is a proper subspace of C(T), the situation becomes more complicated,
and Example 9.2 shows that no linear extension u C(S) -- H need exist even
when every f e C(S) cn be extended to some f’ e H. We therefore introduce
the following concept:

DEFINITION 1.2. The pair (E, H) has the bounded extension property if,
given any e > 0, every f E has a bounded family of extensions

{f,: W S, WopeninT} H

such that f.(x) -< e whenever x e T W.

Note that the pair (C(S), C(T) has this property whenever T is normal.
The following result was proved by the second author in [13] and [14].

THEOREM 1.3. If T is compact metric, and if (C(S), H) has the bounded
extension property, then there exists a linear extension u C(S) -- H of norm
o?e.

Perhaps the most interesting application of Theorem 1.3 was to the case
where T is the unit circle in the complex plane, H C(T) is the disc algebra
(i.e. H consists of boundary values of continuous functions on the unit disc
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Strictly speaking, Borsuk and Dugundji stated the theorem for real scalars, but

their proofs remain valid for complex scalars as well (which means, in particular, that u
is then complex-linear).

To be precise, [13] and [14] assume a propertywhich is formally stronger than the
bounded extension property, but which (see Corollary 5.3) is actually equivalent to it.
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D which are analytic on D T), and S is a closed subset of T of Lebesgue
measure 0. Here (C(S), H) has the bounded extension property by
E. Bishop’s refinement [2] of the Rudin-Carleson extension theorem.
The purpose of this paper is to give a new and simpler proof of Theorem 1.3,

while at the same time generalizing it in several directions. In particular, we
will show that C(S) can be replaced by any subspace E of C(S) satisfying
the following mild (and possibly superfluous) condition.

DEFINITION 1.4. A separable Banach space E is a l-space if it has an
increasing sequence F1 c F c of finite-dimensional subspaces, whose
union is dense in E, such that there is a projection of norm one from E onto
each F, .6 Such a sequence is called a .-sequence for E.

Every finite-dimensional Banach space is obviously a -space. More
generally, if S is compact metric, then ([11] or [12]) C(S) is a l-space. In
fact, all the standard separable Banach spaces are -spaces (see, for instance,
[4]). However, an example constructed by V. Gurarit [8] shows that there
are separable Banach spaces which are not -spaces.

THEOREM 1.5. Let T be any topological space. If E is a separable -space,
and if (E, H) has the bounded extension property, then there exists a linear
extension u E-- H of norm one.

The proof of Theorem 1.5, which is given in Sections 2 and 3, is entirely
self-contained and elementary. Only when we want to deduce Theorem 1.3
from Theorem 1.5 do we need the fact, quoted above, that C(S) is a rl-space

whenever S is compact metric.
In Sections 4-8 we obtain some refinements and extensions of Theorem

1.5. These sections are independent of each other, except that Corollary 5.3
is used in the proof of Lemma 8.3. Section 9 is devoted to examples.
Throughout the paper, T, S T, E C(S) and H c C(T) will retain the

meaning they had in this introduction. If J C(S) and K C(T) are
linear subspaces, A(J, K) will denote the set of linear extensions u J -- K.

2. Preliminary results
Throughout this section, we tacitly assume that (E, H) has the bounded

extension property.

LEMMA 2.1. Let G E be a finite-dimensional subspace, and > O. Then
there exists a bounded family

lVw W S, W open in T} A(G, H)

such that l(vwg)(t) whenever te T W and g 1.

For a recent generalization of this theorem, see [9].
Such spaces were first considered by J. Lindenstrauss [10], who called them "spaces

with the 1-projective approximation property". The term "-spaee" was introduced
by F. Browder and D. G. de Figueiredo [4].
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Proof. Let gl, g, be a base for G, so that each g G has a unique ex-
pansion g 1 ci(g)gi. For each i, let a be the norm of the projection
map g -. ci(g)gi, let a ’_ ai andlet c /a. For each/and open W ::) S,
let g. be as in Definition 1.2, and let vw be the unique element of A(G, H)
such that vw g. (i 1, n). These vw satisfy all our requirements.

PROPOSITION 2.2 Let F, G be finite-dimensional subspaces of E, let
u e A(F, C(T)), and let . O. Then there exists a v A(G, H) such that

whenever f e F, g e G, f + g - 1, and uf

_
1.

and let

For each v e A(G, H), let

K {uf + vg f e F, g e G, f Zr g

_
1,1] uf

_
lt,

a(t) sup{ih(t) l’hK,} for e T.

But
(f, g) --. uf vg is a continuous map from P onto K, so K, is als(compact.
To seenow that av is continuous, define 4 T--> C(K,) by (ht)(h) h(t).

Then is continuous (since K is compact), and a(t) (t)II, so a, is
continuous.

Let the family {v} be as in Lemma 2.1 with i 1/4% and denote a,w by
a. Since {v} is bounded, there is an M > 0 such that v < M for all
open W :::) S. Now if II f % g [I - 1 and uf - 1, then I! f I[ - 1 and hence
Ilgl] - 2. Thus

a(t) 1 if teS,

a(t)

_
1-l-2 if eT- W,

a(t)

_
1-t-2M if eT.

Let W T, and then define open W S (n 1, 2, inductively by

w+ w {tT" ,(t) < +
Denote v, by v, and a. by a.
Our definitions imply that, if T, then a(t) > 1 - 2ti for at most one n"

In fact, if there are such n, let no be the smallest one. Then W for any
n >’n0, and hence a(t)

_
1 + 2 for all n > no.

Pick an integer N > 0 such that 1 - 2M)N-1

_
/t. The preceding para-

graph implies that, if e T, then

Let us show that a, is continuous.
Observe, first, that K C(T) is compact" Let

P {(f,g)F X G" [If-g[I - 1,[luf[[

_
1}.

Then P is a bounded, closed subset of F G, and is thus compact.
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1 N 1(t) <_ (N(1 -t- 2/}) + (1 +2M)) _< 1 + 3/}.

Now let
1

v =nlV’’=
If feE, gG, IIf -4- g < 1, and ufll _< 1, then, for all t T,

1(uf + vg)(t) - (uf + v,g)(t)
n.l

1< (uf + v e)(t)l

1
_

a(t)

_
1 - 3.

Hence uf + vg 1 + 3 < 1 + , and that completes the proof.

COROLLARY 2.3. Let F G be finite-dimensional bspaces of E admitting
a linear projection G F of norm 1, and let > O. Then any u e A(F, H),
with u < 1 + , can be extended to a u’eA( e,H) with u < 1 + .

Proof. Pick > 0 so that

Pick v e A(G, H) according to Proposition 2.2, and let

u’h u(h) + v(h h), h G.

Sinceueh(F, H) andreA(G, H), wehaveu’eA(G, H). Let heGwith

h 1, and let us show that uh < 1 + .
Since u 1, we may let k h/]] u ]. It suffices to show that

Let f= vndg k-,sotht

u’ uf + vg.
But

IIf+ gl[ IIll IIll 1,
nd

Ilufl[ flu[[ [lull l[ IIll IIll IIhll ,
so the choice of v implies that u’k < 1 + . That completes the proof.

CooAav 2.4. If F is a finite-dimensional subspace of E, if t > O, and
if u A< F, H) ih u < 1 + t, then there eats a we A(F, H) wah w
and u < ,
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Proof. It will suffice to construct awl e A(F, H) such that, for some posi-
tiveh" < ,wehavellwlll < 1-t-5"andllu-w]l < -5". For we could
then inductively repeat the process, obtaining a Cauchy sequence w e A(F, H)
whose limit w satisfies both our requirements.
Denote u by k, and pick a positive 5" < 1/2 such that

(X-- l)(lq-5")

Now pick v e A(F, H) according to Proposition 2.2 (with G F), and let

1
w u+- x

Clearly wx e A(F, H).
To show that II w < 1 + 5", let h e F with h -< 1, and let us show that

Ilwhl] -< 1 + 5". Letf k-lhandg (k 1)k-lh, sothat

Then

and

w h uf + vg.

so the choice of v implies that I1 w h < 1 q- 5’.
To show that u wl < 5", pick h e F with 11 h < 1, and let us

show that (u w)h < 5". Now note that

k-1
u- (u ).

Let f k-lh, g --k-h. It will suffice to show that

f/,g < 1 -l-%
because then

11 (u w)h 11 (X i)ll uf + vg < (X 1)(1 -t- 5") <: 5’.

But
f + g 0,

and
uf _< u f xx-ll h 11 -< 1,

so that the choice of v implies that uf q- vg < 1 + ,
the proof.

3. Proof of Theorem 1.5
We begin with the following lemma, which will also be used in the next sec-

tion.

LEMMA 3.1. Let F c F2 be a r-sequence for E, let h >_ 1, and let
ve A(F,, H), with II v, <-- k and v,+ F, v, for all n. Then there exists a
(unique) u A(E, H) such that l] u <_ and u 1F, v,for all n.

That completes
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Proof. LetF U:_-IFn, and definev’F--HbyvlF v. Clearly
v e A(F, H), and v -< X. Since F is dense in E, v can be extended uniquely
to a continuous linear u E- H, and u -< )’. To see that u e A(E, H),
define rs C(T)-- C(S) by rs(f) f IS. Since rs is continuous,

E’ {feE" rs(uf) f}

is closed in E. But E’ :::) F and F is dense in E, so E’
u e A(E, H), and that completes the proof.

E. Hence

Proof of Theorem 1.5. Let F1 c F.... be a rl-sequence for E. Pick any
wx e A(F1, H) with wx 1; such a w exists by Corollary 2.4. By Corol-
laries 2.3 and 2.4, we can now inductively pick a sequence wn e A(Fn, H)
such that, for each n > 1, w 1 and

’Wn-4-1 Fn Wn ._< 2-’.

Now for each fixed n, the sequence wm F e A(Fn H) (m n, n + 1,
is Cauchy, and thus has a limit v e A(F, H) with v 1. Clearly
V+llF v for all n. Hence, by Lemma 3.1, there exists a u e A(E, H)
with]lull < landulF vforalln. Since]lull -> l for any linear ex-
tension, that completes the proof.

4. Extending linear extensions

An interesting feature of the Borsuk-Dugundji theorem (Theorem 1.1) is
that the linear extension u can be chosen so that uls 1 r. Does this remain
true for Theorem 1.3 if l r e H? Curiously, the answer is "yes" for real
scalars (see Section 8), and "no" for complex scalars (Example 9.1). How-
ever, we will now prove a result which implies that it is "almost" true even
in the complex case. (It implies that because, if S is compact metric, then
C(S) always has a rl-sequence F1 c F2 C with F1 the one-dimensional
subspace spanned by ls [11].)

Observe that part (a) of Theorem 4.1 actually sharpens Theorem 1.5.

THEOREM 4.1. Suppose that T is any topological space, and that (E, H)
has the bounded extension property. Suppose also that E is a separable -space
with r-sequence F F. and that w F---) H is a linear extension of
norm one. Then, for any > O:

(a) There exists a linear extension u E-- H, with u 1, such that

(b) There exists a linear extension v E-- H, with v <- 1 + , such
that w

Proof. (a) The proof proceeds precisely as the proof of Theorem 1.5 in
Section 3, taking Wl w and replacing 2 by 2-’. The linear extension

If A is a set, 1A denotes the function identically 1 on A.
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v" E--H constructed in the proof of Theorem 1.5 will now satisfy all our
requirements.

(b) By Corollary 2.3, there exist linear extensions v F--H such that
Vl w, and v < 1 -f- e and v,+llF, v, for all n. Our concIusion now
follows from Lemma 3.1.

5. Dominated convergence
Let T denote the set of all continuous bounded 4 T--. 1 with a positive

lower bound. If /x e r, define 4-1 e r by 4-1(t) (4(t))-1 If
4 e )r, Q c T, andre C(Q), define
if A C(Q), let 4A {4f "f eA}.
The following result refines Theorem 1.5.

THEOREM 5.1. Let T be a topological space, let 4 )r, and suppose that
E, H) has the bounded extension property and that 4-1E is a separable .-space.
Then there exists a linear extension u E H such that, iff E and if <-/ S,
then lull < 4.

Proof. The proof is almost shorter than the statement. First, it is easy to
check that (4-1E, 4-1H) also has the bounded extension property, so by
Theorem 1.5 there exists a linear extension v 4-E--*/-H of norm one. If
u" E--H is now defined by

u(f) /Xv(

then u satisfies all our requirements. That completes the proof.
When applying Theorem 5.1, note that each of the following conditions

implies that /x-E is a separable r-space.

(5.1.1) E is finite-dimensional,

(5.2.2) S is compact metric., and E C(S),

(5.2.3) E is a separable rl-space, and 4(s) 1 for s e S.

DEFINITION 5.2. (a) The pair (E, H) has the dominated extension prop-
erty if, for every 4 e r, any f e E with If(s) -< /(s) for s e S can be ex-

f’tended to some H with f’(t) < /x(t) for all e T.
(b) The pair (E, H) has the strict dominated extension property if (a) is

satisfied with < everywhere replaced by <.

The following result now follows from Theorem 5.1, which is used to show
that (c)-- (a). There are more direct proofs of this implication, but they
all r.equire a fair amount of work.

COROLLARY 5.3. If T is normal, then the following properties of a pair
(E, H) are equivalent:

This term was coined by Semadeni.
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(a) E, H) has the dominated extension property.
(b) E, H) has the strict dominated extension property.
c E, H) has the bounded extension property.

Proof. (a)--(b). Let A er and let feE with If(s) < A(s) for all
s e S. Using the normality of T, it is easy to construct a A0 e r such that
A0(t) < A(t) for every teT, and If(s)

_
A0(s) for allzeS. By (a),f

can be extended to some f’ H such that Ifr(t) - /0(t) < A(t) for all e T.
(b)-(c). LetfeEande > 0begiven. LetM Ilfll + 1. For each

open W 3 S, pick a continuous Aw T-- [, M] such that/w(S) M and
A( T W) , and then use (b) to extend f to a continuous f. e H such
that f.(t) < A(t) for every e T. These f.w satisfy the requirements of
Definition 1.2.

(c) - (a). Suppose that A e lI), f E, and If(s) - A(s) for every s e S.
Let Es be the one-dimensional subspace of E spanned by f; then Es is a sepa-
rable rl-space. Applying Theorem 5.1 to the pair (El, H), we obtain an
extension of f to some f’ e H such that If(t) - A(t) for all e T. That com-
pletes the proof.

If 7’ is compact metric, then the bounded extension property is equivalent
to a remarkably weak condition:

PROPOSITION 5.4. If T is compact metric, then the following properties of a
pair (E, H) are equivalent.

a E, H) has the bounded extension property.
b To every f E there corresponds a bounded sequence f, H such that

f S e E for all n, f(s) --> f(s) if s S, and f(t) --> O if e T S.

We omit the proof of Proposition 5.4. Note that it is not obvious from (b)
that f e E has any extension f e H.

6. Banach space-valued functions
Let B be a Banach space, and let C(X, B) denote the Banach space of

bounded, continuous functions from X to B. It is a striking fact that, if E
and H are assumed to be subspaces of C(S, B) and C( T, B), respectively, and
if absolute values are suitably replacedby norms, then all our definitions remain
meaningful, and Theorem 1.5 and its refinements in Sections 4 and 5 remain
true with exactly the same proofs. In order to benefit from this observation,
however, we must know something about what subspaces E of C(S, B) are
separable l-spaces. In particular, when is C(S, B) itself a separable -space? We can answer the latter question as follows:

PROPOSITION 6.1. If S is compact metric, and if B is a separable r-space,
then C( S, B) is a separable -space.

Before proving this result, let us note that, in view of the observation in the
first paragraph of this section, Proposition 6.1 implies the following generaliza-
tion of Theorem 1.3.
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THEOREM 6.2. If T is compact metric, B a separable ’l-space, H a closea
linear subspace of C( T, B), and if (C(S, B), H) has the bounded extertsion
property, then there exists a linear extension u C( S, B)--o H of norm one.

To prove Proposition 6.1, we will use the following result of Grothendieck
[7, p. 90], where A (R) B denotes the completion of the algebraic tensor product
A (R) B in the norm given by

where S] and S are the unit spheres of the dual spaces of A and B, respec-
tively.

LEMMA 6.2. [7]. U S is a compact Hausdorff space, and ff B is a Banach
space, then C(S, B) is isometrically isomorphic to C( S) @ B.

In view of Lemma 6.2, and the fact that C(S) is a separable rx-space if S
is compact metric ([11] or [12]), Proposition 6.1 is a special case of the follow-
ing result.

PaOeOSlTIO 6.3. If A and B are separable -spaces, so is A @ B.

Proof. LetAx A bea r-sequenceforA, letB B
be a v-sequence for B, and let C A @ B for all n. By a result of Schat-
ten [16, Lemma 2.12], the norm on A @ B is the same as the one th space
inherits as a subspace of A @" B, so that C c A @" B as a normed linear
space. Also Cx C and O:=x C is dense in A @" B. It remains to
find a projection of norm one from A @" B onto each C,.

Let n A A and B B be projections of norm one. Define

by extending the algebraic tensor product

over the completion A @ B. This is possible because, as is easily checked
from the definition of the norms, a @ is bounded, with

Hence lso ]] a @ B 1, nd a @ is the required projection.

7. Two speciol coses

If the bounded extension property is eliminated from Theorems 1.3 nd
1.5, then, s we shll show in Examples 9.2 nd 9.5, there my exist no linear
extension u E H t 11 (even when every f E cn be extended to some

f’e H). There re, however, two special cses (which re, in sense, dul
to ech other) where the situation is different. We define rs H C(S) by
rs f f IS, nd isomorphic means linearly homeomorphic.
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PROPOSITION 7.1. If either of the following two conditions is satisfied,
there exists a linear extension u E -+ H (although not necessarily of norm one).

(a) rsH E, and E is isomorphic to l.
(b) H is separable, rs H E, and r-(0) is isomorphic to co.

Proof. (a). LetH0 r-i(E),ndlet r= rslHo. Since r is a continuous
linear map from H0 onto E, und E is isomorphic to l, there exists a continuous
linear inverse u E -- H0 for (i.e. uf f for all f e E) [5, p. 31 12)]. But
that means that u is a linear extension.

(b) Let K r-(0). Since K is isomorphic to co, a theorem of Sobczyk
[17] [15; Theorem 4] implies that there exists a projection p from H onto K.
Hence there is an isomorphism v from p-(0) onto the quotient space H/K,
defined by v(g) g -t- K. Since rs maps H onto E, the open mapping
theorem implies that rs is a quotient map, so there is an isomorphism w from
E onto H/K, defined by w(f) r-(f) - K. Then u E -o p-(0) H,
defined by u v- o w, is a linear extension.

8. Linear extensions u with u(l) 1.

As observed in Section 4, the Borsuk-Dugundii theorem (Theorem 1.1)
always permits the linear extension u to be chosen so that u(18) l r.
The purpose of this section is to prove that this remains true for Theorem 1.3,
provided we either use real scalars, or use complex scalars and assume that
H c C(T) is self-adioint (i.e. f e H implies ] e H). (Example 9.1 shows that
this may be false with complex scalars if H is not self-ad]oint.)

THEOREM 8.1. Suppose that S is compact metric, that (C(S), H) has the
bounded extension property, and that lr H. Then:

(a) With real scalars, there exists a linear extension u C(S) ---+ H of norm
1 with u(ls) lr.

(b) With complex scalars, and with H self-adjoint, there exists a linear
extension u" C(S)---> H of norm 1 with u(ls) l r. Moreover, u] f for
every f e C S

Proof that 8.1(a) implies 8.1(b). Let C(S) and H be as in 8.1(b), and
let CR(S) and HR denote the spaces of real-valued functions in C(S) and H,
respectively. Then 1 e HR, and it is easily checked that (C(S), H) has
the bounded extension property. Hence, by 8.1(a), there exists a real-linear
extension uR’C(S)-->HR of norm 1 with u(ls) l r. Now define
u" C(S)-+Hby

uf uR Re f q- iu Im f.
It is easy to check that u is a complex-linear extension, that uls ulr,
and that u] f for every f e C(S). It remains to verify that u -< 1.

Let f C(S) with f -< 1, let e T, and let us show that I(uf)(t) <- 1.
Pick a complex scalar a, with al 1, so that (auf)(t) is real. Letting
f’ af, it follows that
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(u/)(t) (u/’)(t) (u Ref’)(t) - u Re/’

That completes the proof that 8.1(a) implies 8.1(b).
The remainder of this section will be devoted to proving Theorem 8.1(a).

We begin with several preliminary observations and results. The hypotheses
of Theorem 8.1(a) will always be tacitly assumed.

It was noted in the introduction that C(S) is a -space, but we can be more
precise" Call , a peaked partition of unity on S if it is a parti-
tion of ity and if, for each i 1, ...,n, there is an sS such that
O(s) 1. The linear space [] spanned by such a is called a peaked par-
tition subspace of C(S), and the map C(S) [], defined by

(,)

is a projection of norm 1 onto [] (see [11]). It was proved in [11] thut, for
compact metric S, the spuce C(S) ulwuys hus u -sequence F F con-
sisting of peaked partition subspaces, and with F [ls].

If F C(S) and u A(F, H), let us say that u 0 if uf 0 whenever
f 0. The following lemma follows from (.).

LEMMA 8.2. If is a peaked partition of unity S, if
w, A([], H), and ifw O for i 1, n, then w O.

LEMMA 8.3. Let f C( S), f O, let ) O, and let f H be an extension of
f with f --e. Then f can be extended to some f* f*H with 0 and

Proof. Letg inf(f’,O). ThenglS O. Let
A 21 + g.

Then A (see Section 5), and AS 21s. Hence, by Corollary 5.3,
there is an extension of 2tls to some hH with h[ A, dclearly
n If we now let

f* =f’+ 21-- h,

then it is easy to verify that f* satisfies all our requirements. That completes
the proof.

COROLLnRY 8.4. Let G be a peaked partition subspace of C(S). Let
v A(G, H), let > O, and suppose that vg whenever g G and 0 g 1.
Then there exists wA(G, H) with w 0 and Iw v g 4he, where
n dim G.

Proof. Let G [], where {, ..., } is a peaked partition of
unityonS. Then0 lfori= 1,... ,n, sov - sforalli. By
Lemma 8.3, each i can be extended to some H with 0 and
v 4. Let w be the unique element of A(G, H) such that
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wi for i 1,
_< 4efori 1, ,n.
the proof.

n. Then w > 0 by LemmaS.2, and If(v-w)
Hence ]v w < 4he by (.), and that completes

PROPOSITION 8.5. Let F, G be peaked partition subspaces of C(S),
u e A(F, H), and > O. Then there exists w e A(G, H) such that w > 0 and

Iluf +  gll < 1 ,-+-

whenever f e F, g e G, f A- g 1, and uf _< 1.

Proof. Let us first observe that Proposition 2.2 remains true if we are
given finite-dimensional subspaces Fi c C(S) (i 1, ..., n), and
u e A(F, C(T) for each i, and require that v behave properly with .respect
to each u. The proof is the same, except that now Kv and av must be defined
with consideration for all the u.

Let us now apply the previous paragraph with n 2, F1 F, ul u,
F2 [ls], u2(Xls) Xlr, and 3’ t( 1 -4- 8n) -1, where n dim G, yielding a
suitable v e A(G, H). This v satisfies the hypothesis of Corollary :8.4, with

replace by , for ifgeGand0 < g < 1, then IIls A- (-g)]l < 1 and
u2 ls 1, so u is A- v(--g) < 1 -4- % whence 1- vg < 1 + ,,and

thus vg > -3’. By Corollary 8.4, there is thus a w e A(G, H) with w _> 0
and w v < 4n. Now if f e F, g e G, f A- g --< 1, and uf <- 1,
then g < 2, hence

uf + wg --< uf A- vg A- vg wg < (1 -f- 3’) A- 8n3, 1 -{- t.
That completes the proof.

COROLLARY 8.6. If F is a peaked partition subspace of C(S), if e > O,
and if u e A(F, H) with u < 1 A- e and u >_ O, then there exists we A(F, H)
with w 1, w > O and u wll < e.

Proof. This follows from Proposition 8.5 precisely as Corollary 2.4 fol-
lowed from Proposition 2.2. That completes the proof.

Let so e S be fixed. Then clearly any f e C(S) has a unique decomposition

f f0 -4- Xls,

where f0(s0) 0 and X is real (in fact, X f(s0)).
The proof of the following lemma can be left to the reader.

LEMMA 8.7. Suppose that F C(S), 1 e F, lr e H, and u e A(F, H).
Define u’ e A(F, H) by

u’(fo A- Xls) ufo A- Xlr.

If u > 0 and u 1, then u’ > 0 and u’ 1. Moreover,

LEMMA 8.8. Let F G be peaked partition subspaces of C(S), let u e A(F,H)
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with u II 1 and u18 lr and let 8 > O. Then there exists a u’ e A(G, H),
with u’ II 1 and u’18 lr, such that u u’ F

Proof. Since G is a peaked partition subspace of C(S), there exists
projection G- F of norm 1. We can therefore apply Corollary 2.3, with

8(2 16n)-1, where n dim G, to extend u to some v e A(G, H) with
IIvll < 1 - . Now ifgeGand0_< g_< 1, thenl[18- gll -< 1, so

and hence vg >_ -. We can therefore apply Corollary 8.4 to obtain
weA(G,H) withw_>0and[lw-vll <4he. Hence

Next, we apply Corollary 8.6 to obtain w’ A(G, H) with 1,
w’ 0, and w w’ < (1 + 4n)s. Finally, we apply Lemma 8.7 to find
u’eA(e, H) with u’ 1 and

Hence

v _< 2(11 w -i- v I1)

2(1+8n)= 8.

That completes the proof.

Proof of Theorem 8.1(a). Let F1 c F be a rl-sequence for C(S)
consisting of peaked partition subspaces, with F [18]. Define u e A(F, H)
by u(hls) ),lr. By Lemma 8.8 we can now inductively define
u,e A(F., U), with u 1 and u18 lr, so that Ilu+l F u < 2-
for all n. We now proceed exactly as the proof of Theorem 1.5 to obtain a
u e A(C(S), H) with u 1 and uls lr, and that completes the proof.

9. Examples

Our first example shows that, for complex scalars, Theorem 1.3--and hence
also Theorem 1.5--cannot be strengthened by asserting that there exists a
linear extension u E -- H of norm one such that u18 ul r. (See, however,
Theorems 4.1 and 8.1.) (The disc algebra is defined in the remark following
Theorem 1.3.)

EXAMeLE 9.1. Let T be the unit circle, and let S T contain at least two
points and have Lebesgue measure zero. Let E C( S) and let H C( T) be
the disc algebra. Then there is no linear extension u C(S) --H of norm one
such that uls 1

Proof. Let s and s be two different points in S. Choose f in C(S)
such that

1 =f(s) _f(s) fl(s) 0 forseS,
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and letfl. ls -fl. Then
and f(s.) 0 for j i (i, j 1, 2). Hence, for arbitrary complex numbers
a_ and a2

maxi=,2 ai > alf -4- a2f2
> max=l,2 (a fl A- a2 f2)(s) max,_l,2 a [.

Now let u" C(S) H be a linear extension of norm 1. Clearly u is a
linear isometry from C(S) into H. Therefore, for arbitrary complex numbers
a and as,

a ufl -4- as uf a fl A- af max_, a I.
This implies (by taking a (uf)(t)) that

(1) I(uf)(t)l+l(uf)(t)l<_ 1 for e T.

Now ifuls lr,thenufl+uf l r. Hence

(2) urn(t) -t- urn(t) 1 for e T.

It follows from 1 and (2) that uf and uf are non-negative--and hence real
functions, and must therefore be constant because they belong to the disc
algebra. But this leads to a contradiction, because

uf( s) f( s) f,( s) uf,( s).

That completes the proof.
Our last three examples show how Theorems 1.3 and 1.5 can become false if

the bounded extension property is omitted from the hypotheses, or even if it
is weakened by omitting the word "bounded" in Definition 1.2.
The following example provides a converse to Proposition 7.1(a).

EXAMPLE 9.2. Let S be any infinite, closed subset of the interval [- 1, 0], and
let T S [1, 2]. Let E C( S) or, more generally, any infinite-dimensional
closed linear subspace of C( S) which is not isomorphic to l Then there is a sub-
space H of C(T) such that:

a Every f E has an extension f’ e H.
b There is no linear extension u E H.

Proof. By [1, p. 111], the separable Banach space E is the image of l under
a linear map a l - E with a 1. By [5, p. 93], there is a linear isometry
from l into C([1, 2]). Let us define an isometric isomorphism from l

into C(T) by
(,x)(t) (ax)(t) if eS,

(.x)(t) (Ox)(t) if e T S,
and let H l.

Clearly (a) is satisfied, because all E. To prove (b), suppose there were
a linear extension u E -- H. Then u(E) is infinite-dimensional and comple-
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plemented in H (with complement {f e H f S 0} hence, since H is iso-
morphic to 11, so is u(E) by [15, Theorem 1]. But u(E) is isomorphic to E
(since f II - uf

_
u II f for every f e E), so E is isomorphic to 11,

contrary to our assumptions. That completes the proof.

Remark. In certain cases, such as when S is a convergent sequence and
E C(S), it can be shown that 9.2(a) can be strengthened by choosing f’ SO

The verification of the following simple example can be left to the reader.
Note that here there are linear extensions, but not of norm one.

EXAMPLE 9.3. Let T [0, 2], S [0, 1], and

H e C(T)" f(t) dt 0

Then
a If W S is open in T, then every f e E has an extension f’ e H such that

f’( 0 when e T W.
(b) There is no linear extension u C(S) ---> H of norm 1 (in fact, l s has

no extension in H of norm 1).

In the proof of Example 9.5, we will need the following lemma, which seems
to be known among Banach space specialists, but for which we have found no
reference in the literature; the proof, which is somewhat complicated, is
omitted.

IEMMA 9.4. Let L ll l X )co be the Banach space of sequences
x (x,), with z,e Ii for all n and x, -> O, and with I1 x I1 defined by
x sup:_- ]l xn [[. Then n has no infinite-dimensional reflexive subspaces.

EXAMPLE 9.5. There exists a compact metric space T, closed S c T, and closed
subspaces E C(S) and H C(T) such that:

a) If W S is open in T, then every f e E has an extension f e H such that
f’(t) Oif te T W.

b There is no linear extension u E -- H.

Proof. Let S be the interval [-1, 0], let

I [2-, 2-+],
and let

Let
T S u U: I,.

E Co(S) {fe C(S) f(O) 0}

or, more generally, any subspace of Co(S) which contains an infinite-dimen-
sional reflexive subspace. By [1, p. 111], the separableBanachspaceE is the

Since every separable Banach space is isomorphic to a subspace of CO(S), E can
thus be chosen "almost arbitrarily".
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image of 11 under a linear map a" 11 -- E with a 1. By [5, p. 93], there
are linear isometrics , 11 - C(I,) (into) for all n. Let L be the space of
Lemma 9.4, and define the linear map L -- C(T) by

(x)(t)

(x)(t) :=2-"(,)(t) if teS.

It is esily checked that indeed y e C(T) for 11 x e L. Let H (L). To
verify (), observe first that W I for some m; if f e E, we pick x e L such
that ax f nd x, 0 for n m, nd then tke f’ x. It remains to
verify (b) and the fct that H is closed in C(T).

Suppose there were linear extension u E H. Then u is n isomorphism
from E into H (since f uf u II f for llfeE), so H hs n
infinite-dimensional reflexive subspace. By Lemm 9.4, we
contradiction by showing that is n isometry; that will lso prove that H is
closed in C(T).
LetxeL. Then

x a sup:=x
To +heok th+t +Iso +x x II, w+ wm +how m++ I< +x> +>I + +or +very
teT. IfteI+,then

If + S, then

Th+t completes the proof.

REFERENCES

1. S. BANCH AND S. AZUR, r OrrrDO, Studia ath., vol. 4
(1933), pp. 10112.

2. E. BISHOP, r-roor, Proc. Amer. ath. Soc., vol. 13 (1962),
pp. 14143.

3. K. BORSUK, 5roore erFore, Bull. Int. Acad. Polon. Sci., 1933,
pp. 1-10.

4. F. E. BROWDER AND D. G. DE FIGUEIREDO,
SpC, Comm. ath. Helv., to appear.

5. . . D,orrpce, Erebnisse der athematik (New Ser.) vol. 21,
Spriner, 1958.

6. J. DUGUNDJ, eO O/ e’r, Pacific J. ath., vol. (1951), pp.
353-367.

Amer. ath. Soc. no. 16 (1955).

Math. Puree Appl., vol. 10 (1965), pp. 96-91 (Russian).
9. S. JA. HWNSON, O e-Creo or, Dokl. Akad. Nauk SSSR, vol. 165



A LINEAR EXTENSION THEOREM 579

(1965), pp. 497-499 (in Russian); English translation in Soviet Math. Dokl.,
vol. 6 (1965), pp. 1476-1478.

10. J. LINDENSTRAUSS, Extension of compact operators, Mem Amer. Math. Soc. no. 48
(1964).

11. E. MICHAEL AND A. PELCZYISKI, Peaked partition subspaces of C(X), Illinois J.
Math., vol. 11 (1967), pp. 555-562 (this issue).

12., Separable Banach spaces which admit n approximations, Israel J. Math.,
vol. 4 (1966), pp. 189-198.

13. A. PELCZYSI, On simultaneous extension of continuous functions, Studia Math.,
vol. 24 (1964), pp. 285-304.

14., Supplement to my paper "On simultaneous extension of continuous functions"
Studia Math., vol. 25 (1964), pp. 157-161.

15. Projections in certain Banach spaces, Studia Math., vol. 19 (1960), pp. 209-
228.

16. R. SCHATTEN, A theory of cross spaces, Ann. of Math. Studies, No. 26, Princeton Univ.
Press, Princeton, 1950.

17. A. SOBCZYK, Projections in Minkowski and Banach spaces, Duke Math. J., vol. $

(1941), pp. 78-106.

UNIVERSITY OF WASHINGTON
SEATTLE WASHINGTON

UNIVERSITY OF WARSAW
WARSAW, POLAND


