
ON EQUICONTINUITY OF HARMONIC FUNCTIONS IN AXIOMATIC
POTENTIAL THEORY

A. Ioscv TvLcA

Recently there have been several results in the literature on equicontinuity
of harmonic functions in axiomatic potential theory ([5], [9] and [6]). The
purpose of this note is to place these results in the setting of compact and
weakly compact operators in Banach spaces. Our note is close in spirit to
[6]; our results are somewhat more general and our proofs particularly simple.

1. Preliminaries. If E is a Banach space, we denote by E’ its dual. When-
ever we speak of bounded, compact or relatively compact sets in E, this will
always mean in the norm topology of E. Occasionally we shall use the terms
strong, strongly:these will always refer to the norm topology of E, while the
terms weak, weakly will refer to the weak topology o’(E, E’) of E.
For any set Z we denote by M(Z) the algebra of all bounded real-valued

functions on Z, endowed with the supremum norm,

f IIf sup,zl f(z) I.
Suppose now that Z is a locally compact space. We denote by ((Z) the

algebra of all continuous real-valued functions on Z and by (Z) the sub-
algebra consisting of the functions vanishing at infinity [3]; further we derote
by (0(Z), ff3(Z) and t(Z) the a-algebra of all Baire subsets of Z (generated
by the compact G’s), the a-algebra of all Borel subsets of Z (generated by the
closed sets), and the a-algebra of all universally measurable subsets of Z,
respectively. We shall sometimes consider the one-point eompaetifieation
of Z, Z* Z u{} and we shall identify (Z) with a closed subspaee of
e(z*).
Let now (X, 5) be a measurable space, i.e. X a set and 5 a a-algebra of sub-

sets of X. We denote by M*(X, 5) the algebra of all bounded real-valued
5-measurable functions on X. Clearly M*(X, 5) is a closed vector space of
the Banach space M*c(X). We denote by 9Z(X, 5) the vector space of all
real-valued countably additive measures on 5, endowed with the "total varia-
tion" norm v -- # l]. In what follows we identify 9(X, 5) with a closed
subspace of the dual space (M (X, 5) )’ via the formulas

<f, ,> f f du, f e M’c(X, 5), e 9Z(X, 5).

If X is a locally compact space, then clearly
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e(X) c M=(X, O30(X)) c M=(X, OS(X) c M(X,’U.(X) c M’(X),
and each of these is a closed vector space of the BaIach space M=(X).
We shall now recall a theorem on compact and weakly compact operators

in Banach spaces due to Thorp and Whitley. Let E be a Banach space, Z
a set and S:E -+ M(Z) a continuous linear mapping. Then S can be
represented in the form

(Sx) (z) (x, }, x e E

where z e E’ for each z e Z and }, z -+ , is a bounded mapping of Z into E’.
Let h(Z) {},, z e Z}. Then (see [10, p. 597]; see also [1] and [7]):
THEOREM (Thorp and Whitley). (I) The operator S E ---+ M=(Z) is

compact if and only if (Z) is relatively compact in E’.
(II) The operator S E ---+ M=(Z) is weatdy compact if and only if h(Z) is

relatively weakly compact in E’.

2. We shall state here the main theorem; as will be seen, this is an easy
consequence of the Thorp-Whitley theorem and yields all the known results
on weak compactness and compactness of operators arising in axiomatic
potential theory in connection with equicontinuity of harmonic functions
(Sections 3 and 4).
Throughout this sectioI it is assumed that (X, 5) and Y, ) are measurable

spaces and S M(X, 5) --+ M(Y, if) is a continuous linear mapping. For
each y e Y the equations

(Sf) (y) {f, }, f e M(X, 5)
uniquely determine as an element of (M=(X, 5))’ and ),: y -+ is a
bounded mapping of Y into (M=(X, 5))’. We shall say that S is represented
by the family (),),y and write X(Y) {[y Y}. It isclearthat Smaps
bounded pointwise convergent sequences into pointwise convergent sequences
if and only if S is represented by measures, that is ),(Y) c 91Z(X, 5).
Below we shall make constant use of the Eberlein-Smulian theorem [7,

p. 43Ol.
THEOREM 1. Suppose that ( Y) 9g(X, 5). Then the following assertions

are equivalent:
(1) If (f M X, 5) is a bounded decreasing sequence with pointwise

limit f, then Sfn) converges strongly to Sf.
(2) If (f,) M (X, 5) is a bounded pointwise convergent sequence with

pointwise limit f, then Sfn) converges strongly to Sf.
(3) There is 9g+(X, 5) such that every is absolutely continuous with

respect to . Furthermore, if we denote by G a version of) the Radon-Nikodym
derivative of with respect to , i.e.

(Sf) (y) (f, X} f f(x)G(x) dt,(x), f e M(X, 5)

then the set {G y Y} c 2I(X, 5, ) is uniformly integrable.
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(4)
(5)

h(Y) is relatively weakly compact in (Moo(X, 5))’.
S Moo(X, 5) -- Moo Y, ) is weatdy compact.

Proof. (5) = (4) by the Thorp-Whitley theorem.
(4) (3). Since (X, 5) is a closed subspace of (Moo(X, 5))’, it follows

that (Y) as a subset of the Banach space (X, 5) is relatively weakly com-
pact and thus weakly sequentially compact. There is then t e i)+(X, 5) such
that lim,(E)01k(E) 0 uniformly for y e Y [7, p. 306-307]. This shows that
every is absolutely continuous with respect to t and that the absolute
continuity is uniform for y e Y. By a well-known theorem of measure theory,
this implies that the set

{G y Y} c 1(X, 5, )

is uniformly integrable (since it is also bounded).
(3) =, (2) is immediate.
Since (2) (1) obviously, it remains to show (1) (4). Note that if

(En) C 3’is a decreasing sequence withE 0, then lim](En) 0 uni-
formly for y Y. Since the countable additivity of v is uniform with respect
to y e Y and since the set (Y) is also bounded in norm, it follows that (Y) as
a subset of the Banach space (X,.. 3) is weakly sequentially compact [7,
p. 305] and thus relatively weakly compact. As (X, 3) is a closed sub-
space of (Moo(X, 3))’, we conclude that ),(Y) as a subset of (Moo(X, 3))’ is
relatively weakly compact. This completes the proof of the theorem.

Remarks. (1) We could hve also derived Theorem 1 (at least part of the
implications) from the general representation theorem of weakly compact
operators from (Z) to E (Z a compact space, E a Banach space) given in
terms of vector-valued measures [7, p. 493] or by using a profound result of
Grotheadieck (S (Z) -- E is weakly compact if and only if it maps weakly
convergent sequences into strongly convergent sequences; see [8]). We
preferred however to avoid vector-vMued measures; on the other hand, for the
purposes of mesure theory, it is more natural to consider pointwise con-
vergence than weak convergence for sequences of functions belonging to
Moo(X, 3). That is why we used the Thorp-Whitley theorem instead.

(2) Under the conditions of Theorem 1, S maps relatively weakly com-
pact subsets of M(X, ) into relatively compact subsets of Moo(Y, ) use
the Eberlein-Smulian theorem (see also [7, p. 494] and [8]).

Let now (Z, ) be another measurable space and T Moo(Y, ) ----> Moo (Z, )
a continuous linear mapping. Suppose that T is represented by the family
(p)z. From Theorem 1 and Remark (2) above we obtain (see also [7, p.
494])

THEOREM 2. Suppose that h( Y) i)(X, 5), t(Z) c Jt(Y, ) and that S
and T are weakly compact. Then T o S Moo X, 5) Moo Z, is compact.

3. Throughout this section we assume that (X, 3) is a measurable space,
Y is a locally compact space, and S :Moo(X, 5) -- 0(y) a positive linear
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mapping (hence continuous).
().

Suppose that S is represented by the family

THEOREM 3. Suppose that k(Y) c 9(X, 5). Then
(i) S M (X, 5) --> o( y) is weakly compact;
(ii) for any closed vector space satisfying the inclusions

O(y) E M (Y),
S regarded as an operator of M(X, 5) into E is weakly compact.

Proof. It is enough to note that S satisfies statement (1) of Theorem 1 (by
Dini’s theorem) and to use the equivalence (1) : (5).
Remark. In connection with Theorem 3 see also Theorem VI.7.1 in [7,

p. 490].

Suppose now that X, Y, Z are locally compact spaces,

S M’c(X, t(X)) e(Y) and T M’o(Y, t(Y)) -- e(Z)
are positive linear mappings. Assume that S is represented by the family
(k),r and T is represented by the family (z),z. Using the Arela-Ascoli
theorem [7, p. 266] we obtain from Theorem 3 and Theorem 2:

THEOREM 4 (C. Constantinescu). Suppose that X is a Radon measure on
X for each y e Y and is a Radon measure on Yfor each z Z. Then the operator

To S M*(X, (X) --+

is compact and thus maps bounded subsets of M(X, ’tt(X)) into bounded
equicontinuous subsets of O z

Remarks. (1) Theorem 4 obviously remains true if in the above state-
ments we replace everywhere t(X), t(Y) by 6t(X), 6t(Y) or by 6t0(X),
6t0(Y) respectively.

(2) In probabilistic language, the condition S(M(X, 6t(X))) c 0(y)
means that the kernel y -- h is strongly-Feller.

5. We shall make here several remarks which will lead to an elementary,
short, self-contained proof of Theorem 3 (independent of the Thorp-Whitley
theorem and of Theorem 1 above, or of Theorem VI.7.1 in [7, p. 490]).

Let (X, 5) be a measurable space.

Remarks. (1) Let A c 9(X, 5) be a set with the property that there is
e 9+(X, 5) such that every e A is absolutely continuous with respect to .

Then, for each p (M (X, 5) , there is u M (X, 5) such that (p, )
(u, t} for all t e A; in particular,

a((M*(X, 3))’, M*(X, 5)) and z((M*(X, 5))’, (M*(X, 5))")
induce the same topology on A (note that, for fixed p (M*(X, 5))’,
g --. (p, g. } is a continuous linear functional on 2(X, 5, )).
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(2) If A (X, 5) is any countably infinite set, then A satisfies the
assumption ia Remark (1) aud thus the conclusion of Remark (1) applies
(note that if A {, , , ...}, then every is absolutely contin-

uous with respect to the measure on 5 defined by =-i 2- 1 -t- I (X)
(3) Let E be a Banach space, A E a a(E’, E)-compact set. Then

A is weakly compact if and only if on every countably infinite subset of A,
(r(E’, E) and a(E’, E") induce the same topology (apply the Eberlein-
Smulian theorem).

Let now Y be a locally compact space and S M’(X, 5) - (0(y) a continu-
ous linear mapping. Let S be represented by the family (h)r we assume
that S is represented by measures, that is ,(Y) {IY e YI 9(X, 5).
It is obvious that ), y --. is a continuous mapping of Y into (M"(X, 5))’
when endowed with the topology a(M(X, 5) )’, M(X, 5) ). Note that
by extending the mapping y -- (and the operator S accordingly) to
Y* Y with 0, it remains continuous and thus the set k(Y*)
{ y e Y*} is a((M’(X, 5) ), M"(X, 5) )-compact. We shall show that the
operator S is weakly compact. This of course implies that Theorem 3 and
hence Theorem 4 hold for arbitrary continuous linear mappings (without
any positivity assumption). Below, for #, e 9(X, 5), we write < u if is
absolutely continuous with respect to u.

Second proof of Theorem 3 (without assuming S positive). By Remarks
(2) and (3) above, k(Y*) (M(X, 5) )’ is weakly compact. Thus ),(Y*)
is weakly compact in 9(X, 5) and there is e 9+(X, 5) such that < u for
every y Y* [7, p. 306-307]. Consider the adjoint of S,
S ((Y*) ) the space of Radon measures on Y*) -- (M(X, 5))’.

Using the definition of the adjoint operator it is easily seen that for each
e(e(Y*))’, S() is countab]y additive, i.e. S(O)(X, 5), and that
*S(O) < (note that S maps bounded pointwise convergent sequences into
bounded pointwise convergent sequences and that the relations E e 5, (E) 0
imply S 0). Let now L L(X, 5, ), L L*(X, 5, ) and for each
f M*(X, 5) let ] be the corresponding element (equivalence class) in L; the
equution S] Sf unumbiguously defines S]. We deduce that S L-- (Y*)
is continuous if L and ((Y*) are endowed with the topologies z(L*, L) and
(( e(Y*), e(Y*) )) respectively (use the fact that for every 0 e ((Y*) )’,
*S(O) -< ). If now H M*(X, 5) is bounded, the/ L is a(L, L)
relatively compact and hence S(H) S() (Y*) is relatively weakly
compact. This completes the proof.

6. For the immediate application of Theorem 4 to equicontinuity of
bounded sets of harmonic functions ia axiomatic potential theory see [6].
Here the author supposes only two axioms verified" a weakened form of
Axiom 2 of Brelot [4, p. 62] and a weakened form of Axiom (K) of Bauer
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[2, p. 16]. For the purpose of applying Theorem 4, the latter can be further
weakened by using Remark (1) after Theorem 4.

Other interesting applications to Markov processes and potential theory
will be given elsewhere.
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