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Let P(2) be a homogeneous positive definite polynomial of order 2m, m > 0

an integer, in z ¢ E, having constant coefficients. We will show that the
kernel

K@y) = [ 6™ exp (2ri8 | P) ['™y) d,

zely

where z ¢ E, ,y > 0, 8™ + 1 = 0, the imaginary part of 8 is positive and the
real part of 8° is negative, satisfies the following five properties:

(1) K(z,y) e L'(E,), independently of y;

(2) [s.K(@y)de=1;

(3) Jisizss0| K(z,9) ["de —>0asy — 0, L < g;

(4) | K(z,y)| < 4Ay™", A independent of z, y;

(5) |K(x,9)| < By|z|™", Bindependent of z, y.*

These are sufficient to guarantee that K is a reproducing kernel in the sense
that, if we define

) =f 5K,y = [ @K@ - 2y) de

then f(z, y) — f(x) as y — 0 in L” norm and almost everywhere for any
feLp(En)’ 1 .<_ p < o,

These kernels are of interest, since K(z, y) and, hence, f(z, y), as defined
above will satisfy the elliptic equation

(8®™/9y"™)u + P(D)u = 0

in Bty = {(z,9) |2 eEa,y > 0}, where P(D) is the differential operator
obtained from P(z) by replacing each occurrence of z; by 8/dxz; ,2 =1, --- ,n.

Lettingz = |z |2/, |z]| = D ia xf , from the homogeneity of P, we obtain
by a simple change of variable the following identities for K:

Kz, y) =y "K@y1) = |z K@,y z[™) forallzeE,,y > 0.
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1 This research was partially supported by a National Science Foundation grant in
applications of functional analysis at Princeton University.

2 Throughout this paper the letters 4, B, C will denote constants which are inde-
pendent of z, y, 2, t, or v. They may, however, have differing values in different parts
of the same argument.
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To prove that K has the indicated properties, we will first assume property
5 and prove the other four properties. Then, we will prove property 5.

To show property 1 we first observe that | K(z, 1) | < 4 for |z | < 1 since
K(z, 1) is continuous. We then have

[ 1K@yl
zeEy

- f v K(ey™ 1) | dx

n

= | K(2,1) | de.  (letting x; = yz;)

2eEy

< A9, + B 2| " de (by property 5 and continuity)®

[r|>1
< AQ, + Bw,, which is independent of

Since we have shown that K(x, ) is in L'(E,), property 2 follows by the
Fourier inversion formula, i.e.,

f i K(x,y) dx = exp [2m8 | P(0) ["*™y] = 1.

Using property 5, we obtain property 3 as follows:

n—qn—q

K(z, de<B“f —atD g < B, O
fmzsl (z,y) |“dw < B lmslﬂcl < BY'eon Ty

which tends to zero as y — 0.
Property 4 is shown directly from the definition. Thus,

|KG,9)| = v | Ky, D] <y [ _exp [=2r1() | P(2)["™"] dz < Ay,
I(B) = imaginary part of 8.

|—'n—1

We now must prove property 5, | K(z,y) | < By |z , to complete this
derivation of the properties of K. This will be done through a sequence of
lemmas. The heart of the argument will be found in the proofs of Lemmas 2
and 3.

We first need to introduce some notation. For & an n-tuple of non-negative

integers,i.e.,a = (1,00, yon),a; 2> 0,2 =1, .-+, n, we define
n (¢] (+7

al 67‘ o a a

a =2a~ D = cve —— and 2% = a1t - TR,

lal =2 i, o G .

Lemma 1. DO(|P(2) |"®™ = Ca;| P(2) |""™7*Q(2),j = 1, 2, where m
is any inleger greater than or equal to 1 ¢f 7 = 1 and m is any integer greater

3Q, is the volume of the unit sphere in E,, |z | < 1. w, is the area of the surface,
|z | = 1, of the unit sphere in E, .
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than or equal t0 24fj = 2,k = | a |, and Q s either a homogeneous polynomial of
degree k(2m — 1) or Q 1is identically zero, (Q(z) = 0).
Proof. (8/02:)( | P(2) |“*™) = (j/2m) | P(2) |“*™™ 9P/dz;. Since

dP/0z; is either homogeneous of degree 2m — 1 or identically zero, the lemma
is true for k = 1.

We proceed by induction on k. Suppose the lemma is true for k = g, i.e.,
D(| P(2) ["*™ = Cu,i| P(2) |""™7Q(2)
for all a such that |a| = ¢, and the order of Q(z) is ¢g(2m — 1) or
else Q(z) = 0. Then

6 . [D*(| P(2) |"™™)]

= Cai((§/2m)— @) | P(2) | """ 7Q(2) ‘31—’, + Cay | P(2) |70

i /2m)—q— . 6
= Cas | P(2) |9 ((/2m) — Q) 51 + 32 P(2)L
The polynomial in brackets is either zero or homogeneous of degree (¢ + 1)
(2m — 1). Thus, the lemma is true for all k.

LemMA 2. (a) |K(z,1) | < Blz|[™"" for'n, even.

(b) LetK* (z) = [.ex, exp [—2niz-2 + =° 8| P(z) |**) dz.  Then, for n
odd, | K*(z) | £ Bz |

Proof. (a) Since
|2 " K@@, 1) | € (Jzil + @] 4 oo + 2" | K, D |,

it suffices to show that |z”|| K(z, 1) | is bounded for all « such that
|e| =n+ 1.
Now

| 2°K(z,1) | =

z° f exp [—2mix-2z + 2748 | P(2) |'*"] dz
By

4

Caf exp [—2miz-21D* (exp [2mi8 | P(2) |'™™]) dz
Eqn

where C, is a constant depending only on a.

Let ¢(2) be a C* function with support in | 2| < 2 such that ¢(2) = 1 for
|2| < 1. Then

f =D (exp [2mi8 | P(2) ™) de
E

n

= [ =D (=28 | P2) "6 () + exp (278 | P(e) ™) de
E

n

+ 2n8 L =D P(2) |"(2)) de.

4 This and all future integrals in this lemma will be taken in the Cauchy prineciple value
sense at the origin.
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The first of these integrals is bounded since all of the derivatives of ordern -+ 1
of the function

—2miB | P(2) [*" ¢(2) + exp [2ri8 | P(2) [*"]
are in L'(E,). It is enough to show that
f e—2m’x-zDa(| P(z) |1/2m¢(z)) dz
E

n

is bounded. Indeed, we need only show that
f e—2m‘x-2Da<l P(z) ll/Zm) dz
J2l <1

is bounded, | @ | = n 4 1, since the function
f(z) = D*(| P(2) "™ ¢(2)), |z|>1,
= 0) lzl <1
is in L'(E,).
By Lemma 1, we see that we need only show that

f 6—21ria:—zQ(z) | P(z) |(1/2m)—n—1 dz
|21 <1

is bounded, where Q(z) is homogeneous of degree (n + 1) (2m — 1). The
case where Q(z) = 0 is clearly bounded.
Letting 2’ = z/| 2 |, we can write this integral as

‘/; . e—2w$x~z[QQz/) I P(z’) |(1/2)—'n—1] I 2 |—n dz.
From the order of homogeneity, for n even, we have Q(2') = —Q(—2').

Hence, . .
Q) | P@) M |2

satisfies the conditions for a singular integral kernel, and, therefore, this last
integral is bounded as a principle value integral.® This completes the proof
of (a).

(b) is trivial in the case m = 1 since exp (x'8°P(z)), R(8’) < 0 has
rapidly decreasing derivatives of all orders, and thus, its Fourier transform
multiplied by any polynomial is bounded. In the case m > 1, (b) can be
proved by the same technique used to prove (a), using Lemma 1 with j = 2.

Lemma 3. |K(2',y) | < Ay.

Proof. We use essentially different techniques to prove this lemma in the
cases n even and n odd. It isinteresting that this difference depends only on

8 See A. P. Calderén and A. Zygmund, On the existence of certain singular integrals,
Acta Math., vol. 88 (1952), pp. 85-139.
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the dimension of the space and not at all on the degree of the polynomial P.
I have been unable to discover a way of avoiding this.
For n even, using Lemma 2(a), we have

|K(,9) | = 4" | K(&'/9), 1) | < y™" B| (&//y) ™™ = By.
For n odd, we use the fact that for R(8) < 0, R(8®) > 0, we have

(-]
F = I f WP g
o
Thus
| K(«',y)|

—1/2
=T

f g il ( /0 u %™ exp [7°6°| P(2) |**™yPu™] d“) dz
E

n

<y o —ty?
= \%r f e "( A ¢ 7 &P [=°6%| P(2) |7 dt) dz|, letting u = #,
£,

b

=Y f P ( f exp [—2mix’ -2 + o°6%| (&) |t de ) dt
o Ea

by Fubini’s theorem,
_ Y /’ D12 (f exp [—2miatn -2 + 1r262|P('n) lz/zm] dﬂ) dtl ,
o E,

letting z; = % s

Y f D R (I dt\

Talh (t7")

- %
vV

<v| Z [ la+ 2 [ 150G o).

, letting t = ¢,

f VY K (02') do
0

The first integral is clearly bounded since K* is a continuous function. The
second integral is dominated by f‘f v"By "2 dv = B by Lemma 2(b).
We are now ready to show property 5 of our kernel, i.e.,

|K(z,y)| < By|a|™"
Thus,

K@y) | =|z["|E@,yle[™)| < |e["4y|z[" = Ay =™
by Lemma 3. This completes the derivation of the properties of K.
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